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Abstract

It is well known that n-detection test sets are effective
to detect unmodeled defects and improve the defect cov-
erage. However, in these sets, each of the n-detection
test patterns has the same importance on the overall test
set performance. In other words, the test pattern that
detects a fault for the first time plays the same important
role as the test pattern that detects that fault for the (n)-
th time. In this paper, we propose a linear programming-
based optimal test pattern selection method which aims
at reducing the overall defect part level (DPL). Using
resistive bridge faults as surrogates, our experimental
results on ISCAS85 circuits demonstrate the proposed
test pattern selection method achieves a higher defect
coverage than traditional n-detection method.

1 Introduction

Semiconductor manufacturers strive to attain a high
yield (ideally 100%) when fabricating integrated cir-
cuits. Unfortunately, numerous factors can lead to a
variety of manufacturing defects which may reduce the
overall yield. The purpose of testing is to identify and
eliminate any defective chips after the chips are manu-
factured. However, it is currently impractical to test ex-
haustively for all possible defects. This is a result of the
computational infeasibility of accurately modeling de-
fects, limitations imposed by existing manufacturing test
equipment and time/economic constraints imposed by
the test engineers. For these reasons, the stuck-at-fault
(SAF ) model has been accepted as the standard model
to generate test patterns. Most of the existing commer-
cial ATPG tools use the SAF coverage as a metric of the
quality of a test set and terminate test generation when a
high SAF fault coverage is attained.

Although single stuck-at fault detection is widely ac-

cepted in industry, it can not detect many other types of
defects [19]. Especially as the widespread usage of deep
submicron technology, the probability of development
of transient and pattern sensitive faults is rising tremen-
dously. To address the deficiency of stuck-at fault detec-
tion, one approach is to build more sophisticated fault
models, such as the bridge fault model [15][12] and the
delay fault model [10]. However, since most existing
ATPG tools are designed for single stuck-at faults, con-
siderable effort must be made to extend these tools to
the new fault models. In this paper, we follow another
approach: n-detection, where each single stuck-at fault
is detected multiple times in order to catch other types
of defects [18] [8]. In the n-detection approach, the ex-
isting ATPG tools can be used with minimum efforts to
achieve the best results.

The first work on n-detection was done by Ma,
Franco and McCluskey [14]. In an experiment, they
showed that as the number of unique detections for each
fault increases, the defect coverage always improves
compared with other test generation schemes. When
n is sufficiently large, the n-detection stuck-at test pat-
tern sets lead to the identification of almost all defective
chips. Subsequent works [16][20] have also provided
the analysis of the effectiveness of n-detection test pat-
tern sets.

However, the set of test patterns that detect each
stuck-at fault n times is often too large, resulting in both
high tester memory usage and long testing time. This
is because the n-detection method treats all test patterns
that detect a stuck-at fault equally important when the
fault is detected less than n times. Previous research has
proved that not all the patterns in the test sets are equally
efficient in reducing the defect coverage [9]. Thus, n-
detection on each single stuck-at fault would somehow
waste some test patterns and reduce the performance of
the test set. Therefore, a post test generation compaction
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or optimization is necessary.
In this paper, we propose a linear programming-

based new test pattern generation strategy which selects
the optimal subset of test patterns from the n-detection
test set based on a weighted defect part level estima-
tion model – MPG-D model [4]. Instead of generating
the test patterns directly, our method aims at selecting
an optimal pattern set from a big n-detection set. We
use weighted MPG-D model as our objective function
to select the patterns, which accurately reflect the con-
tributions of each pattern to detect unmodeled defects.
Since the accurate defect coverage is almost impossible
to get [1], we use the surrogate detection approach to
compare the fault coverage of the test pattern set with
the n-detection test pattern set. (Here, surrogates mean
the fault models that are not targeted directly during the
test pattern generation but are used to evaluate the qual-
ity of the test pattern sets). Under this approach, the test
patterns are generated for a specific target fault model
(single stuck-at fault) and then simulated on the surro-
gate fault model (bridge fault).

The rest of this paper is organized as follows: In sec-
tion 2, we introduce the weighted MPG-D defect part
level estimation model. Section 3 introduces the ap-
plication of linear programming to select optimal test
patterns from an n-detection test set. Section 4 sum-
marizes the experimental results and compares the sur-
rogate fault coverage of our method and that of the n-
detection method on ISCAS85 benchmark circuits. Fi-
nally, in section 5, we conclude our research results.

2 Defect Part Level Estimation Model

To generate a test set, test generators always use some
objective functions to determine if the final objective is
achieved. For the single stuck-at fault oriented ATPG
tools, the objective function is the single stuck-at fault
coverage, and the objective is to maximize, to 100% if
possible, the fault coverage.

For the n-detection methods, the objective is to detect
each stuck-at fault by different patterns at least n times.
As long as n-detection on a fault is achieved, this fault
is dropped from the fault list and no longer targeted un-
der additional tests. This process can be explained by
the following model: Given a set of test patterns T =
{t1, t2, . . . , tn} and fault set F = {f1, f2, . . . , fm}, de-
fine the objective function as:

M(F, T ) =

m∑

i=1

M(fi, T )

where

M(fi, T ) =





1 if fi is detected less than n times by T

0 otherwise.

The objective of the n-detection methods is to generate
a set T so that the objective function M(F, T ) is mini-
mized.

However, this step objective function of n-detection
is not optimal because as the number of detections in-
creases, the objective function should gradually decrease
since as more defects are detected at each site, the prob-
ability of exciting one of the remaining defects becomes
smaller.

Consider Figure 1, the entire test space available at
a test site in the circuit is represented as a box in the
Venn diagram. Each oval represents the portion of that
test space which will excite a particular defect at that test
site (given that the site is observed). Thus, a defect is de-
tected when a test is chosen so that it falls within that de-
fect’s corresponding oval (Multiple defects may in some
cases be detected by the same test pattern). Once a de-
fect is detected, detecting it again will not further reduce
the defect part level, therefore, defect’s oval no longer
appears among those undetected defects. At any partic-
ular point in time, the probability of exciting an as yet
undetected defect given that the site is observed is sim-
ply the ratio of the area of the test space covered by the
ovals to the total area. Thus, the probability of excit-
ing an as yet undetected defect tends to decrease as test
patterns are applied and defects are detected.

Based on this observation, a defect part level estima-
tion model, MPG-D model, was proposed [3]. Unlike
other defect part level estimation models which depend
upon fault coverage, it does not go to zero when fault
coverage reaches 100%. In addition, it represents the
fact that the probability of excitation decreases as the
number of site observations increases and that more than
one defect may be present at any fault site.

The original MPG-D model defines the relationship
between the number of times a site is observed and its
contribution to the DPL. First of all, this model assumes
the uniform distribution of all the defects across the fault
sites. Thus, for each fault site j, an initial contribution to
the overall DPL is defined as:

DPLj(0) =
1 − Y

No. of Fault Sites (1)

where Y is the manufacturing yield. After the applica-
tion of a test pattern sequence T = {p1, p2, . . . , pk},
where k ≥ 1, some fault sites have been observed, some
have been excited, and some defects have been detected.
Thus, refer to Figure 1, the probability of exciting an un-
detected defect at a site given that site is observed would
be reduced as more test patterns are applied. This prob-
ability has been studied and shown to be a decaying ex-
ponential function of the number of times that site has
been observed previously and a time constant φ [3]:
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Figure 1. The probability of excitation decreases
as testing progresses

Pexcite = e−
obsj

φ (2)
where obsj means the total number of observations of
test site j.

Since the individual probabilities are disjoint, the
overall DPL is merely the sum of the contribution from
each individual site. Therefore,

DPL(T ) =

No. of Fault Sites∑

j=1

DPLj(k) (3)

And for this test set T with k patterns (k ≥ 1), each site’s
defect part level contribution is given in the following
equation [3]:

DPLj(k) = DPLj(k − 1)(1 − A ∗ e−
obsj

φ )obsjk (4)

where A and φ are two constants related to the manu-
facturer’s process and circuits, and DPLj(k − 1) is the
defect part level contribution when the first k − 1 test
patterns are applied to the circuit under test. The value
obsj means the total number of observations of test site
j so far. The value of obsjk is 1 if fault j is observed by
vector k, otherwise it is 0.
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Although the original MPG-D model can be used to

predict the DPL, it suffers from the limitation assump-
tion that all sites in the circuit are equally sensitive to
defects. In reality, we find that each site in the circuit
has different physical and geometric characteristics that
make it more or less susceptible to a uniform distribu-
tion of defects. Therefore, each site’s contribution to the
overall DPL is not uniform but instead is a strong func-
tion of its physical layout. Larger sites with more die
area are more likely to suffer from defects than smaller
sites. In order to create a more accurate model, we must
account for the physical characteristics as represented in
the layout of the circuit. In this paper, we will use a re-
fined MPG-D model to estimate the DPL resulting from
the application of a given test set. We refer to this model
as the weighted MPG-D since we will assign different
weight for each site in the circuit based upon the phys-
ical and/or electrochemical characteristics of each site.
In general, the weights may be a function of all the char-
acteristic such as (but not limited to) the physical area of
the site, proximity to adjacent sites, proximity to active
areas, ion implantation energy, diffusion gradient, etc.

As recent studies have shown [2][13], in the deep
submicron technology era, the problems due to increas-
ing coupling capacitance have a significant adverse ef-
fect on the proper function and performance of VLSI
system. Therefore, for simplicity, in this paper we will
employ the coupling capacitance extracted from the lay-
out as an indicator to generate the weight function and
refine the original MPG-D model. First, the circuit lay-
out was generated with Cadence Silicon Ensemble in
TSMC 250nm 3V 3-metal technology. Commercial par-
asitic extraction tools are used to extract the coupling ca-
pacitance of each site. To simplify the problem without
losing generality, we classify the fault sites into several
classes based on their greatest coupling capacitance, for
the classes with bigger coupling capacitance, we assign
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a bigger weight, for the classes with smaller coupling
capacitance, we assign a smaller wight. To show these
steps in detail, the histogram of coupling capacitance for
circuit C432 fault sites is shown in Figure 2. For this
circuit, we set up two thresholds for to separate the fault
sites into three classes, if the coupling capacitance of a
fault site is bigger than the first threshold (1.5fF), we put
them into class I; if the coupling capacitance is between
the second threshold (1fF) and the first threshold (1.5fF),
we put them into class II; For all other sites, we put them
into class III. Therefore the weight function is defined in
the following step function:

wj =





β1 if fault site j is in class I
β2 if fault site j is in class II
β3 otherwise.

where β1 ≥ β2 ≥ β3. In our experiments, we choose
the weights between 1.0 and 0.85.

Now we have the weighted MPG-D model defined in
equation (5):

DPL(T ) =

No. of Fault Sites∑

j=1

wj ∗ DPLj(k) (5)

The solid line in Figure 3 shows an example of DPL
contribution estimated by equation (4) with the weight
of 1.0. The curve shows that as the number of observa-
tions on test site j increases, the contribution to the over-
all defect part level decreases as an exponential function.

Now we have derived the DPL estimation function
shown in equation (5), our objective is to generate a test
pattern set so that the DPL is minimized. Instead of gen-
erating the test patterns directly, our method selects an
optimal pattern set from a big n-detection superset. The
n-detection superset are generated by running the stan-
dard ATPG tools repeatedly until every fault is detected
n times.

As we discussed before, although n-detection test set
could effectively reduce the defect part level, the num-
ber of generated patterns is much larger than conven-
tional methods. Limitations on tester memory size and
the high cost of testing time severely limits the num-
ber of test patterns that can be applied to a device in a
commercial setting. As a result, a post processing op-
timization process is required to select the best subset
of patterns from the n-detection superset to use as the
actual test set. In the next section, we are going to intro-
duce a linear programming based method to select the
patterns from this big n-detection test pattern set.

3 Optimal Test Pattern Selection

In this section, we develop a linear programming
method to solve the optimal test pattern selection prob-
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lem discussed in section 2.

Linear programming is being widely used today in
a wide variety of optimization problems, including the
VLSI design and testing problems [5][7]. The final goal
of our linear programming model is to select an opti-
mal or near-optimal set of test patterns from a superset
with the objective that the objective function (5) is min-
imized.

Since the DPL function defined in (5) is not a linear
one, it is not easy to minimize this objective function di-
rectly. Therefore, we first linearize the weighted MPG-
D model in terms of equations and constraints. Consider
the DPL contribution curve shown in Figure 3 which
shows the relationship between the number of detections
for each fault and the expected value of the objective
function for a specific fault, if we want to generate the
optimal test pattern set which results in the minimum
expected value, we can linearize the weighted MPG-D
curve with the three linear segments shown in Figure 3
to approximate the real objective function, and this ap-
proach will significantly improve the solvability of the
original problem without sacrificing much accuracy.

From the previous discussion, we can define the prob-
lem as follows: Given a fault dictionary Π ⊆ T × F ,
where T = {t1, t2, . . . , tn} is the big n-detection set
generated by running ATPG tools repeatedly and F =
{f1, f2, . . . , fm} is the fault set. If (ti, fj) ∈ Π, pattern
ti detects fault fj . The problem is how to select a set
T ⊆ T so that |T | ≤ u, where u is the upper bound
allowed for set T , and at the same time, the defect part
level is minimized. Therefore, the objective function of
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the problem is defined as:

Min : DPL(T ) =
m∑

j=1

wj ∗ DPLj(v) (6)

where m is the number of stuck-at faults in the circuit,
wj is the weight assigned to fault j, v is the number
of detections on fault fj and DPLj(v) is the individual
defect part level contribution from fault site j.

Since DPL(T ) is not a linear function, it is not so
easy to find the optimal solution of objective function (6)
directly. Therefore, we can approximate DPLj(v) to a
linear function DPLj(v) so that we can use the stan-
dard linear programming method to solve it. Then the
objective function becomes:

Min : DPL(T ) =

m∑

j=1

wj ∗ DPLj(v) (7)

where DPLj(v) includes the three linearized segments
shown in Figure 3. These three lines correspond to three
linear functions (here, they are named as M1, M2 and
M3, respectively) as follows:

DPLj(v) =





M1 =
DPLj(b)−DPLj(0)

b
v + DPLj(0)

(If 0 ≤ v < b)

M2 =
DPLj(c)−DPLj(b)

c−b
(v − b)

+DPLj(b) (If b ≤ v < c)

M3 = 0 (If v ≥ c)

(8)

where v is the number of detections on a fault, b and
c are the x-coordinate values of the points B and C in
Figure 3.

We can also find that in each segment, (e.g., 0 ≤
v < b, b ≤ v < c and v ≥ c), DPLj(v) is always
the maximum value of the three functions defined in (8).
Therefore, for all v ≥ 0, the three equations in (8) are
equivalent to the following objective function:

DPLj(v) = Maximum{M1, M2, M3} (9)

In the fault dictionary, for any ti ∈ T , we define an
indicator variable xi such that if ti is in T , xi = 1; oth-
erwise, xi = 0. Therefore,

xi =

{
1 If ti ∈ T
0 If ti /∈ T

(10)

Since the total number of patterns in T is limited to u,
we have

n∑

i=1

xi ≤ u (11)

By using the indicator variable, we can easily find that
v, which is the number of detections on a fault can be
expressed as:

v =
∑

(ti,fj)∈Π

xi (12)

Here, in equations from (6) to (12), 1 ≤ i ≤ n and
1 ≤ j ≤ m.

Combining equations (7), (8), (9), (10), (11) and (12)
together, we can transform the original optimization
problem into an integer linear programming problem
since xi must be an integer.

This problem can be solved by integer linear pro-
gramming algorithm. However, integer linear program-
ming problem is known an NP-complete problem with-
out any efficient solutions. There are several ways to
transfer them into a non-integer problem, such as inte-
rior point method, differentiable method and Taylor ap-
proximation method [17][21]. In this paper, we use the
relaxation and rounding method to obtain a non-integer
linear programming model.

First of all, the integer indicators x1, x2, . . . , xn in
the original problem are relaxed and redefined. After the
problem is solved, we will round these variables back
to integers. So, we first convert the constraint (10) and
change it to a problem that can be solved more easily.
We redefine xi as the probability of test pattern ti to be
selected from superset T . Thus, for every 1 ≤ i ≤ n,
we form the following constraint:

0 ≤ xi ≤ 1 ,where 1 ≤ i ≤ n (13)

With this transform, we can finalize our optimal pattern
selection problem into the following linear program-
ming model:

Min: DPL(T ) =
m∑

j=1

wj ∗ DPLj(v)

Subject to:

DPLj(v) ≥
DPLj(b) − DPLj(0)

b

∑

(ti,fj)∈Π

xi

+DPLj(0)

DPLj(v) ≥
DPLj(c) − DPLj(b)

c − b
[

∑

(ti,fj)∈Π

xi − b]

+DPLj(b)

DPLj(v) ≥ 0
n∑

i=1

xi ≤ u

0 ≤ xi ≤ 1 (14)
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where 1 ≤ i ≤ n , 1 ≤ j ≤ m.
Compared with the original integer linear program-

ming one, this linear programming problem is much eas-
ier to solve. After this problem is solved, we need to
round the solution of xi back to 0 or 1 since we assume
it is the probability of selecting test pattern ti from the
superset T .

Since the definition of xi is changed, we need to ver-
ify that the final result of the xi satisfies the original con-
ditions (10) and (11). Suppose the solutions of the linear
programming model above are sets {x̂i|1 ≤ i ≤ n} and
{D̂PLj(v)|1 ≤ j ≤ m}.

Then based on the definition of xi, we can round xi

back to 0 or 1 by following the distributions:

Probability[xi = 1] = x̂i

Probability[xi = 0] = 1 − x̂i
(15)

This distribution can be accomplished in the following
way: 1. Generate a random number r; 2. Compare r
and x̂i; 3. If r ≤ x̂i, then xi is set to 1, otherwise, xi

is set to 0. By rounding the result set x̂i in this way, the
original constraint equation (10) is satisfied.

Now, we need to consider the original constraint (11).
It is possible that this constraint is violated; However,
based on the probability theory [6], if we consider the
expected value of the results, we can get the following
equation:

E[
n∑

i=1

xi] =
n∑

i=1

E[xi]

=

n∑

i=1

P [xi = 1]

=
n∑

i=1

x̂i ≤ u (16)

In the derivation here, the first equality is because the
operator is linear, even for random variables that are de-
pendent, and the third one is from equation (15). There-
fore, from equation (16), we can see that constraint (11)
is satisfied on the “average”. That means the expected
value of the result is limited to the upper bound of the
set T , which satisfies the constraint (11) of the original
problem.

From the discussion in this section, we have set up
a linear programming model which attempts to obtain
the minimum objective function defined in section 2 for
a test pattern set selected from a superset. The whole
optimization method can be summarized as the follows:

First, an n-detection test pattern set as the test pat-
tern superset T and the corresponding fault dictionary
Π = T × F are generated, then the linear programming
model which is discussed in this section is formed and

solved. After the linear programming problem is solved,
the result is rounded to select the set T from the origi-
nal superset T . Finally, the resistive bridge fault is used
as the surrogates and the set selected is input to the sur-
rogate fault simulator PROBE [11] to get the resistive
bridge fault coverage as the indicator of the test quality.

4 Experimental Results

The linear programming problem presented in this
paper were solved using an AMD Athlon XP 2800 PC
running the Redhat Linux operating system; The bridge
fault simulator PROBE are working on a SUN Ultra-4
workstation running Solaris 5.7 operating system. Stan-
dard n-detection test patterns were generated by running
Mentor FastScanTM , a commercial ATPG tool, repeat-
edly. The linear programming problem is solved by So-
Plex 1.2.1, a linear programming solver based on se-
quential object-oriented simplex algorithm written in the
C language [22].

4.1 Experiment Design

We recognize that it is virtually impossible to get the
actual defect coverage of a test set without intentionally
inducing defects in each device and conducting a de-
tailed deconstruction of all devices. However, to show
the effectiveness of linear programming based pattern
selection methodology, we designed an experiment that
would compare the surrogate fault coverage between n-
detection method and pattern selection method we pro-
posed. In the experiment, there are two independent
variables (circuit and number of patterns generated) and
the resulting surrogate fault coverage is compared. Our
experiments use the ten non-trivial ISCAS85 benchmark
circuits. For each circuit, we generate a collapsed stuck-
at fault list and run standard ATPG tool repeatedly to get
an n-detection superset (here in the superset, n is set to
be 15). Meanwhile, 2-detection set to 7-detection test
sets are also generated by the same method. Then, we
use the pattern selection methodology discussed before
to select the test patterns from this 15-detection super-
set and generate the set of test patterns, whose sizes are
limited to the 2-detection to 7-detection test sets, respec-
tively. When all the test sets are ready, we use PROBE
simulator to do the resistive bridge fault simulation and
get the fault coverage as the final results.

We are also interested in varying the number of test
patterns to reveal the trade-offs between test set size and
the resulting surrogate fault coverage. Here, we gen-
erate a test pattern set which has 100% single stuck-at
fault coverage and use the number of test patterns gener-
ated as the base number k. Specifically, the test set size
limits are varied from one times (k) to nine times (9k)
the number of test patterns that would be applied using

INTERNATIONAL TEST CONFERENCE 6Paper 31.2



97.8

98

98.2

98.4

98.6

98.8

99

99.2

99.4

2 3 4 5 6 7

R
es

is
tiv

e 
Fa

ul
t C

ov
er

ag
e 

(%
)

n

Optimal Selected
n-Detection

98.83

99.24
99.1999.20

99.09
99.14

99.09
99.1199.11

98.90

98.77

97.88

Figure 4. Bridge fault coverage vs. test set size
for circuit c432

85.8

86

86.2

86.4

86.6

86.8

87

87.2

2 3 4 5 6 7

R
es

is
tiv

e 
Fa

ul
t C

ov
er

ag
e 

(%
)

n

Optimal Selected
n-Detection

86.66

85.99

85.88
85.91

86.11
86.17

86.90 86.93 86.90
86.93 86.92

87.03
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for circuit c2670

standard best practice ATPG tool. Subsequently, we use
the ATPG tool to generate a 15-detection test pattern su-
perset. From this superset, subsets of various sizes were
selected for each circuit. Then the bridge fault simula-
tion is performed to get the final bridge fault coverage.

For each of the circuits, test generation methodolo-
gies, and number of patterns generated, we used PROBE
resistive bridge fault simulator to get the bridge fault
coverage as the indicator of the defect coverage.

4.2 Experiment Results

Figures 4 to 8 shows the resistive fault coverage of the
different test pattern size on different circuits and meth-
ods. n is the number we used in n-detection method, in
these figures, n changes from 2 to 7, which means each
fault is detected 2 to 7 times. The numbers on the top of
the columns indicate the resistive fault coverage for two
different methods.
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Table 1. CPU time to generate the 15-detection
superset and to select optimal test patterns

Circuit CPU15−det CPUopt Toverhead

c432 112.6s 5.5s 4.9%
c499 122.7s 6.7s 5.5%
c880 223.6s 12.3s 5.5%
c1355 456.8s 29.6s 6.5%
c1908 1092.5s 103.3s 9.5%
c2670 1403.4s 198.5s 14.1%
c3540 1982.5s 567.3s 28.6%
c5315 2010.5s 579.3s 28.8%
c6288 1490.3s 386.9s 25.9%
c7552 3503.5s 1109.5s 31.7%

Based on the superset test patterns number of pat-
terns generated by n-detection method, an optimal test
pattern set is selected such that it has the same number
of patterns as n-detection. The other circuits have the
similar results as these figures show. The results shown
here verify that optimal pattern selection method always
get a higher bridge fault coverage than the n-detection
methodology as the size of the test set is same. These
results also confirm the correctness of weighted MPG-D
model.

When the number of patterns is smaller, the surro-
gate fault coverage difference between the two methods
is bigger, while with the number of patterns increase, the
difference is smaller. This is because with the increase
of the number of patterns in the test set, the improve-
ment on the resistive fault coverage is becoming harder
and harder to get, also the overlap between the two test
sets is bigger since our superset is a 15-detection set gen-
erated by the same n-detection methodology, thus, the
difference is smaller for bigger n in these figures.

Table 1 shows the time required for test pattern gener-
ation and optimization using the proposed algorithm for
each of the ten ISCAS85 circuits. Column CPU15−det

indicates the CPU time used to generate the 15-detection
superset, CPUopt shows the CPU time required to se-
lect the optimal test pattern sets and column Toverhead

shows the CPU time overhead which is calculated as the
ratio of optimization time to generation time. We can
observe from the table that depending on the circuit size,
the CPU time overhead varies from 4.9% to 31.7%.

4.3 Economic Implications

Management relies upon the expertise and wisdom of
test engineers to define the test regimes for mass man-
ufactured integrated circuits. Test engineers are often
faced with the critical question: How many test patterns
should be applied to the device under test?”. Their de-
cision has an enormous impact on the quality and prof-
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Figure 9. Resistive bridge fault coverage vs. test
set size for circuit c880

itability of the product. Current industry testing regimes
typically consist of a combination of DC parametric,
IDDQ, functional, and scan stuck-at fault based tests.
Our results and comments are focused upon the scan
stuck-at fault based tests. Applying too many test pat-
terns will increase the test time, increase the required
tester memory, and increase the cost of testing. In con-
trast, if the test pattern set is too small, unmodeled de-
fects may be missed resulting in increased costs due to
product returns and a loss of confidence in the manu-
facturer. In order to make a rational decision, one must
take into account many factors including the cost of test-
ing time, the desired defect coverage, the size of avail-
able tester memory, the expected volume of production,
and contractual obligations. The analysis presented in
this paper can be used as a decision support aid for
test engineers. For example, in Figure 9, we use cir-
cuit c880 as an example to show a graphical representa-
tion of the trade-offs in test quality in terms of surrogate
fault coverage and the test set size. For circuit c880,
a 1-detection test set includes 40 patterns, we vary the
number of patterns applied from k=40 to 9k=360. Here,
both optimal pattern selection method and n-detection
method are used and the results are compared, it is obvi-
ous that optimal pattern selection method always results
in a higher fault coverage than n-detection. Graphs such
as this provide a visual guide to aid the test engineer
in making trade-off decisions. Similar experiments are
also carried on the other ISCAS85 circuits. This graph-
ical method can also be used to determine the number
of patterns generated by two different methods when the
same bridge fault coverage is achieved.

5 Conclusions

In this paper, we presented an optimal test pattern
selection methodology based on the weighted MPG-D
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model. The coupling capacitance value extracted from
the benchmark circuit layout is used as the indicator to
select the weight for each fault site to estimate the DPL.
The objective of the methodology is to select a subset of
test patterns from a superset that results in the optimal
defect coverage for a given, fixed test size. Comparison
of the method to n-detection showing the effectiveness
of optimal pattern selection at increasing defect cover-
age. The primary result of this research is the increase
of the resistive bridge fault coverage. We achieved this
result by the formulation of a linear programming model
which was then solved based on appropriate constraints
for the given circuit. The experimental results proved
that this method is effective in detecting the unmodeled
defects and thus improve the defect coverage. We be-
lieve that the increase in the surrogate fault coverage will
allow the methodology to be incorporated into commer-
cial practice. Finally, a graphical representation of the
trade-off between the test quality and test size is pre-
sented to aid the test engineer in making decisions re-
garding trade-offs between test set quality and test set
size.
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