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Abstract 

This paper discusses the issues of test coverage 
measurement in industry and justijies the benefits of 
the measurement using a framework developed by the 
authors. Experience with the measurement is formal- 
ized and packaged so that other researchers in 
industry can share and reuse it. In the paper, function 
test of large-scale system software is defined and ana- 
lyzed. Based on the discussions of function test, a 
framework for analyzing the function test error 
removal process is developed. An experience- based 
error removal model and a cost model are proven to 
be useful tools for justifving tesf coverage measure- 
ment during function test. Data obtained from a real 
project is analyzed using the framework for validation. 

1 .O Introduction 

Many papers have been published on test cov- 
erage measurements [2][6][8) . Most have been of 
a theoretical nature, discussing the benefits of various 
measurement criteria [ l  13. There has been little dis- 
cussion of the successful use of test coverage meas- 
urements on large projects, and whether it has 
proved to be a cost effective method for either 
locating errors or assuring quality (e.g., reliability, 
maintainabdity) of a product [14]. 

One reason for the lack of data on test coverage 
measurements during software testing is the dSicu1ty 
of getting test coverage numbers on large complex 
products [SI. The academic community may enjoy 
discussing the merits of various test coverage meas- 
ures. The user community would like to get any 
useful coverage numbers at all, using any measure- 
ment criteria. 

Within IBM, statement and branch coverage 
measurements have been done on some very large 

projects, such as operating systems and compilcrs 
using internal IBhl tools since the late 1960s. The 
frrst project to seriously measure code coverage was 
a new operating system for a small business com- 
puter in the early 1970s at IBM Rochester, 
Minnesota. A hardware tool was developed to 
measure the operating system’s statement and branch 
coverage. Before this project, we believed that 99 
per cent statement coverage and 95 per cent branch 
coverage were generally achievable. We found that 
this was not the case. 

In the latc 1970s, another hardware tool was built 
at IBM San Jose, California. The tool was devel- 
oped to measure test coverage of an 1 /0  subsystem 
of an operating system for the IBM System/370 
machines. At the same time, a group at IBM 
Poughkeepsie, New York, developed a software tool 
to measure test coverage of an operating system 
kernel for the IBM Systemi370 machines. This tool 
proved that a software tool could do the same thing 
that its expensive predecessors did. 

From the late 1970 to the early 1980s, test cov- 
erage measurements were done on some large 
projects such as operating systems. Through those 
experiments, we found that test coverage does not 
directly correlate to actual reliabllity of those pro- 
ducts. Users of the operating system sometimes 
found more errors in parts whose test coverage 
numbers were relatively higher than the other parts. 
From the users’ point of view (mean time to failure) 
we found stronger correlation between usage of the 
operating system and MTTF than between a test 
coverage number and MTTF. 

A software test coverage measurement tool called 
EXMAP (Execution Time Mapping Tool) was 
developed to measure OS/MVS system code at IBM 
Poughkeepsie in the late 1980s. EXMAP tracks test 
coverage with minimum overhead while the tester is 
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running test cases in a normal testing environment. 
The tester does not have to test the product using a 
debugger, or recompile the code to insert hooks into 
the modules. 

Phase 

Design 

Code 

The tool has been used by testers on some large 
projects since it was developed. We have learned 
that measuring test coverage does take system and 
human resources. Therefore the following issue has 
been raised by testers: ”If you increase coverage by 
the use of the tool, do you really find more errors, 
and is the savings realized in fewer errors worth the 
cost’” 

~ 

Errors Injected Portion Remain- 

.oo 47.37 .80 9.48 

9.48 52.63 .50 30.92 

Entering removed ing 

Test coverage measurement provides feedback to 
product developers which will encourage them to 
increase coverage by adding additional test cases. 
This increased coverage will, in tum, result in lower 
error removal costs as well as fewer errors shipped in 
the product. Therefore, any assessment of value will 
require that a model of the relationship between test 
coverage and product quality be developed. 

The results in this paper deal with the use of 
statement coverage during function testing. The 
same discussion can also be applied to unit testing. 
Other measurement criteria other than statement and 
branch coverage (e.g., data-flow coverage) may be 
also cost effective. 

2. Function test 
3. System test 

Unit test was done by the programmers who wrote 
the code being tested. Function test was usually 
done by a different group within the same develop- 
ment organization. System test was generally done 
by a group that was independent of the development 
organization. 

2.1 Overall Process 

Testers generally thought that the goal of testing 
was to remove as many errors in a product as pos- 
sible during the given development cycle. Some 
testers felt that the goal of all  testing was to assess 
quality of a product from the customers’ point of 
view. 

The number of errors found during unit, function, 
and system tests was the basic measurement for these 
test phases. A hypothetical error profile through the 
development phases is shown in Table 1. The 
assumptions are that 47.37% of errors are injected 
during design, 52.63% are injected during coding, 
and no errors are injected during the test phases. 
(See Stott [lS] and Jones [7] for a discussion of 
error removal profiles.) 

In this paper, we fust define what function test is 
in our environment in tenns of its goals, process, 
and measurements. We defme the function test 
problem and then describe how it is solved in prac- 
tice. We describe our tool and the state of test cov- 
erage measurement in industry. We then analyze the 
relationship between test coverage and error content 
of a product. We develop, based on our experience, 
our error removal model and cost model. We vali- 
date the error removal model by analyzing data 
taken from an experimental project. Our conclu- 
sions, and directions for future research are pre- 
sented. 

2.0 Testing of Large Scale Software 

The observations in this section are based on a 
study of testing of large scale software in IBM con- 
ducted by the authors in 199 1 [ 123. 

The test process consisted of three phases: 

1. Unit test 

Table 1 .  Hypothetical Error Profile by Phase I 

I Unit Test I 30.92 I .OO I .50 I 15.46 I 
I Function Test I 15.46 I .OO I .60 I 6.18 1 
I System Test I 6.18 I .OO I .45 I 3.40 I 
1 -  I I I I I 

2.2 Unit Test 

The goal of unit test was to remove as many 
errors in a module as possible and to know that the 
module under test met its low level design (or 
module level specifications). 

Unit test was done by the programmer. Testing 
was white-box or “structural” and the process varied 
from developer to developer. There were several 
techniques used to generate test cases. Test cases 
generated and problems discovered during unit were 
occasionally recorded. 
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Although many viewed the exit criteria from unit 
test as a certain form of test coverage (e.g., 100% 
statement coverage), this coverage was only OCM- 

sionally measured. Alternatively, there were cases in 
which a successful run of an acceptance test suite of 
a function test was considered the formal exit of a 
unit test. Normally the programmer determined 
when unit test was complete based on the tester's 
experience with the module. 

.l'he number of errors reported was the typical 
measurcmcnt for unit test. One project also did some 
statement coverage measurement. 

2.3 Function Test 

The goal of function test was to test the functions 
listed in the functional specifications (black-box 
testing) and remove as many errors in the code as 
possible bcfore system test. 

Testing was black-box or "functional" testing. 
Some function testers looked at code in order to 
make sure that test cases hit important areas of the 
code. One project had been experimenting with 
random testing and trying to automate it. The test 
plan and test cases were documented and reviewed. 
The problems found during function test were 
recorded. 

The entrance criteria was the availability of the, 
code that implemented the function. In some cases, 
a subset of function test cases were run as an accept- 
ance test. Exit criteria was essentially the successful 
completion of a set of function test cases. 

Measurements were errors found and number of 
test cases executed. Some projects measured state- 
ment coverage and used that as a measure of testing 
effectiveness. 

2.4 System Test 

Some testers felt that the goal of system test was 
to find errors under realistic or stressed environ- 
ments. Others felt that the goal was to integrate pro- 
ducts in customer-like environments and assess 
quality of a product under test. 

Testing was the black-box or "functional testing." 
There were cases in which other products which 
were developed outside development organizations 

(e.g., different divisions) were also integrated into a 
test environment and tested. Test cases developed 
for function test were sometimes selected and used 
for system test. The test plan and the test cases were 
documented and reviewed. The problems found 
during system test were consistently recorded. 

Entrance criteria was availability of the code that 
implemented the functions, not the entire system 
that implemented all the functions specified in the 
functional specifications. Some projects ran an 
acceptance test case suite. 

The frequency of failure occurrences and types of 
errors found in the late stage of system test were ana- 
lyzed to determine if a product was ready. 

3.0 Characteristics of Function Test 

3.1 The problem 

What function testers try to do usually is to verify 
that a product under test properly generates outputs 
for given inputs as they are specified in the func- 
tional specifications. If an output generated by the 
product does not satisfy the functional specifications, 
testers say: "I found an error." 

This function test problem is formulated as 
follows. Suppose W is an input space such that 
members of W are states of the input vector w, S is a 
system state space such that members of S are states 
of the system state vector s, and Y is an output 
space such that members of Y are states of the 
output vector y. A set of functional specifications 
which defines a mapping from the input space to the 
output space can be regarded as a discrete function 
fiW x S - > Y x S ,  where W, S and Y are finite sets. 

For convenience, the Cartesian products W x S 
and Y x S are denoted by X and Z respectively. An 
element of X, x, is a state of vector (w, s), and an 
element of Z, z, is a state of vector (y, s). Let N be 
the size of space X (N = IXl), and K be the dimen- 
sion of vector x ( K = dim(w) + dim(s) ). X is a set 
of combinations of possible input values and internal 
states of a program. 

The sue of the input space N is bounded, and the 
upper bound is given by: 

N I  O( exp(K)). 

289 



(Proof) The Cartesian product of input space W and 
state space S is the largest set of the combinations of 
w and s. If all the variables of x and s are inde- 
pendent, the number of possible combiinations of 
vector x, i.e., N, is O( exp(K)). 

The problem which is O( exp(K)) is not practically 
solvable. It is generally infeasible to find the 
optimum solution for a given problem. If we can try 
all the possible cases, we. can find thc solution. 
'I'hcrcfore. the testcrs' problem is to find a partial 
solution which satisfies ;t ccrtain set of conditions in 
a given period of time. 

The problem to be solved is to find set X' such 
that X' is a subset of X and its size is "feasibly 
small." X' is a set of test cases. If "feasibly small" 
means O(K), the problem can be reformulated by 
the following proposition: 

Proposition: for given X, Z and fX - > 2, there 
exists subset X' of X such that X' satisfies the fol- 
lowing conditions: 

1. I Z I  < IX'I < O ( K ) ,  

2. Z' = Z where f: X' - > Z'. 

3.2 Solution in practice 

A typical approach taken to find X' by testers in 
practice is: 

if constraints on the input space are strong and 
the size of X is "feasibly small," select X as X'; 
if constraints on the input space are not strong 
so that the size of X is not "feasibly small" but 
considerably smaller than the upper bound, 1) 
select X" so as to satisfy the second condition of 
the proposition; 2) if the size of the X" is signif- 
icantly smaller than the sue of X, add some ele- 
ments of X to X"; 3) if X" becomes reasonably 
large, select X" as X'; 

if the input variables are independent and the 
size of X is close to the upper bound, select X* 
so as to satisfy only the second condition of the 
proposition where IX*l= lZl 

The first case is that functional specifications are 
simple so that testers can try all the possible cases. 
The second case is that functional specifications are 
fairly complex so that testers cannot try all the pos- 
sible cases. Testers analyze the given functional 

specifications, identify classes of inputs and outputs, 
and try to exercise all the relations between input 
and output classes. The last case is that functional 
specifications are too complex to test systematically. 
Testers do not try to analyze a structure of the func- 
tional specifications. Testers try to show either that 
the product works correctly (optimistic testing) or 
that the product does not work in some cases (pessi- 
mistic testing). 

There arc no consistcnt algorithms used to find 
X" and X* in practice. S" can be for example 
obtained using the cquivslcncc partitioning method. 
Testers sometimes use their informal (personal) tech- 
niques which can be seen as equivalence partitioning. 
The most consistent way of finding X" is random 
search, though it requires a signrficant amount of test 
cases. Another way often used for finding X" in 
practice is: to fix values of some input variables to 
reduce the search space. 

A common way of finding X *  is to select some 
elements of X so that X* covers typical elements of 
X based on the usage of a function. The most opti- 
mistic way of selecting X* is to try a small set of 
inputs which are expected to be the most typical 
cases. The most pessimistic way of selecting X* is 
to try all the inputs that have caused failures in the 
past. These can be interpreted as an informal way of 
finding X'. X* in these cases may not be complete 
to cover Z. 

The most important condition to determine if 
designed test cases are sufficient is the question: "Are 
all the possible output patterns covered by test 
cases?" If this condition is satisfied, the next condi- 
tion is the question: "Is the number of test cases rea- 
sonable?" Testers sometimes refer to their 
experiences to answer this question. The typical 
number that is frequently referred is "1 test case per 
10 lines of code." 

To ensure that test cases for function test are 
properly designed and completely cover Z, testers 
sometimes refer to a test coverage index of their test 
cases. If test cases are complete, each test case exer- 
cises a part of the program which is specifically exer- 
cised by the test case as well as common parts which 
are also exercised by other test cases. Therefore, for 
each test case there exists a part of the program 
which uniquely corresponds to the test case. If test 
cases are complete and adequate to cover X" or X*, 
they must exercise all the parts of the program (i.e., 
100 percent test coverage). 
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3.3 Function test and test coverage 

By assuming that test cases are randomly selected 
from space X so as to satisfy either IX*l = lZl or 
IX’I > lZl, the probability that a test case exercises k 
new blocks which have not been exercised after cov- 
ering n blocks more than once is given by the hyper- 
geometric distribution [16]: 

where S is the number of blocks in a program, and 
p is the average number of blocks covered by a test 
case during function test. p - k out of p blocks have 
already been covered by other test cases. 

The expected number of blocks newly exercised 
by the i-th test case is given by: 

P 

I =  
I ,  = . C j  x Prob(i(n, - I > ,  

where n, - I is the number of blocks covered before 
running the i-th test case. n, is recursively estimated 
using I ,  as follows: 

I 

n,=z4, 
j = l  

where = p ,  and il =p.  Therefore, we obtain: 

Since 6 can be regarded as an integration of 4, we 
can formulate a continuous approximation function: 

d P - n(x) = - [N - n(x)], ak N 

where x is the number of test cases executed. By 
solving this equation, we obtain: 

n(x) = ~ ( 1 -  e-$.>. 

n(x) is the function that describes the relationship 
between the number of blocks covered and the 
number of test cases executed. By dividing n(x) by 
N, we obtain the function that describes the relation- 
ship between coverage and the number of test cases: 

c(x) = 1 - e-+, 

where c(x) is-coverage after executing x test cases. 
The function suggests that increasing test coverage 
beyond a certain point is not cost effective. The 
function also suggests that some of the blocks in a 
program are frequently exercised while some others 
are rarely exercised. 

If we assume that errors in blocks which are fre- 
quently exercised are more likely to be detected and 
removed, then we can cxpect that those frequently 
exercised blocks are more likely to be less error 
prone and more rcliable than other blocks. We can 
also expect that a coverage value is not necessarily 
equal to the ratio of crror free code though it is 
related to reliabllity of code (a higher coverage value 
implies higher reliability of code). 

If we assume that errors in a program (or a part 
of a program) are homogeneously distributed and 
testers detect errors at the time when errors are sensi- 
tized the first time, then we can expect that reliability 
growth of function test in terms of the number of 
errors found is exponential (e.g., Goel-Okumoto’s 
NHPP model). 

4.0 Test Coverage in Industry 

In the survey of IBM testing organizations previ- 

were familiar with test case coverage measures, 
believed that the use of coverage measures would 
help them find errors and improve the quality of 
their products, 
but generally did not use test case coverage tools. 

Testers did not use coverage tools, not because of a 
lack of knowledge of them, or lackaf belief in their 
worth, but because coverage tools had proved to be 
to difficult to use. 

ously mentioned, we found that testers: 

A number of test case coverage measurement 
tools were available. However the available tools 
could not be used for large projects, system code, or 
function test in general. The reasons for this were as 
follows. The code to be tested was run under 
control of a debugger, and could not be tested in its 
normal function test environment. The code meas- 
urement process increased the execution time of the 
tested programs beyond acceptable limits. The 
measurement tools did not support the languages 
used for specific projects. The effort to do the meas- 
urement (setup time, special steps such as recompila- 
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tion of code, etc.) was too large for resource 
constrained testing organizations. 

Some of those tools, for example, used the history 
file generated while a debugger was monitoring the 
code. Some of them did not support assembler and 
the IBM intemal system programming languages. 
The overhead in added execution time of the 
program under test, and creating the history file was 
sometimes very large. 

Despite thc good intentions of function testers 
who wanted to measure their coverage, they often 
did not have an accurate measure of their coverage. 
Testers often ended up making their own estimates 
of code coverage. 

4.1 Tool for measuring system code 

To measure the coverage of large system code 
such as operating systems, compilers, etc., L. Balfour 
of IBM Yorktown developed an intemal test cov- 
erage measurement tool called Execution Time 
Mapping Tool (EXMAP). The tool uses measure- 
ment techniques that allow the tested programs to 
run in their normal user environments, and not 
under control of a debugger. The tool supports the 
languages that are used in IBM for large project 
development and systems level code: System/370 
Assembler, C, and IBM intemal high-level lan- 
guages. The overhead in terms of additional exe- 
cution time is small. Testers have found that the 
execution time of their programs is about 10% 
greater when the tool is monitoring coverage. 

EXMAP has been used within IBM to measure 
statement and branch coverage of operating system 
code, compilers, and other complex products. The 
tool provides a summary of test coverage for each 
function (in C) or procedure (for PL/I based system 
programming languages), and also annotated listings 
showing the execution status of each statement. The 
tester can have reports of test case coverage for an 
individual test case, or cumulative results for a group 
of test cases. See Appendix B for an example of a 
summary report and for an example of an annotated 
c listing. 

With EXMAP, testers can measure both state- 
ment and branch coverage during unit or function 
testing of operating systems (e.g., MVS, VM/CMS), 
except for deep system code (e.g., IPL modules) To 
measure test coverage of deep system code, the tool 

has been enhanced to work with a System/390 hard- 
ware simulation tool. With this enhancement, pro- 
grammers and testers can measure any part of an 
operating system. 

As testers became more f d a r  with EXMAP 
and test coverage measurements, they have wanted 
functional enhancements of the tool. Typical 
requirements from the users were: 1) the graphic 
prcsentation support of mcasurcment results, 2) inte- 
Fation of the measurement capability into the 
debugging environment that consists of the hardware 
simulation tool and a source level debugger, 3) a 
method to automatically select regrcssion test cases 
based on test case coverage of changed modules, 4) 
new coverage measurements (e.g., data flow coverage 
[13]), coverage on platforms other than S/390 (e.g., 
RS/6000, PS/2). EXMAP is continuously being 
enhanced based on these user requirements. 

4.2 What we have learned about test coverage 

Although test coverage had been measured on 
some projects in IBM since the early 1970s, the 
experiences of the testers were not consistently 
recorded. After our review of testing in IBM, we 
recommended that experiences be centrally recorded 
and shared by all of our testers [l]. We started col- 
lecting information about test coverage measure- 
ments in 1991. We also have planned experiments 
on coverage measurements to enhance our under- 
standing of the value of test coverage measurements 
in testing. 

When test coverage had not previously been 
measured, testers tended to overestimate coverage of 
their test cases. The first time testers measured cov- 
erage during function test, they found that the cov- 
erage was in the range of 50% to 60%. The testers 
were surprised at the low percentage of coverage they 
were getting. They expected a much higher per- 
centage of code coverage. Some testers estimated 
that their coverage was 90% or higher. 

Once coverage reports were available, testers were 
able to design new test cases, and improve existing 
ones so that coverage reached the range 70% to 
80%. Increasing coverage beyond this range proved 
to be difficut. These are some of the reasons. There 
is code that can only be tested using special hard- 
ware available during system test, but not during 
function test. Some code cannot be reached. This 
may point out code that was no needed, but there 
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are cases (described below) where unreachable code 
may be left in a product. Some conditions are very 
difficult to create, and have a low probability of 
occurrence. The tester may decide that it is not cost 
effective to test these conditions. 

Typical examples of unreachable code are found 
in the following cases. The program may have 
checks for "impossible" error conditions. For 
example, in a case statement, therc may be cases for 
all conditions, but a default casc is still provided in 
the event a future program change deletes one of the 
cases. Code may be included for features that are 
not part of this release. l h e  project may have 
standard libraries included in the program (for 
example 1 /0  routines) that provide multiple hnc- 
tions, and the program is only using some of the 
functions. 

Based on our survey of testing in IBM, and the 
analysis done in "Characteristics of Function Test" 
(above), we have concluded that: 

70% statement coverage is the critical point for 
our function test to assure that test cases suffi- 
ciently exercise and cover all the output pattems 
(the conditions of the proposition), 

50% statement coverage is generally insufficient 
for our function test to assure that test cases 
exercise and cover all the output pattems (the 
second condition of the proposition), 

beyond a certain range (70%-80%), increasing 
statement coverage becomes difficult and is not 
cost effective. 

From actual measurements of code coverage on 
system products, 70% statement coverage can be 
achieved during function test. 

5.0 Relationship Between Coverage and 
Errors Found 

5.1 Coverage-based reliability growth model 

We formulate the relationship between increase of 
statement coverage and decrease of remaining errors 
in a product using a simplified software reliability 
growth model. Software reliability growth .models 
are mathematical functions which describe relation- 
ships between the number of errors found during test 
and the amount of testing (e.g., time, test runs). 

The amount of testing is measured in terms of the 
number of runs of test cases. To find errors in a 
part of code, test cases should sensitize (traverse) the 
part of code at least as many times as the number of 
errors that test cases detect. If we have found three 
errors in a particular piece of code, we can say that 
test cases sensitized the particular part of code more 
than t h e  times. 

Here we assume that pieces of code of a product 
are grouped based on the level of sensitization fre- 
quency. Code is sensitized at lcast the number of 
times that test cases detect crrors (i.e., the number of 
errors detected). Suppose '1' is the number of test 
cases which exercised a particular group of code, and 
m is the number of errors detected by the test cases, 
the sensitization level of the code group should 
satisfy the following: 

s =  dT, and m c  dT, 

where d is a constant ( 0 < d 5 1 ). 

We can describe the relationship between the 
sensitization level and the number of errors found 
(see Appendix A): 

where m(s) is the number of errors found up to the 
time when a part of code is sensitized at frequency 
level s, K is a error detection rate constant, and M is 
the number of errors initially in the part of code. By 
normalizing (dividing m(s) by M), we obtain the 
error removal ratio: 

4s) = 1 - K-S. 

K primarily depends on the number of errors 
remaining in the code under test. K also depends on 
the skill level of testers who design test cases and 
analyze test results. Generally K is determined by: 

K = - +  b 1, 
4 

where b is a constant which is determined based on 
historical data, and 4 is the error density (the 
number of errors per unit size of code). 
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5.2 Framework for error content analysis 

The following is a summary of observations 

We remove approximately 60% of errors in a 
product during the fust session of function test. 

We remove approximately 60% of remaining 
errors in a product by running a set of test 
buckets once. We can remove approximately 
1O0/o more errors by running an improved sct of 
tcst buckets again (by changing test cases in the 
buckets or changing order of running test cases). 

If we run the same set of test buckets in an 
exactly same order, we cannot fmd and remove 
new errors. 

We usually cover 50% of code during the first 
session of function test. This implies that errors 
are not homogeneously distributcd. 
We can increase statement coverage by 10% by 
knowing the coverage and improving test cases. 

which we had learned from the experience: 

The observations indicate that the frrst 50% of, 
code (five groups) must contain more than 60% of 
errors in a product. It implies that the error distrib- 
ution among code groups is not homogeneous. 

We found the following geometric distribution of 
errors satisfies our observations: 

P(i) = u(l - u) i - ' .  

where i is the code group, P(i) is the error density for 
group i, and a is the distribution parameter 
(0 < a  1). If L is the number of code groups, it is 
assumed that a is greater than 1/L. If we divide the 
code under test into 10 groups, a should be larger 
than 0.1. For example, if a=0.2, the most error 
prone code group contains 20% of errors of a 
product instead of 10% (homogeneous distribution 
of ten groups). 

By assuming that the sensitization frequency is 
proportional to error content of each CO& group, we 
obtain Table 2. In Table 2, each row represents a 
sensitization level, where j is the sensitization level 
that equals i, M is the number of errors, and n is the 
sensitization level that is greater than the number of 
code groups. There is a case in which same groups 
of code are sensitized by test cases without sensi- 
tizing a new group of code. The (j+ 1)th row 
represents the case. In general, the number of 

defects removed up to the time when the 1st to the 
1-th group are covered and the 1st group sensitized n 
times is given by: 

I 
m(l)=MCP(i)x(l , = I  -K-b-i+I)), 

where n 2 1. 

Based on our historical data, the error distribution 
parameter (a) is typically 0.2, and K is usually in the 
range between 1.5 and 3. 1.7 2 K I 2.0 is said to be 
realistic and typical in our environment. 

In terms of error content, if we assume that K = 2 
and a = 0.2, 67.2% of errors are exposed during the 
fust session of function test that covers the first 50% 
of code (group I through S), and 57.3% of errors are 
removed. This is consistent with the first observa- 
tion. 

If we add a new set of test cases to increase state- 
ment coverage by lo%, group 6 will be exposed and 
50% of remaining errors in goups 1 through 6 will 
be removed. If we assume K = 2 and a =  0.2, 73.8% 
of errors will be exposed by covering the first 60% of 
code, and 8.2% more errors will be removed. 65.6% 
of errors will have been removed at the end of the 
phase. This is consistent with the second observa- 
tion. 

6.0 Value of Test Coverage Analysis 

6.1 Experience-based error removal model 

Although simplistic, the following assumptions 

1. that test buckets will sensitize clusters or groups 
of Statements as a result of execution, 

2. that the error distribution among groups is not 
homogeneous, 

3. that the error removal process is best described 
by the error profie discussed in the section on 
testing of large scale software, 

4. that costs can be assigned to removing errors at 
each phase of development and that these costs 
increase at later phases of development, 

5. that testing done with a priori knowledge of the 
distribution of errors and that the groups with 
highest error density are tested first, 

6. that testing involves repetitive sensitization of 
these same groups plus new groups of statements 

are necessary for the development of a value model: 
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Table 2. Error distribution, sensitization and error removal 
group X 1 2 3 ... i ... 
Errors off a( l -a)N o(l-a)2El a(  1 - a )  (i -1)  El 

m- 

15 

I -  
B h':1 

0 -  

1 aM(1- 1/K) 
2 aM(( l - ( l /K)z)+( l -a) ( l - l /K))  
3 ~ M ( ( l - ( l / K ) ~ ) + ( l - ~ ) ( l - ( l / K ) ~ )  + ( l - ~ ) ' ( l - l / K ) )  

- 

j uM((l-(l/K):) + ( l - a ) ( l - ( l / K ) ~ ~ - * ~ )  +.......... + ( l - ~ ) ( ' - ! ~ ( l - l / K ) )  
j t l  U M ( ( ~ - ( ~ / K ) ( J + ~ ] )  + ( l - u ) ( l - ( l / K ) J )  t . . . . . . . . . .  + ( l - ~ ) ( ' - ' ] ( l - l / K ) ~ )  

n oM((l-(l/K)") + ( l - a ) ( l -  (l/K)(n-l!) +... t ( l - a ) ~ ' ~ i l ( l - ( l / K ) ~ " ~ ' + i ~ ) ~  +... 

which were not previously sensitized (repetitive 
testing with expanding test buckets). 

Figure 1 shows an actual error distribution for a 
product with 10 code groups of roughly equal size. 

1 

CROUP 

Figure 1. Group Error Density for a Product 

Using the above error density, a hypothetical model 
can be constructed which. illustrates the relation 
between code coverage and product quality. Assume 
that the first test bucket run sensitizes group 1. 
When the test bucket is run a second time it is aug- 
mented with new test cases and sensitizes groups 1 a 
second time and group 2 for the first time. The third 
time it is run it sensitizes groups 1, 2, 3 and so on. 
Also assume that K, the error detection rate con- 
stant, is 2 so that 50% of the remaining errors are 
removed with each sensitization. .This would lead to 
the pattem of errors discovered in Table 3. The 
cumulative error removal ratio in the right hand 
column of Table 3 can be plotted against the 
number of code groups to establish a hypothetical 

relation between code coverage and number of errors 
removed. The resulting relation can be viewed in 
Figure 2. 

Figure 2. Example of Error Removal Rate and Code 
Coverage Relationship 

6.2 Cost Model 

Given the relation between the number of errors 
removed and code coverage displayed in Figure 2, we 
see that the 60% Function Test error removal rate in 
the error removal model in the previous section 
would imply statement coverage of roughly 50%. 
Figure 2 also shows that a 10% improvement in 
coverage would lead to approximately a 70% 
removal rate. If we plug 70% back into the error 
profile for Function Test (Table 1 revised to Table 
4), the percent of errors shipped drops from 3.4 to 
2.55. This is a quality improvement of 25% from 
the original model. 
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Table 3. Examde of an Error Discoverv Pattern 

Sensit- 
ization 

Percent of Errors Removed for Group i 

i= l  2 3 4 5 6  7 8 9 10 Total 

Table 4. Example of a Modified Error Profile by 
Phase 

Entering removed 

Design 
Code 

F I T  

S /T 

U p  1 30.92 I .OO I .SO I 15.46 I 15.46 I 
15.46 .OO .60>.70 10.82 4.64 

4.64 .oo .45 2.09 2.55 

Before After 
Analysis Analysis 

Furthermore, if we assume that the relative costs of 
removing errors are 1, 3 and 20 for Function Test, 
System Test and after shipment, respectively, we can 
see from Table 5 that the overall cost of removing 
errors has been reduced. (See Boehm [3] for a dis- 
cussion of relative costs of removing errors.) 

Reduc- 
tion 

Table 5. Example of Improvement in Cost of 
Removing Errors 

Phase I Relative I Removal Cost I Percent I 

,; 9:: Ij: -;! 1 Tr;tionTest 
System Test 

Total Internal 17.62 17.09 

After Shipment 68.00 51.00 

Although function test error removal costs have 
increased, the decrease in system test costs more than 
offset the increase so that total internal test costs 
decrease by 3%. Of course most of the reduction in 
error removal costs are realized as a result of fewer 
errors in the product after shipment since these 
errors are expensive to correct. The total reduction 
for error removal costs for this example is 20%. 

7.0 Model Experience 

7.1 The project and observations 

In order to test the assumptions previously stated, 
test coverage analysis data was collected from a large 
development project. The program analyzed was 
780 KLOC of "deep systems" code written in an 
internal system programming language from a large 
operating system. The function test team worked 
continuously for one and a half years on this test. 
Test cases were developed both manually and auto- 
matically using random combinations of inputs. 
Approximately 90 KLOC of code was added after 
starting this function test. 

The testing process for this project was signif- 
icantly different from others. Once unit test was 
done, function test and system test were done com- 
pletely in parallel by two groups. Usually systcm 
test is done after the completion of function test. 
The different process is possible because the goals of 
function and system tests are different. To ensure 
that all the function needed for the system test was 
available, a subset of function test cases was selected 
and used as an acceptance test for the function and 
system tests. One of the exit criteria for unit test was 
successful completion of all the acceptance test cases. 
This sigtllficantly reduced the number of errors 
found during the function test. 

The data is displayed in Table 6. During this test, 
statement coverage was measured and reported peri- 
odically (usually once a week). The measurement 
was done during periodic regression runs to verify 
corrections for errors found during the period. All 
the test cases that had caused failures during test 
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runs were included in the regression test buckets 
(suites of test cases). All the test cases in the 
regression test buckets were automatically executed 
during the periodic regression run. The cumulative 
number of test cases shown in Table 6 is the size of 
the total regression buckets (not the number of all 
the test cases used for testing). The data for Period 
1 represents the test coverage and errors removed 
prior to test coverage analysis. The subsequent 
pcriods reflect increased tcst coverage and errors 
removed as a result of test coverage analysis. The 
length of I'eriod 4 was as twice long as the other 
thrcc periods. 

Sensit- 
ization 

Table 6. Test Coverage Data for a Portion of a Large 
ODeratina Svstem 

Percent Cumula- K Percent Errors 
of tive Removed 

Period I Cumula- I Errors I Cumulative Test Cases I 
tive Cov- 

erage Total Random Found 

1 64 100 420 0 
2 68 90 540 70 
3 69 70 900 180 
4 69 80 1460 530 

7.2 Analysis of the error removal process 

As discussed earlier, the level of sensitization is 
proportional to the number of test cases executed. 
In order to determine the level of sensitizations 
during each period of time, we assume that each 
sensitization consisted of 100 test cases, e.g., 4 
sensitizations were assumed for Period 1 since there 
were 420 test cases. We also assume that the first 
sensitization included approximately 34% of the 
code, the second sensitization included an additional 
17% of the code, the third sensitization included an 
additional 9%, and the fourth sensitization included 
an additional 4% to make a total of 64% coverage. 

Another assumption was required for the distrib- 
ution of errors in the code since this data was not 
available. It was assumed that the data followed a 
truncated geometric distribution (.O 1~.99OJ*--*99) with 
each interval representing the error content of 1% of 
the product. The intervals were then combined to 
obtain error densities for each sensitization. 

function test. This assumption is consistent with the 
modified error profile presented earlier. 

I 23.4 34 10.00 
2 20.0 51 10.00 
3 17.0 60 10.00 
4 14.5 64 10.00 22 21 
5 3.3 68 3.33 39 39 
6-15 8 69 6.66 71 70 

The results of the analysis are in Table 7. Table 7 
shows that the sensitization model can fit the 
observed data well when comparing the predicted to 
actual percent of errors removed. However, this fit 
is accomplished by varying the value for K between 
the periods. 

The value for K is extremely high for the first 4 
sensitizations (Period 1). A possible explanation 
would be that the test buckets for Period 1 consist 
largely of test cases which have already been run in 
unit test. Also, it might be that the code that is 
normally tested without coverage analysis (during 
unit test and the first phase of function test) is better 
understood and therefore of higher quality than code 
which is exercised only after coverage analysis. 

The fifh sensitization (Period 2)  increases cov- 
erage from 64 to 68% and exercises code statements 
not normally tested. Here K has a much lower 
value which implies that the first set new test cases 
as a result of code coverage analysis have uncovered 
a si@icant number of new errors. 

Finally, in going from 68 to 69% (Period 3 and 
4), the code is sensitized 10 times which implies dXi- 
culty in going beyond 69% coverage and a "scrub- 
bing" of code that has already been covered. This 
additional scrubbing of the code results in fewer and 
fewer errors removed each sensitization and K rises 
back up to 6.66 since the code covered is of higher 
quality after the frfth sensitization. 

Finally, it was assumed that the total 340 errors 
removed represented 70% of the errors coming into 
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7.3 Conclusions 

Some results of experiences using test coverage 
measurement were discusscd. We believe that 
sharing our expericnce with other people in industry 
and in research is one of the keys to improving our 
software testing practice and to deepen our know- 
ledge of software testing. Here we discussed that 
measurement of statcment and branch covcrage of 
large system software can be done, and is cost effec- 
tive in removing errors. 

'hrough thc use of a test coverage tool designcd 
to be uscd while a product is run in its normal envi- 
ronment (rather than under a debugger), testers in 
IBiM have shown that it is possible to measure test 
coverage during function test. It is then possible to 
design new test cases and improve existing ones to 
increase test coverage. We have shown that it is cost 
effective to spend the human and system resources to 
improve test coverage. The savings in the errors 
found because of the incrcascd test coverage more 
than compensates for the cost of the resources 
needed to measure test covcrage. 

An error removal model was developed. The 
application of the sensitization model to actual data 
highltghts the fact that K (the error detection rate 
constant) cannot be regarded as static throughout the 
testing process. Furthermore, the number of 
sensitizations assumed will have a significant impact 
on the predicted error removal ratio. There are 
many other assumptions upon which the model is 
based that may raise questions. However, the model 
seems to provide a reasonable framework by which 
to explain the error removal ratio throughout func- 
tion test. 

The test case coverage results discussed here were 
done during function test of large system software 
products. Test coverage metrics can be applied to 
unit testing of the modules of a product. Typically 
the unit test process varies considerably among 
developers and test effectiveness is only occasionally 
reported. If the unit tester has a good tool available, 
the tester can prove what has been tested. Although 
it is not feasible to reach 100% statement coverage 
in function test, it is possible to do that in unit test. 
The unit tester has access to stubs, debuggers, etc., 
to exercise paths that are difficult or impossible to 
test during function test. If a good test coverage 
measurement tool is available, an exit criteria of unit 
test can be 100% statement coverage. 

Recently data flow coverage measures have 
attracted attention. The test coverage measurement 
tools should be enhanced to provide data flow cov- 
erage metrics. It remains to be seen how much these 
data flow metrics will aid in the development in test 
case design above what can be done by using state- 
ment and branch coverage metrics in large products. 

Areas of work in IBM and industry are the use of 
test coverage measures during unit tcst, building an 
experience-base for tcst coverage measurements, and 
experimentation in the arca of data tlow coverage 
mcasurement s. 
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Appendix A: Coverage Based Reliability 
Growth Model 

It is reasonable to assume that new errors are cap- 
tured if and only if new blocks of a program are 
exercised the first time, because test team members 
put their focus on the segment or function tested by 
a test case. If we assume that errors are distributed 
homogeneously, we obtain: 

where 4 s )  is the function that describes the relation- 
ship between the number of blocks covered and the 
number of sensitizations, N is the number of blocks 
in the program, m(s) is the function that describes 
the relationship between the number of errors found 
up to the time when the program (or the part of the 
program) has been sensitized s times, and M is the 
number of number of errors in the code. 

By solving the simultaneous differential equations 
with respect to m(s), we obtain: 

m(s)=M(l -e-+,. 

This m(s) is isomorphic to the Goel-Okumoto 
NHPP model and the Musa execution-the model. 
We can simp@ the equation and obtain: 

P 
N where K = exp( - ). 

Appendix B Examples of EXMAP Outputs 

An example of a report produced by EXMAP is 
shown in Figure 3. 
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I EXMAP HIGH LEVEL SUMMARY: PROGRAM AREA DATA / / / I / / / /  

DATE: 8/24/92 
TIME: 09:08.42 

TEST CASE I D :  TEST4 

Summary for all PAS: 3 2  24 75 .0  26 1 3  50.0 
EXMAP HIGH LEVEL SUMMARY: UNEXECUTED CODE / / / / I / / /  

I<-- PROGRAM I D E N T I F I C A T I O N  - - > I  
I 
I start end start end start end 

I I L I S T I N G  NAME 
I 
I PA LOAD MOD PROC 

Each 
right o f  the statement number to indicate what happened 
during the test run: 

instruction line o f  the listing has a character to the 

V An unconditional branch instruction that has executed 
H A conditional branch instruction that has executed both ways 
> 

V 
: Non-branch instruction that has executed 
1 Instruction that has not executed 

A conditional branch instruction that has branched but not fallen through 
A conditional branch instruction that has fallen through but not branched 

Figure 3 (Part 1 of 2). Summary of code coverage and annotated C listing 
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9: l i n t  main(void) i 
..... 

/ I  t h i s  branch never taken 
10 I 
16V 1 I i f  (TEST-PARM == yes) 
17: 2 I TEST-VAL = 13; / I  t h i s  stmt always executed 
19> 3 I i f  (TEST-PARM == no) / I  t h i s  branch always taken 
20- 4 I TEST-VAL = 17; / I  ‘ th is  stmt never executed 
21 I / I  Note t h a t  t he re  i s  an annotat ion symbol f o r  each c o n d i t i o n  
22VVVV I i f  ((TEST-PARM == yes W TEST-VAL == 17) I I 
23 5 I (TEST-PARM == yes M TEST-VAL == 13)) 

25: 6 I 
26 I e l s e  
27- 7 I TEST-VAL = 10; / I  t h i s  stmt never executed 
28 1 
29VVz- I i f  ((TEST-PARM == yes W TEST-VAL == 17) I I 
30 8 I (TEST-PARM == no W TEST-VAL == 13)) 
31 I 
32- 9 I 
33 I e l s e  
34: 10 I TEST-VAL = 5 ;  / I  t h i s  stmt always executed 
46 I 

/ I  t h i s  i s  always t r u e  
/ I  t h i s  stmt always executed TEST-VAL = 5; 

24 I 

/ I  Note t h a t  t he re  i s  an annotat ion symbol for  each c o n d i t i o n  

/ I  t h i s  i s  always f a l s e  
/ I  t h i s  s tmt  never executed TEST-VAL = 10; 

. . . . . . . . . 

’/ 
I /  

Figure 3 (Part 2 of 2). Summary of code coverage and annotated C listing 
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