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Abstract—A new design methodology for a pattern generator is proposed, formulated in the context of on-chip BIST. The design

methodology is circuit-specific and uses synthesis techniques to design BIST generators. The pattern generator consists of two

components: a pseudorandom pattern generator (like an LFSR or, preferably, a GLFSR) and a combinational logic to map the outputs

of the pseudorandom pattern generator. This combinational logic is synthesized to produce a given set of target patterns by mapping

the outputs of the pseudorandom pattern generator. It is shown that, for a particular CUT, an area-efficient combinational logic block

can be designed/synthesized to achieve 100 (or almost 100) percent single stuck-at fault coverage using a small number of test

patterns. This method is significantly different from weighted pattern generation and can guarantee testing of all hard-to-detect faults

without expensive test point insertion. Experimental results on common benchmark netlists demonstrate that the fault coverage of the

proposed pattern generator is significantly higher compared to conventional pattern generation techniques. The design technique for

the logic mapper is unique and can be used effectively to improve existing pattern generators for combinational logic and scan-based

BIST structures.

Index Terms—Linear feedback shift registers, built-in self-test, scan, synthesis, test pattern generation, fault coverage, core logic,

SOC.
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1 INTRODUCTION

BUILT-IN-SELF-TEST (BIST) has been widely adopted in the
industry at the board level and is gaining increasing

acceptance at the IC level. Having a small number of test
patterns in a BIST environment results in a reduced test
time. This is particularly important when BIST techniques
are used for fast online diagnosis and reconfiguration.
Though efficient methods have been developed to generate
exhaustive and pseudoexhaustive patterns [2], many large
circuits require unacceptably large numbers of vectors to
attain acceptable test coverage. Consequently, a number of
methods have been proposed in the literature to reduce the
number of required patterns with additional hardware [1].

One of the most popular alternatives to using equiprob-
able pseudorandom testing is weighted random pattern
testing (WRPT) [1]. WRPT is a technique in which the
design of the pseudorandom pattern generator (PRPG) is
altered so as to produce a desired distribution of 1s and 0s
for each primary input of the circuit under test (CUT).
Either a single set or multiple sets of weights can be used.
Several procedures have been developed for determining
the optimal set of weights [4], [5], [6], [7], [8], [9], [10]. These
are based on analytical calculation of fault detection
probabilities and certain heuristics. Multiple sets of weights
are not always practical for on-chip IC BIST.

Though the WRPT technique can reduce the test length
and be quite effective at board or module level, for large
ICs, the number of test patterns required can still be

excessively large. A technique which can achieve high fault
coverage using fewer patterns is the cube-contained
random patterns technique [22]. Here, reductions in test
length are achieved by successively assigning temporary
fixed values to the selected inputs during the random
pattern generation process. The whole test set is divided
into a number of partitions and, at each partition, a
particular set of inputs is assigned some fixed values.
However, a generator may need a control circuit to switch
from one test set partition to another and may result in an
increased hardware overhead. In the context of scan-based
logic BIST, two of the recently available techniques involve
using a “PRPG + Phase-shifter” [11], [12], [13], [14] or a
“PRPG + Bit-fixing-sequence-generator” [38]. Here, the
basic philosophy is to achieve reduction of test lengths by
altering the scan-based PRPG vectors by phase shifters or
synthesized logic. Both these methods rely on partitioning
test sets and each partition is optimized to reduce
additional hardware.

To further reduce the test length, designs may embed the
test patterns of the hard-to-detect-faults or a compact test
set in the data path of the pseudorandom pattern generator
[17], [18], [19], [20], [21], [23]. However, embedding can be
expensive in terms of area; therefore, it may not be always
suitable for IC-BIST.

This paper proposes a new methodology of developing
pattern generators which can achieve almost 100 percent
single stuck-at fault coverage requiring, typically, a modest
number of patterns while guaranteeing detection of all
hard-to-detect faults. The area overhead of the proposed
scheme is comparable to that of a WRPT generator. The
proposed method aims at generating test patterns using a
GLFSR [47] as the basic pattern generator (PRPG), whose
outputs are mapped by a mapping logic and input to CUT.
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Essentially, the mapping logic transforms the outputs of the
GLFSR into test vectors for the CUT, as shown in Fig. 1. The
technique proposed is equally applicable when the mapper
logic outputs are directly connected to CUT inputs, as
shown in Fig. 1a, or through a scan chain, as shown in
Fig. 1b. For the purpose of illustration, we use the
organization shown in Fig. 1a throughout the paper.
However, when tests are applied as shown in Fig. 1b, the
scan chain may have to be segmented. Thus, the proposed
pattern generator consists of two distinct components: a
GLFSR and a combinational block. During the BIST mode,
the GLFSR is loaded with an initial seed and is clocked to
generate patterns for the mapping logic. We propose using
GLFSRs as the built-in PRPG as they are known to provide
better coverage of majority of the faults [47].

The other contribution of this paper is a new synthesis
methodology to design the mapping logic. The synthesis
procedure presented here is different from standard
synthesis procedures [34]. Here, we exploit the fact that
the input-output relationship of the logic is not fixed and is
dependent on a chosen matching between the PRPG
patterns and the target patterns. This synthesis procedure
is an iterative process involving incremental mapping of a
given set of PRPG patterns to a set of test patterns designed
to detect certain target faults. This target set of faults may
dynamically increase during the synthesis procedure. The
performance of the proposed scheme is evaluated using
fault simulation.

The proposed work has good relevance to some of the
most recently published works on logic BIST [11], [12], [13],
[14], [15], [38]. Methods where pattern generator outputs
were applied on the CUT on the same cycle (as in Fig. 1) are

directly related to the proposed method. In such cases, the
proposed method can be used either as a stand-alone
procedure or to enhance them. In comparison to scan-based
BIST (or STUMPS [1] architecture-based approach) [11],
[12], [38], GLFSR and the proposed synthesis method can be
easily incorporated to improve fault-coverage or area. For
example, one may try to improve the “LFSR + Phase-
shifter” logic in [12], [14] by using “GLFSR + Mapping-
logic.” Also, one can find a way to improve the “LFSR + Bit-
fixing-sequence-generator” [38] using the synthesis method
proposed here.

This paper is organized as follows: The next section
reviews GLFSR and its implementation as a PRPG. Section 3
describes the central idea of the proposed scheme, depicting
how the tests of the hard-to-detect faults are determined.
Section 4 describes the design methodology for the
combinational logic and is one of the main contributions
of the paper. Section 5 presents experimental results which
compare the performance of our pattern generator with
other state-of-the-art pattern generator designs. We con-
clude in Section 6. Details of the synthesis and the matching
procedure are discussed in the Appendix.

2 GLFSR—REVIEW

GLFSR (Generalized LFSR) was first proposed for test
response compaction [26] and was later shown as an
effective test pattern generator [25], [47] and is capable of
better fault coverage than LFSR. Fig. 2 illustrates the basic
structure of GLFSR. The circuit under test (CUT) is assumed
to have n ¼ ð� �m) inputs which form the outputs of the
GLFSR, the test pattern generator. The inputs and outputs
of the storage elements, Di, 0 � i � m� 1, are � bit binary
numbers, interpreted as elements over GF(2�). The GLFSR,
designed over GFð2�Þ, has all its elements belonging to
GFð2�Þ. The multipliers, adders, and storage elements are
all � bit components. It may be noted that the adder,

L
, is

simply a collection of � EX-OR gates and the multiplier,
N

,
also uses only EX-OR gates. These multipliers require only
EX-OR gates because they are not true Galois field multi-
pliers where both inputs are variables. The multipliers in
GLFSR simply multiply the � bit feedback input with a fixed
constant �i. The feedback polynomial can be represented as

�ðxÞ ¼ xm þ �m�1x
m�1 þ . . .þ �1xþ �0: ð1Þ

Here, the GLFSR has m stages, D0; D1::Dm�1, where each
stage has � storage cells. Each shift shifts � bits from one
stage to the next. The feedback from the Dm�1th stage
consists of � bits and is sent to all the stages. The coefficients
of the polynomial, �ðxÞ are over GFð2�Þ and define the
feedback connections. The ith coefficient, �i, multiplies the
feedback input over a Galois field, which can be realized
using only XOR gates. As observed in [26] and illustrated in
Fig. 3, the GLFSR represents a general structure [26] and all
known structures like the LFSR, MISR, multiple MISR, etc.,
being special cases, were treated uniformly for the study of
aliasing. In addition, the GLFSR with a primitive feedback
polynomial when both � > 1 and m > 1, termed MLFSR
[26], represents a structure that has been shown to be a very
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Fig. 1. Proposed test pattern generator: (a) parallel input BIST (b) scan

chain-based design.



effective PRPG. What we propose is the use of this MLFSR

version as the embedded PRPG in Fig. 1.
As an example, Fig. 4 illustrates [47] the structure of

GLFSR(2,3)definedoverGFð22Þ.AnyGalois fieldGFð2mÞ can
be defined by using a primitive polynomial over GF(2) of

degreem. The fieldGFð22Þ used in this example is defined by

using the primitive polynomial pðxÞ ¼ x2 þ xþ 1 of degree 2.

The feedback polynomial used in constructing this GLFSR is

�ðxÞ ¼ ðx3 þ x2 þ �2xþ �Þ, where � is the primitive poly-

nomial of GFð22Þ. Therefore, the coefficients of the feedback
polynomial are�0 ¼ �,�1 ¼ �2, and�2 ¼ 1. The three storage

elements of the GLFSR are represented using polynomials

over GF(2) as D0 ¼ ða1xþ a0Þ, D1 ¼ ða3xþ a2Þ, and

D2 ¼ ða5xþ a4Þ, respectively. At the beginning of each cycle,

those values that are to be fed back into the storage elements

a r e ða5xþ a4Þ�0, ða5xþ a4Þ�1 þ ða1xþ a0Þ, a n d

ða5xþ a4Þ�2 þ ða3xþ a2Þ, respectively. Putting in the values

of the coefficients in polynomial form, the products are

ða5xþ a4Þ�0 ¼ ðða5xþ a4ÞxÞmod pðxÞ
¼ ða5 þ a4Þxþ ða5Þða5xþ a4Þ�1

¼ ðða5xþ a4Þx2Þmod pðxÞ
¼ ða4Þxþ ða5 þ a4Þða5xþ a4Þ�2 ¼ ða5Þxþ ða4Þ:

The bits to be generated to XOR with the earlier values of
the registers are ða4Þ, ða5Þ, and ða4 þ a5Þ. Generating these
values requires only one extra XOR gate; the values can
now be inserted to be added to the corresponding registers
preceding the GFð22Þ storage element. The transition matrix
[1] for the GLFSR can be expressed as

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 1 1 1 0
1 1 1 0 0 1

2
6666664

3
7777775
:

Table 1 shows the first 15 states of the GLFSR(2, 3) and the
GLFSR(1, 6) (which is the standard LFSR) as a comparison.
It can be seen below that any two consecutive states of
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Fig. 2. The Generalized LFSR.

Fig. 3. Special cases of GLFSR.



GLFSR have greater distance than the corresponding pair of
consecutive states in LFSR.

The GLFSR, when used to generate patterns for a circuit
of n inputs, can have m stages, each element belonging to
GFð2�Þ, where (m� �) is at least equal to n. To use the
GLFSR as a test pattern generator, a nonzero seed is loaded
into the GLFSR and is clocked autonomously to produce
test patterns. Different values of � and m, where �m � n,
create different types of GLFSRs, capable of generating
different types of patterns for the same n-input circuit. For
example, for n ¼ 36, we can choose the values of (�,m) to be
one of the following combinations: (2, 18), (3, 12), (4, 9),
(6, 6), (9, 4), etc. As the value of � increases, the number of
XOR gates needed to realize the generator increases as well.
A lower value of � can, therefore, in general, be more cost-
effective. Fortunately, as seen later with regard to the test
pattern generator, only a small value of � actually is optimal
in terms of providing maximal coverage. For pattern
generation, we propose the use of degree m primitive
polynomial over GFð2�Þ.

3 RANDOM PATTERN GENERATION WITH

COMBINATIONAL GATES

The basic structure of our proposed pattern generator has
two components: a GLFSR (as a PRPG) and a combinational
logic block, as shown in Fig. 1. It may be noted that this
design methodology can also cover all LFSR-based designs
as a special case, since LFSR is a special case of a GLFSR. For

the sake of simplicity, the following discussion uses the
standard LFSR, which is a GLFSR, with � ¼ 1 to motivate
our design. The goal here is to detect all s-a faults using
small, but not necessarily minimal, numbers of patterns.
However, we do allow the flexibility that, for some circuits,
almost 100 percent coverage may be an acceptable goal.
This flexibility allows for formulation of an efficient
synthesis procedure. It can be observed that most of the
pseudorandom pattern generators can detect all the easy-to-
detect faults using a fairly small number of random
patterns; this is because a large number of tests can detect
each easy-to-detect fault [43]. The detectability of a fault we
define in terms of the fraction of all possible test vectors that
can detect the particular fault. Thus, an easy-to-detect fault
has high detectability; a hard-to-detect fault has a low
detectability. Hence, a hard-to-detect fault usually requires a
longer sequence of pseudorandom patterns to be applied.

The basic question, therefore, becomes: Can a pattern
generator be designed so that these rare tests can be
generated by using a short sequence in a sequence which is
also inherently rich in randomness so that the easy-to-detect
faults are also detected as usual? Our approach is to
develop precisely such a design methodology using a
PRPG, followed by a mapper logic. The number of vectors
required by the proposed generator to generate the target
patterns will depend on the number of target patterns and
the number of inputs to the CUT.

It is important to recognize now that there is a
fundamental difference between our technique and WRPT.
The WRPT is designed to enhance the probability of
generating tests for the hard-to-detect faults; ours, though,
is aimed at producing tests for these faults with certainty.
Example 1, below, illustrates this difference.

Given a CUT, we outline five major steps involved in the
design procedure:

1. Select a GLFSR which will be the embedded PRPG
engine driving the composite pattern generator.

2. Determine the set of hard-to-detect faults that are
difficult to test by the chosen PRPG.

1546 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 12, DECEMBER 2003

Fig. 4. Structure of the GLFSR: (a) representation, (b) initial structure to

be implemented, (c) optimized implementation, and (d) 6-bit pattern

generator (single register array implementation).

TABLE 1
States of GLFSR(2, 3) and 6-Bit LFSR(GLFSR(1, 6))



3. Determine a minimal set of target patterns which
test the determined fault list.

4. Design a minimal area overhead combinational
circuit with the PRPG so that the combined pattern
generator generates all of the target patterns.

5. Evaluate the fault coverage of the developed pattern
generator by simulation.

The basic LFSR can also be any one of the conventional
pseudorandom pattern generators used in BIST. The ran-
domness of thepatterns and experimental results indicate the
proposed choice of GLFSR is quite effective for our approach
(we feel cellular automata [31], [32] can, as well, prove to be
highly effective). The second step is implemented using the
procedure outlined below (Section 3.1). The third step is
implemented using a standard automatic test pattern
generation, ATPG tool [29]. The fourth step and the fifth
step are described in Section 4 and constitute the main
contribution of the paper. Presented below is an example
which illustrates the above outlined steps.

Example 1. Let us assume a circuit with seven primary
inputs. For the purpose of this example, we use the
standard linear feedback shift register (LFSR),GLFSRwith
� ¼ 1, with a primitive polynomial given by (X7 þX þ 1),
as the basic pseudorandom pattern generator (Fig. 5). Let
the patterns shown in Table 2 be those patterns required to
detect thehard-to-detect faults. Letusassume thatourgoal
is to design a pattern generator that can generate these six
target patterns using a maximum of 20 patterns. The
proposed pattern generator, as illustrated in Fig. 6, is an
augmentation of the LFSR shown in Fig. 5. With the initial
seed of f0011100g, the patterns transformed by the
combinational logic, as shown, generate all the target
patterns, as illustrated in Fig. 7. The proposed technique
may now be compared to a weighted pattern generator.
Consider targeting the samepatterns by assigningweights
to the GLFSRð� ¼ 1Þ output; the weight set would be
f0:25; 0:25; 0:5; 0:25:0:5; 0:25; 0:75g [1]. In the figures we
use the term LFSR to denote GLFSRð� ¼ 1Þ. The
20 generated patterns derived from assigning these
weights are shown in Fig. 8. It may be seen that, in this
case, only two of the target patterns were generated.
Various other seeds result in a similar disparity between
the weighted pattern technique and the proposed
technique. As indicated earlier, the difference between

our technique and the weighted pattern technique is that

the latter enhances the possibility of generating the

targeted patterns, our technique guaranteeing the gen-

eration. It may also be noted that, for both techniques,

the area overhead is comparable.

3.1 Determining Hard-to-Detect Faults

The procedure used to determine hard-to-detect faults has

an impact on the complexity of our generator. Though there

are a number of methods to identify random pattern

resistant faults [1], the method we choose is summarized

as follows: Several different sets of pseudorandom patterns

are generated, corresponding to different initial seeds in the

chosen PRPG. We perform simulation of the CUT to

determine all of the faults detected by the CUT. Those

faults detected by each set of patterns are dropped from the

fault set as easy-to-detect faults. The remaining faults are

then selected as the hard-to-detect faults. It has been

observed experimentally that seven to 10 simulations,

corresponding to seven to 10 different seeds, are sufficient

to determine this hard-to-detect fault set.
In the second step, we generate a minimal set of test

patterns, referred to as target patterns, that can test the

given hard-to-detect fault list. We use in our experiments

the ATPG tool given in [29], although any other tool will

work as well.
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Fig. 5. GLFSRð� ¼ 1Þ with seven stages.

TABLE 2
List of the Hard-to-Detect Faults in Example 1

Fig. 6. Structure of the proposed pattern generator for Example 1.

Fig. 7. Patterns transformed by combinational gate design.



4 SYNTHESIS OF MAPPING LOGIC

The final steps of the pattern generator design involve the
synthesis of a combinational network to map the outputs of
PRPG to a set of patterns to include a specific set of target
patterns This is a subproblem of the general synthesis
problem [34] and can be formulated as follows: Given an
initial seed to the PRPG and a specified test pattern length,
design an area-efficient combinational logic block which
ensures that the combined structure will generate all of the
target patterns within the specified length.

The mapping logic design thus has to ensure that all the
target patterns are generated as mapped patterns within a
specified test length. Unlike other synthesis problems, our
mapper inputs can be assumed to be random; the basic
challenge, therefore, is how to exploit the randomness of the
input sequence advantageously. Also, the other difference
from a standard synthesis problem is that our mapping is
inherently free from the restriction of any ordering; there-
fore, the synthesis procedure must explore the large space
of mappings defined by all possible permutations of the set
of target patterns. For example, the mapping which
corresponds to the generator designed in Example 1 is
shown in Fig. 9. The ordering shown here is not unique
since the target patterns are allowed to be generated in any
order. Any general synthesis procedure will not yield an
area-efficient mapper. The following procedure is, there-
fore, tailor-made to the framework outlined.

4.1 Preliminaries

Given below are a few preliminaries which have been used
in the proposed algorithms.

1. n is the number of inputs to the CUT.
2. Let P be the set of vectors generated by the PRPG.
3. Let Pi be the ith vector in the set P .
4. Similarly, let T be the set of all target patterns and Ti

be the ith target pattern.
5. For any vector Ai, let AiðjÞ be the jth bit.

6. We denote the length of a vector A by j A j . Hence,
j Pi j¼j Ti j¼ n.

7. A one-to-one matching from the set of target
patterns, T , to the PRPG patterns, P , is expressed
by M. The PRPG pattern, Pj, matched with Ti, is
denoted by MðPjÞ.

8. We denote the combinational unit, CU, for the ith
input of the CUT by CUi. Each combinational unit
has one output with single or multiple inputs. We
denote the function of the ith unit, CUi, by Fi. In
Example 1, Fig. 6, F0 is the logical AND operation
and F5 is a logical NOT operation.

9. The input connection to a combinational gate CUi is
described by an array, Ii. The array, Ii, contains the
list of the output indexes of the PRPG that form the
inputs to the combinational gate, CUi. Thus, the
number of elements in Ii, denoted by j Ii j ,
correspond to the number of inputs to the combina-
tional unit. In Example 1, Fig. 6, for CU0, we have
j I0 j¼ 2, I0 ¼ f0; 4g. Similarly, for CU1, we have
j I1 j¼ 1, I1 ¼ f1g.

10. The fanout of a PRPG output, i, denoted by CF ðiÞ, is
equal to the number of different CUs that the ith
PRPG output is connected to. Thus, CF ðiÞ can vary
from 0 to n. Note that CF ðiÞ is simply the number of
combinational blocks to which the output is con-
nected and may not be equal to the actual fanout of
the output. In Example 1, Fig. 6, CF ð4Þ ¼ 2 and
CF ð5Þ ¼ 1.

11. The Hamming distance between two vectors v and u,
denoted by dðu; vÞ, is defined as the number of bits
where they differ. For example, if u ¼ ð1001011Þ and
v ¼ ð0100011Þ, dðu; vÞ is equal to 3.
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Fig. 8. Patterns transformed by weighted pattern generator.

Fig. 9. Matching between the target vectors and the GLFSRð� ¼ 1Þ
vectors in Example 1.



4.2 Matching and Synthesis Procedure

The procedure of finding the matching between the target
patterns, Ti, and the PRPG patterns, Pi, is closely linked to
the procedure of designing the combinational units based
on the matching. Different matchings can result in different
complexities of the mapper unit. In the proposed method,
we associate a matching, M, with a cost function, C, which is
related to the gate count of the resulting mapper. It is
assumed that area overhead of a combinational unit is
proportional to its number of inputs. In other words, while
matching target patterns, T with PRPG patterns, P , we
associate a larger area to combinational units which have
more input bits. The cost function of a matching, M, with n
target vectors and n PRPG vectors is the weighted sum of
the number of inputs of each combinational unit involved
realizing the transformations. The cost function used here is
defined in the equation below and is rooted as a standard
metric in logic synthesis [34].

CðMÞ ¼
Xn
i¼0

ðWðj Ii jÞÞ: ð2Þ

The cost function, C, is to be minimized when we find a
matching, M, between the target vectors and the PRPG
vectors. The initial problem to be solved can be expressed as
follows:

Given: A set of Target Vectors, T and PRPG Vectors, P .
Problem: Find a one-to-one mapping, M, between T and P

such that CðMÞ is minimum.
This problem is NP-hard [30] as there are an exponential

number of matching combinations possible. We propose a
polynomial time procedure here to arrive at a minimal
solution. Experimental results demonstrate that our proce-
dure is indeed area-efficient and computationally tractable.

It can be observed that a weight, WðiÞ, is associated with
the cost of a CU having i inputs. The weights are used in the

expression for C to take into account the nonlinear relation

between the number of inputs, i, and the area overhead of a

combinational unit having i inputs. Thus, we associate the

area of a 2 input combinational unit to W ð2Þ and the one

with 4 inputs to W ð4Þ. When we match k target vectors with

k PRPG vectors, the cost function, though a crude

approximation, gives a quick estimate of the area overhead

without actually synthesizing the combinational logic

circuit. Our method consists of three steps:

1. First, find a matching between target vectors with
PRPG vectors.

2. Determine the minimum number of the inputs and
the contents of the Ii array for each CUi.

3. Design an optimized combinational logic circuit for
each CUi.

Once we have determined a matching, M, between the

target patterns and the PRPG patterns, the combinational

units are designed one at a time. Table 3 illustrates the

matching used in Example 1. Given this, an input set, Ii, has

to be determined for each CUi. This input set is designed

independently of all other combinational units. First, it may

be noted that a small fraction of all outputs of PRPG is used

in designing any particular combinational unit. This is a

desired consequence of our cost function which is propor-

tional to the number of inputs to the combinational units.

The essential factors that are considered while determining

Ii include: What is the essentially minimum number of

input bits required to realize the particular function?
Steps 1 and 2 are closely related and, hence, are

interdependent. Our matching procedure is outlined in

Fig. 10. The procedure chooses one target vector, Ti, at a

time and matches it to a PRPG vector, Pj. After adding each

additional matched vector pair, the cost of the combina-

tional logic, C (as in (2)), due to the mapping, is

recomputed. Matchings are chosen so that there is mini-

mum increment to C with each additional vector in the

matched list. After each target vector is mapped to a unique

PRPG vector and the Ii arrays of each CUi are determined, a

standard two-level logic design tool is used to design the

logic mapper so as to keep the number of levels between the

PRPG and CUT to a minimum. This is an important

consideration in high-speed and at-speed testing. The

Appendix gives a detailed description and analysis of

Steps 1, 2, and 3 and more comprehensive version of the

above Find_Match algorithm.
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TABLE 3
Output Transformations for Example 1

Fig. 10. Overview of the algorithm matching Target patterns to PRPG patterns.



4.3 Important Design Constraints

The primary aim of the procedure which matches target

vectors with PRPG vectors and designs the combinational

unit design is the reduction of the cost function, C.

However, to preserve much of the randomness in the

PRPG vectors during the mapping process, we introduce

some randomness preserving techniques to ensure fault cover-

age for the mapped vectors with respect to easy-to-detect

faults. We also add some additional area-saving design

constraints to the development procedure.

4.3.1 Randomness Preserving Heuristics

We have outlined three techniques, as follows:

1. Use all PRPG outputs: It was observed that, in most
combinational mapper logic, there were a few PRPG
outputs which are not used by any of the combina-
tional units, CF , being zero for those PRPG outputs.
This implies that the combinational logic utilizes
only a partial set of the PRPG outputs and the rest of
the PRPG outputs are not reaching any of the circuit-
under-test inputs. Replacing a PRPG output with
high CF values by a PRPG output with zero CF
value (which maintains the same cost function) will
result in a larger set of PRPG outputs used by the
combinational logic. This will reduce the correlation
between the outputs of the CUs, as well as improve
the randomness.

2. Upper bound on the CF values: In the logic mapper
design process, we restrict the CF of a particular
PRPG output to either 2 or 3. This puts a restriction
on the PRPG output so that it cannot be fed to more
than two or three CU designs. If we assume that the
PRPG outputs are uncorrelated, a PRPG output of
CF ¼ k will result in k pattern generator outputs
correlated due to a common PRPG output. The
lower the value of k for a combinational mapper
design, the better will be the randomness of the
mapped vectors.

3. Use EX-OR gates in CUs: Though the application of
EX-OR gates may contribute to a larger area,
replacing other 2-input gates by EX-OR or EX-NOR
gates wherever possible will improve the signal
probability of the CU outputs.

4.3.2 Area Reducing Heuristics

Presented below are heuristics aimed at reducing the area of

the logic mapper during placement and routing.

1. To provide less routing area for the combinational
units, the additional constraint on choosing the input
index array, Ii, of CUi is that all the indices should
not be much further away from the ith bit position.
This would ensure that for all of input indices Ii½j�,
the index number Ii½j� lies in the range, ðiþRÞ and
ði�RÞ. For choosing inputs to CUi, the design
procedure also gives a bit position nearer to i, a
higher priority, to one away from i.

2. It is always preferable that the maximum number of
inputs to a combinational unit is three, four or, at
most, five (in very few cases). In a situation where

the number of inputs becomes more than four or
five, the number of PRPG patterns has to be
increased to provide a larger space for finding
suitable matches.

4.4 Overall Design Flow

Although one could achieve a very high fault coverage
using the initial logic mapper design, it may not always lead
to 100 percent fault coverage. The faults that escape the
mapped vectors can be classified into two sets:

. Faults that have not yet been identified as hard-to-
detect faults.

. New faults that are undetected when the mapped
PRPG vectors were used to test the CUT.

To incorporate these faults in the logic mapper design,
proposed is a design flow which can guarantee 100 percent
fault coverage. The flow is presented in Fig. 11. Such a
design flow will achieve 100 percent fault coverage at the
end of the design procedure. In the worst case, the design
might have a very large fault list. However, our experi-
mental results show that the procedure converges in an
average of two to three iterations. If fault resimulation
becomes very costly for very large designs, one can create a
set of test-patterns, and check how many of the test-patterns
are generated by simulating the pattern generator.

As far as synthesis runtime is concerned, finding a match
between the target vectors and the PRPG vectors (Step 1) is
most time-consuming. The order of the algorithm is propor-
tional to the square of the number of target vectors, j T j (see
the Appendix), and is proportional to the cube of the number
of inputs to the CUT, n (see the Appendix). Hence, we do not
expect the runtime to increase with larger designs and larger
numbers of target vectors. Also, if we keep the number of
inputs to each CUi to a small number (up to four or five), the
cost of the logic mapper remains less.

5 EXPERIMENTAL RESULTS

The proposed algorithm for pattern generation was
implemented to show the performance of the new method.
Experiments were conducted on the ISCAS85 [35] bench-
mark combinational circuits and some combinational
profiles of ISCAS89 benchmark circuits; only those circuits
which were not easily randomly testable were used. The
results were compared with the single set WRPT techniques
in [4] and [6] and other types of pattern generation
techniques such as [27], [36], [28], and [40].

Results have been compared based on the fault coverage
and extra gate count overhead of the pattern biasing
hardware.

The results presented here have been significantly
improved from the work published in [24]. This is primarily
due to improvements in two areas: 1) an improved
Find_Match algorithm which reduced the cost, and
2) randomness preserving heuristics and the overall design
flow, which increased the fault coverage.

5.1 Experimental Framework

We have implemented the proposed algorithm and the
algorithm in [4] for comparison. For the sake of fairness,
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GLFSR was chosen as the PRPG for our technique, as well
as the weighted pattern technique, the primary reason (as
mentioned earlier) being that the GLFSR exhibits better
randomness than the LFSR. However, we tried to use an
LFSR which is basically GLFSRð1; nÞ wherever possible.
Also, to make the comparison unbiased, we have selected
the same set of hard-to-detect faults for both our technique
and the weighted pattern technique. The number of GLFSR
patterns chosen to search for a suitable mapping of the
given target patterns was equal to the number of unmapped
GLFSR patterns required to detect 90-95 percent of the
single stuck-at-faults in the circuit. The combinational units
designed for the proposed pattern generator were imple-
mented in a two-level realization.Only the tabularmethod [34]
was used for logic minimization for the individual combina-
tional units. As mentioned, we also implemented the WRPT
technique proposed in [4], where we processed the target
patterns instead of the “Tail Vectors.” The weights were
limited to 0.125, 0.25, 0.5, 0.75, and 0.875 and were generated
by using AND and OR gates at the outputs of the shift
registers. Finally, during fault simulation, the number of
patterns generated is applied until a predetermined number
of consecutive patterns failed to detect any of the remaining
undetected faults. An interesting optimization problem will
be to search for optimal p; q such that GLFSRðp; qÞ provides
the best results where n ¼ p � q.

5.2 Area Overhead

We have compared area overhead in terms of the number of
equivalent 2-input gates (GE) to realize the combinational
logic component of the test pattern generator, a standard
technique for comparing area in logic synthesis [34]. Using
this metric, the proposed scheme is compared with that in
[4]. Since the embedded PRPG is GLFSR for both the

proposed method and the WRPT method, we compare the
extra area required for augmenting the GLFSR with the
combinational logic. The results have been presented in
Table 4. The third column provides the name of which
generator was used as the PRPG in the combined pattern
generator. The fourth column here gives the number of
target patterns that were selected to design the pattern
generators. The fifth column corresponds to the number of
GLFSR patterns potentially matched with the given target
patterns. The last two columns provide the number of two-
input gates required to realize the transformation. It should
be noted that the number of equivalent two-input gates is
comparable to the WRT technique [4].

The mappers synthesized for the ISCAS circuits shown
above have the following characteristics: First, most of the
GLFSR outputs are directly connected, therefore not
needing any mapping logic at all. The other outputs require
only two or three inputs. Very few combinational units at
GLFSR outputs require four or five inputs.

5.3 Fault Coverage

The fault coverage of the proposed pattern generator is
compared to that of the WRPT-implemented, based on [4]
and the results from [6]. The generators used for the
proposed technique and the WRPT technique from [4] are
the same as described in Table 4. Table 5 presents the results
of the fault coverage on the ISCAS85 benchmark circuits
and some ISCAS89 circuits. Columns 3 and 4 depict the
achieved fault coverage with respect to the test length for
the pattern generator. Columns 4 and 5 depict the same for
the WRPT technique implemented, which is based on [4],
the only difference being that we used GLFSR instead of an
LFSR. Finally, Columns 6 and 7 give the results from [6].
While measuring the fault coverage, only detectable faults
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were considered. The number of undetected faults listed in
Columns 3, 5, and 7 is the number of undetectable faults left
among all of the detectable ones.

The results show that, in almost all cases, the proposed
pattern generator outperforms those pattern generators
designed using single weight sets. It has also been observed
that the fault coverage based on the proposed generator is
better than some of the published results where multiple
sets of weights have been used [3], [9], [10]. Any weighted
pattern generation technique identifies a set of hard-to-
detect faults in the circuit and assigns weights to the bits to
increase the probability of generating tests for the faults.
The proposed technique, on the contrary, targets the same
set of hard-to-detect faults, guaranteeing the generation of
the test patterns for those faults. Thus, the proposed pattern
generator tests all of the hard-to-detect faults in the
identified set, resulting in much higher fault coverage.

An alternative approach to achieve almost perfect fault
coverage is to resynthesize the circuit itself, as done, for

example, by the tool LOT [45]. However, the test lengths for

the resynthesized circuit can be longer than the approach

proposed here to attain the near-perfect fault coverage.

Therefore, a hybrid approach that combines resynthesis

[44], [45], [46] with mapping can yield a better result than

those reported here. Further research needs to be carried

out to explore this approach.

5.4 Comparison with the Mixed-Mode Scheme

We now compare the proposed method with a pattern

generator hardware designed for a mixed mode testing

scheme [27]. Here, an LFSR was used to generate the

pseudorandom vectors and was then reconfigured as a ring

counter to generate deterministic vectors through a network

of OR gates. Unlike the proposed method, the deterministic

vectors were delivered using a minimal number of vectors

and thus can incur a larger area overhead. The comparison

is presented in Table 6. For the mixed mode scheme, the
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“decoding logic + MUX” is counted as the hardware
overhead.

5.5 Comparison with Cube/Rectangular Mapping

Another method [36], [37], developed independently, uses
LFSR and a mapping logic to generate tests. The procedure
described in [36] is based on a class of transformations
called “cube mappings.” Here, each cube mapping trans-
forms those patterns in the original pattern set (pattern set
generated by the LFSR) which do not detect any new faults
into a set of patterns that detects the targeted hard-to-detect
faults. The method guarantees 100 percent fault coverage
since only those patterns that do not detect any new faults
are transformed. An enhanced method of the logic mapping
synthesis [37] uses a mapping function which corresponds
to a minimum rectangular cover in a binate matrix. Though
this method compares favorably with recently published
weighted pseudorandom pattern methods [3], [10], certain
differences with the proposed synthesis method can be
mentioned:

. Identifying cubes or rectangles and then transform-
ing only a selected set of vectors may need larger
numbers of gates for certain circuits, when com-
pared to the proposed method.

. These kinds of transformations often lead to mapper
designs resulting in more than two levels of logic,
unlike the proposed method.

. Although no comparison of interconnections or
routing is done, our approach is based on localized
interconnections, whereas the procedures in [36],
[37] require more global interconnections.

In summary, there are can be distinctions between the two
methods for a specific CUT. Table 7 compares results for
cube/rectangular mapping with the proposed method
(former old versions of s420 and s838 were not available
to us for comparison). Nevertheless, the proposed method
compares favorably with [36], [37] in all circuits except
s1196 and c7552. Also note that [36], [37] measure an
n-input NAND or NOR gate as (n=2) GEs, compared to our
measurement of (n� 1) GEs.

Another method similar to [36], [37] is proposed in [41].
Here, the target cubes are derived by a machine learning
procedure. Due to unavailability of area overhead data, we
could not compare the numbers for the benchmark netlists.

Nevertheless, the method seems to give similar numbers to
[36], [37] and the proposed method.

5.6 Comparison with Minimal Stage Test Pattern
Generator Design

The test pattern design approach in [28] partitions circuit
inputs into groups, each group corresponding to a test
signal. The extra hardware incurred in this design is the
interconnection between the PRPG and the CUT. This
method not only combines unrelated inputs (inputs that do
not belong to the same cone) into a test signal, but also
determines compatible inputs for the particular CUT, even
if the inputs belong to the same cone. Compatibilities
between circuit inputs are determined such that all
detectable single stuck-at faults in the circuit are guaranteed
to be detected. The number of stages of the resultant test
pattern generator determines a test length for 100 percent
single stuck-at fault coverage. Table 8 compares the test
lengths of these test pattern generators with the proposed
method for some random-pattern resistant circuits. It can be
observed that an addition of a few gates can provide a
significant reduction in the test length. The results can be
improved further by combining the two techniques.

5.7 Comparison with Ring Architecture Design

The ring architecture [40] is composed out of a set of masks
that are cyclically used to transform the PRPG patterns. The
set of masks are predetermined, given a particular CUT.
Given a set of l masks, say R0; R2; . . .Rl�1, the cyclic use of
the masks consists of the modification of P0 by R0, P1 by
R1; . . . ; Pl�1 by Rl�1, Pl by R0, Plþ1 by R1, and so on. The
masks are designed to contain deterministic test cubes and
may contain an “all X” mask. The advantage of this method
is that the ring architecture has a simple design and does
not need a synthesis method to design the extra gates. The
determination of the masks and PRPG seed can be a
challenge. When the number of masks is low, the ring
architecture can be area efficient. When the number of
masks is high the area overhead can increase a lot. Table 9
compares test-lengths and the area overheads of the ring
architecture method with the proposed method. The
proposed method compares favorably with most of the
published cases in [40]. There were no published numbers
for c2670 and c7552—the two most random-fault-resistant
netlists for the ring architecture method to compare.
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6 CONCLUSIONS

Proposed in this paper is a methodology for synthesizing
effective pattern generators for BIST applications with small
overhead. Our goal here is to detect all single stuck-at faults
in combinational circuits. However, this can be extended to
non-stuck-at fault models, as well. The comparisons with
the weighted random pattern technique and other test
pattern generator methods show that the proposed method
has significant advantages in the context of IC-BIST where
added gate count and delays in the TPG can be a major
concern. Our scheme has the potential to achieve 100 percent
fault coverage with an area comparable to WRPT. Although
we have used a GLFSR here, the method is general and one
can be used for standard LFSR [1] or cellular arrays [31],
[32]. The methodology also can be extended to multichip
modules, where there can be a single GLFSR with different
sets of combinational units for different modules. Finally,
the proposed method can easily be integrated with any
general pattern generation technique or a scan-based
technique for performance enhancement.

APPENDIX A
The following is the description and analysis of the
matching and the synthesis procedure (briefly described
before in Section 4.2). The matching procedure (Step 1) is
closely related to the procedure of determining the input
arrays to the CUs (Step 2). We first present the procedure
for Step 2 and then use this procedure to formulate Step 1.
This section also includes a more comprehensive version of
the Find_Match algorithm presented earlier.

A.1 Determining Input Arrays of the CUs

Input arrays of the CUs are designed independently of each
other. The combinational unit, CUi, can take as its input all
the n output bits of the PRPG. The combinational unit, CUi,
for the ith bit is designed such that, for all the target
patterns, Tj, FiðMðTjÞÞ is equal to TjðiÞ. Note that MðTjÞ is
the PRPG pattern mapped with Tj. Hence, to satisfy the first
condition for CU design, we have to satisfy the relation

FiðMðTjÞÞ ¼ TjðiÞ for i ¼ 0 to ðn� 1Þ; j ¼ 0 to ðj T j �1Þ:
ð3Þ

As mentioned before, Fi will not need all the output bits
from the PRPG vectors and the relation to those PRPG
output bits will appear as Don’t Cares, Xs. The proposed
method eliminates as many PRPG output bits as possible
and lists the rest of the required bit indices in the input
array Ii. If we observe the ith bit of the target vectors, some
of the bits have the value 1, some have 0, and the rest are Xs.
If MðTjÞ is the input to the combinational unit CUi,
FiðMðTjÞÞ should be a 0 if TjðiÞ is a 0 and a 1 if TjðiÞ is a
1. CUi need not care about the target patterns whose ith bit
is an X. Thus, CUi is only concerned with the target vectors
whose ith value is a 1 or a 0. We divide these target vectors
into two sets—Set1 and Set0. Set1 (Set0) contains those target
vectors whose ith value is equal to 1 (0). These sets are a
function of the mapping, M, and the bit i for which the CU
is being designed. The contents of the sets will be
completely different when a different combinational unit
is being designed. CUi, when designed, should be able to
distinguish a pattern, MðT1Þ, where T1 2 Set1 and a
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pattern, MðT0Þ, where T0 2 Set0. The minimum number of
bits required to distinguish between MðT1Þ and MðT0Þ
should be used as the inputs to CUi. Given a set of MðTj1Þ
vectors, where Tj1 2 Set1, and a set of MðTj0Þ vectors,
where Tj0 2 Set0, a greedy algorithm is used to choose the
minimal number bit indices that can distinguish between the
two sets of vectors. The bit indices found are then listed in
the array, Ii.

Example 2. Let us designCU6 of the pattern generator shown
in Example 1. As derived from thematchings, for i ¼ 6, we
have Set1 is equal to f0011001; 1110101; 0010010; 0001110g
and Set0 is equal to f0000111; 1100011g. It was found
that, to distinguish these two sets using the minimal bits,
we can choose bit 5 and bit 6. Looking at the fifth and
sixth bits of the two sets of vectors, we have
f01; 01; 10; 10g for Set1 and f11; 11g for Set0. The function
can be realized by a NAND gate. The input array, I6,
would be equal to f5; 6g and F6 will be the NAND
operation.

Given a set of input bit indices in Ii and the PRPG
pattern Pj, the vector that appears as the input to CUi is
given by

½PjðIið0ÞÞ; PjðIið1ÞÞ; PjðIið2ÞÞ; . . .�
� V ðPjðIiðkÞÞ; k ¼ 0 to j Ii jÞ:

Throughout the remainder of the paper, we will denote
V ðPjðIiðkÞÞ; k ¼ 0 to j Ii jÞ as V ðPj ? IiÞ. The length of the
vector is equal to j Ii j . The procedure describing the
scheme of generating the input bit indices for the CUs is
presented in Fig. 12.

The Find_Input_index procedure begins with a given set
of Target Vectors and its matched PRPG patterns. At the end,
the procedure returns the contents of the input index arrays,
Is. In Step 4, the procedure chooses one bit at a time,
including it in the array, Ii. The bit whose addition in the
array results in distinguishing more MðTj1Þ 2 Set1 and
MðTj0Þ 2 Set0 vectors is chosen first. This method is greedy
in nature, stopping when there are enough number of bits
to satisfy the condition in Step 4.

Lemma 1. The order of the algorithm Find_Input_index with k
target vectors is Oðk:n3Þ.

Proof. It can be observed that Steps 2-5 are repeated n times.
Steps 2 and 3 require OðnÞ time units. Step 4 is the key
stage in the loop. In Step 4, in the worst case, all of the
n bits have to be chosen. In such a case, the time
complexity for checking whether the collected bits are

sufficient to be the inputs to CUi will be ðk:nÞ. Thus, the
worst case time complexity for Step 4 is ðk:n2Þ. The worst
case time complexity for algorithm Find_Input_index will
be ðk:n3Þ. tu

Theorem 1. The input set, Ii, of CUi, derived from the
Find_Input_index procedure, is capable of distinguishing
any MðTj1Þ, where Tj1ðiÞ ¼ 1 from any MðTj0Þ, where
Tj1ðiÞ ¼ 0.

Proof. This can be proven by contradiction. Let us assume
that the procedure which gives the input index, Ii, is not
capable of distinguishing all of the PRPG vectors in Set1
from the PRPG vectors in Set0. This would imply that
there exists a pair ðMðTk1Þ;MðTk0ÞÞ, where Tk1ðiÞ ¼ 1,
Tk0ðiÞ ¼ 0, and that inputs to CUi are the same and not
distinguishable. Then, for this pair, we have
V ðMðTk1Þ ? IiÞ ¼ V ðMðTk0Þ ? IiÞ. This means that, in the
procedure, either the sets were wrongly determined in
Steps 2 and 3 or the condition was not satisfied in Step 4,
neither of which is possible. tu

A.2 Matching Target Vectors

The proposed matching scheme, as described in Fig. 13,
utilizes the Find_Input_ index procedure to find a matching
between the target vectors and the PRPG patterns with a
minimal C. The procedure picks up one target vector, Ti, at a
time and matches it with a PRPG vector, Pi. After matching
each vector pair, the procedure determines the input indices
for the CUs, based on the current matchings, and estimates
the cost of the combinational unit area overhead. The cost of
matching ðkþ 1Þ vectors will be more than or equal to that
with k vectors; this is because, with ðkþ 1Þ vectors, there
will be the existing k vectors, as well as one more vector to
work upon and distinguish them. At an instant of time,
when k vectors are matched (k >j T j ), let the cost of the
matching be Ck. Now, the matching for the next target
vector is determined so that the cost Cðkþ1Þ with the added
matching is as little as possible. Ideally, it is best to try each
Pi which has not yet been matched as a potential match for
Ti and determine the cost with the added potential pair.
Determining the cost with each potential pair will make the
procedure too time-intensive and is not preferable for large T
and P . In the proposed method, with each Pi not yet
matched, we estimate the extra cost incurred, if Pi is chosen
to match Ti. The extra cost will depend on how many
combinational units will need extra inputs to realize the
matchings of k vectors and Pi � Ti matching. The extra cost,
denoted by EC, is a function of the input index arrays with
the existing k matchings, Pi and Ti. If the potential
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matching, Ti � Pi, is accepted, the combinational unit, CUj,
may or may not need extra inputs. To check whether CUj

needs extra inputs, Pi has to be compared with the Set1
vectors (or the Set0 vectors) for CUj, if TiðjÞ is a 0 (or a 1). If
TiðjÞ is 0(1), for CUj to need no extra input bits, V ðPi ? IjÞ
should not be equal to any V ðPk ? IjÞ, Pk belonging to Set1
(Set0) for CUj. If the combinational unit, CUj, needs extra
inputs, the extra cost associated with it will also depend on
j Ii j (refer to (2)). Thus, EC is expressed as:

ECðk; Pi; TiÞ ¼
Xn
j¼0

ðWðj Ij j þ1Þ �Wðj Ij jÞÞ �BjÞ

where Bj ¼
0 No extra bit is required in CUj

1 Otherwise:

� ð4Þ

The calculation of EC can be used to quickly estimate the
extra area incurred if the pair is matched. Our method
calculates the EC with every potential Ti � Pi matching and
selects the matching with the least EC value. This
procedure is the same as Fig. 10.

The procedure first sorts the target vectors on the basis of
the number of Xs in the vectors. This will enable the vectors
with fewer Xs to be matched first and the vectors with
larger numbers of Xs to be matched later. It can be observed
that the handful of initial matchings plays a significant role
in determining the complexity of the combinational logic
block. The synthesis is carried out incrementally. The
matchings added later are selected based on the partially
synthesized combinational block and the matchings are
added in the order which will require minimal perturba-
tions to the design. Only one or two matchings are made in
Step 3, based on the minimum Hamming distance; the rest
of the matchings are formulated using Steps 5-9. The
procedure at its termination yields a complete matching
between target patterns and a subset of PRPG patterns. As
the procedure uses the Find_Input_index function after
selecting each matching, the input index arrays, Iis, are
also available at the end of this procedure.

Lemma 2. The order of the algorithm Find_Match is
Oðj T j2 ðn3þ j P j :nÞÞ.

Proof. We can proceed step by step and analyze the time
complexity. Sorting the vectors in Step 2 takes
Oðj T j : log j T j :nÞ. Choosing the first few initial match-
ings, based on the Hamming distance, would take
ðn: j P j ) steps. But, the order of the algorithm is

determined by Steps 6-9. The loop 7-9 is repeated Oðj
T jÞ times. Calculation of EC takes Oðj T j :nÞ steps and,
hence, Step 7 takes Oðj T j : j P j :nÞ time. Step 8 takes a
single time unit and Step 9 has an order of Oðj T j :n3Þ
(Lemma 1). Thus, Steps 7-9, in the worst case, take a time
complexity of ðj T j ðn3þ j P j :nÞÞ. Hence, the order of
Steps 6-9 and that of the algorithm is equal to
Oðj T j2 ðn3þ j P j :nÞÞ. tu

A.3 Synthesis of the Combinational Logic Block

The proposed scheme begins by designing each combina-
tional unit, CUi independently. Designing CUi would
require the input index array, Ii, and the truth table to be
implemented. The truth table is derived from the matched
PRPG vectors and the sets, Set0 and Set1. If an input vector
to CUi is equal to V ðPj1 ? IiÞ, where Pj1 2 Set1, the output of
CUi will be 1. If the input vector is V ðPj0 ? IiÞ, where
Pj0 2 Set0, the output of CUi will be 0. If neither of these
conditions is satisfied, the output will be X. Based on the
above information, we have implemented the combina-
tional units in a two level realization, using the tabular
method of logic minimization described in [34]. Once all the
combinational units are designed, the overall area can be
further minimized, using other two-level logic optimiza-
tion, as done by ESPRESSO [34].

Theorem 2. The functions implemented by the combinational
units satisfy relation (3).

Proof. The function, Fi for CUi is implemented from the
input index array and the truth table derived from the
matchings. Let us assume that the functions are not
properly realized and that the vector, MðTiÞ, at the input
of the combinational gates, is transformed to another
vector, T 0

i . There are two ways to achieve this. The first
possibility is that MðTiÞ was not correctly identified by
the CU and was transformed to T 0

i instead of Ti. This
would imply that the inputs at the combinational units
were not sufficient to identify Ti. As this would contra-
dict Theorem 1, this possibility is not valid. The second
possibility is that the truth table has not been properly
realized. This possibility would violate the methodology
of realizing the truth table. Hence, the combinational
units designed by the proposed method will satisfy
relation (3). tu

Theorem 3. The proposed pattern generator generates all the
given target patterns.
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Proof. The theorem follows from the description of the

pattern generator, definition of the mapping function,

and Theorem 2. tu
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