
Coverage Measurement Experience During Function Test

Paul Piwowarski
Mitsuru Ohba

Joe Caruso

International Business Machines Corporation

Abstract

This paper discusses the issues of test coverage
measurement in industry and justijies the benefits of
the measurement using a framework developed by the
authors. Experience with the measurement is formal-
ized and packaged so that other researchers in
industry can share and reuse it. In the paper, function
test of large-scale system software is defined and ana-
lyzed. Based on the discussions of function test, a
framework for analyzing the function test error
removal process is developed. An experience- based
error removal model and a cost model are proven to
be useful tools for justifving tesf coverage measure-
ment during function test. Data obtained from a real
project is analyzed using the framework for validation.

1 .O Introduction

Many papers have been published on test cov-
erage measurements [2][6][8) . Most have been of
a theoretical nature, discussing the benefits of various
measurement criteria [l 13. There has been little dis-
cussion of the successful use of test coverage meas-
urements on large projects, and whether it has
proved to be a cost effective method for either
locating errors or assuring quality (e.g., reliability,
maintainabdity) of a product [14].

One reason for the lack of data on test coverage
measurements during software testing is the dSicu1ty
of getting test coverage numbers on large complex
products [SI. The academic community may enjoy
discussing the merits of various test coverage meas-
ures. The user community would like to get any
useful coverage numbers at all, using any measure-
ment criteria.

Within IBM, statement and branch coverage
measurements have been done on some very large

projects, such as operating systems and compilcrs
using internal IBhl tools since the late 1960s. The
frrst project to seriously measure code coverage was
a new operating system for a small business com-
puter in the early 1970s at IBM Rochester,
Minnesota. A hardware tool was developed to
measure the operating system’s statement and branch
coverage. Before this project, we believed that 99
per cent statement coverage and 95 per cent branch
coverage were generally achievable. We found that
this was not the case.

In the latc 1970s, another hardware tool was built
at IBM San Jose, California. The tool was devel-
oped to measure test coverage of an 1 /0 subsystem
of an operating system for the IBM System/370
machines. At the same time, a group at IBM
Poughkeepsie, New York, developed a software tool
to measure test coverage of an operating system
kernel for the IBM Systemi370 machines. This tool
proved that a software tool could do the same thing
that its expensive predecessors did.

From the late 1970 to the early 1980s, test cov-
erage measurements were done on some large
projects such as operating systems. Through those
experiments, we found that test coverage does not
directly correlate to actual reliabllity of those pro-
ducts. Users of the operating system sometimes
found more errors in parts whose test coverage
numbers were relatively higher than the other parts.
From the users’ point of view (mean time to failure)
we found stronger correlation between usage of the
operating system and MTTF than between a test
coverage number and MTTF.

A software test coverage measurement tool called
EXMAP (Execution Time Mapping Tool) was
developed to measure OS/MVS system code at IBM
Poughkeepsie in the late 1980s. EXMAP tracks test
coverage with minimum overhead while the tester is

0270-5257/93 $03.00 0 1993 IEEE
287

running test cases in a normal testing environment.
The tester does not have to test the product using a
debugger, or recompile the code to insert hooks into
the modules.

Phase

Design

Code

The tool has been used by testers on some large
projects since it was developed. We have learned
that measuring test coverage does take system and
human resources. Therefore the following issue has
been raised by testers: ”If you increase coverage by
the use of the tool, do you really find more errors,
and is the savings realized in fewer errors worth the
cost’”

~

Errors Injected Portion Remain-

.oo 47.37 .80 9.48

9.48 52.63 .50 30.92

Entering removed ing

Test coverage measurement provides feedback to
product developers which will encourage them to
increase coverage by adding additional test cases.
This increased coverage will, in tum, result in lower
error removal costs as well as fewer errors shipped in
the product. Therefore, any assessment of value will
require that a model of the relationship between test
coverage and product quality be developed.

The results in this paper deal with the use of
statement coverage during function testing. The
same discussion can also be applied to unit testing.
Other measurement criteria other than statement and
branch coverage (e.g., data-flow coverage) may be
also cost effective.

2. Function test
3. System test

Unit test was done by the programmers who wrote
the code being tested. Function test was usually
done by a different group within the same develop-
ment organization. System test was generally done
by a group that was independent of the development
organization.

2.1 Overall Process

Testers generally thought that the goal of testing
was to remove as many errors in a product as pos-
sible during the given development cycle. Some
testers felt that the goal of all testing was to assess
quality of a product from the customers’ point of
view.

The number of errors found during unit, function,
and system tests was the basic measurement for these
test phases. A hypothetical error profile through the
development phases is shown in Table 1. The
assumptions are that 47.37% of errors are injected
during design, 52.63% are injected during coding,
and no errors are injected during the test phases.
(See Stott [lS] and Jones [7] for a discussion of
error removal profiles.)

In this paper, we fust define what function test is
in our environment in tenns of its goals, process,
and measurements. We defme the function test
problem and then describe how it is solved in prac-
tice. We describe our tool and the state of test cov-
erage measurement in industry. We then analyze the
relationship between test coverage and error content
of a product. We develop, based on our experience,
our error removal model and cost model. We vali-
date the error removal model by analyzing data
taken from an experimental project. Our conclu-
sions, and directions for future research are pre-
sented.

2.0 Testing of Large Scale Software

The observations in this section are based on a
study of testing of large scale software in IBM con-
ducted by the authors in 199 1 [123.

The test process consisted of three phases:

1. Unit test

Table 1 . Hypothetical Error Profile by Phase I

I Unit Test I 30.92 I .OO I .50 I 15.46 I
I Function Test I 15.46 I .OO I .60 I 6.18 1
I System Test I 6.18 I .OO I .45 I 3.40 I
1 - I I I I I

2.2 Unit Test

The goal of unit test was to remove as many
errors in a module as possible and to know that the
module under test met its low level design (or
module level specifications).

Unit test was done by the programmer. Testing
was white-box or “structural” and the process varied
from developer to developer. There were several
techniques used to generate test cases. Test cases
generated and problems discovered during unit were
occasionally recorded.

288

Although many viewed the exit criteria from unit
test as a certain form of test coverage (e.g., 100%
statement coverage), this coverage was only OCM-

sionally measured. Alternatively, there were cases in
which a successful run of an acceptance test suite of
a function test was considered the formal exit of a
unit test. Normally the programmer determined
when unit test was complete based on the tester's
experience with the module.

.l'he number of errors reported was the typical
measurcmcnt for unit test. One project also did some
statement coverage measurement.

2.3 Function Test

The goal of function test was to test the functions
listed in the functional specifications (black-box
testing) and remove as many errors in the code as
possible bcfore system test.

Testing was black-box or "functional" testing.
Some function testers looked at code in order to
make sure that test cases hit important areas of the
code. One project had been experimenting with
random testing and trying to automate it. The test
plan and test cases were documented and reviewed.
The problems found during function test were
recorded.

The entrance criteria was the availability of the,
code that implemented the function. In some cases,
a subset of function test cases were run as an accept-
ance test. Exit criteria was essentially the successful
completion of a set of function test cases.

Measurements were errors found and number of
test cases executed. Some projects measured state-
ment coverage and used that as a measure of testing
effectiveness.

2.4 System Test

Some testers felt that the goal of system test was
to find errors under realistic or stressed environ-
ments. Others felt that the goal was to integrate pro-
ducts in customer-like environments and assess
quality of a product under test.

Testing was the black-box or "functional testing."
There were cases in which other products which
were developed outside development organizations

(e.g., different divisions) were also integrated into a
test environment and tested. Test cases developed
for function test were sometimes selected and used
for system test. The test plan and the test cases were
documented and reviewed. The problems found
during system test were consistently recorded.

Entrance criteria was availability of the code that
implemented the functions, not the entire system
that implemented all the functions specified in the
functional specifications. Some projects ran an
acceptance test case suite.

The frequency of failure occurrences and types of
errors found in the late stage of system test were ana-
lyzed to determine if a product was ready.

3.0 Characteristics of Function Test

3.1 The problem

What function testers try to do usually is to verify
that a product under test properly generates outputs
for given inputs as they are specified in the func-
tional specifications. If an output generated by the
product does not satisfy the functional specifications,
testers say: "I found an error."

This function test problem is formulated as
follows. Suppose W is an input space such that
members of W are states of the input vector w, S is a
system state space such that members of S are states
of the system state vector s, and Y is an output
space such that members of Y are states of the
output vector y. A set of functional specifications
which defines a mapping from the input space to the
output space can be regarded as a discrete function
fiW x S - > Y x S , where W, S and Y are finite sets.

For convenience, the Cartesian products W x S
and Y x S are denoted by X and Z respectively. An
element of X, x, is a state of vector (w, s), and an
element of Z, z, is a state of vector (y, s). Let N be
the size of space X (N = IXl), and K be the dimen-
sion of vector x (K = dim(w) + dim(s)). X is a set
of combinations of possible input values and internal
states of a program.

The sue of the input space N is bounded, and the
upper bound is given by:

N I O(exp(K)).

289

(Proof) The Cartesian product of input space W and
state space S is the largest set of the combinations of
w and s. If all the variables of x and s are inde-
pendent, the number of possible combiinations of
vector x, i.e., N, is O(exp(K)).

The problem which is O(exp(K)) is not practically
solvable. It is generally infeasible to find the
optimum solution for a given problem. If we can try
all the possible cases, we. can find thc solution.
'I'hcrcfore. the testcrs' problem is to find a partial
solution which satisfies ;t ccrtain set of conditions in
a given period of time.

The problem to be solved is to find set X' such
that X' is a subset of X and its size is "feasibly
small." X' is a set of test cases. If "feasibly small"
means O(K), the problem can be reformulated by
the following proposition:

Proposition: for given X, Z and fX - > 2, there
exists subset X' of X such that X' satisfies the fol-
lowing conditions:

1. I Z I < IX'I < O (K) ,

2. Z' = Z where f: X' - > Z'.

3.2 Solution in practice

A typical approach taken to find X' by testers in
practice is:

if constraints on the input space are strong and
the size of X is "feasibly small," select X as X';
if constraints on the input space are not strong
so that the size of X is not "feasibly small" but
considerably smaller than the upper bound, 1)
select X" so as to satisfy the second condition of
the proposition; 2) if the size of the X" is signif-
icantly smaller than the sue of X, add some ele-
ments of X to X"; 3) if X" becomes reasonably
large, select X" as X';

if the input variables are independent and the
size of X is close to the upper bound, select X*
so as to satisfy only the second condition of the
proposition where IX*l= lZl

The first case is that functional specifications are
simple so that testers can try all the possible cases.
The second case is that functional specifications are
fairly complex so that testers cannot try all the pos-
sible cases. Testers analyze the given functional

specifications, identify classes of inputs and outputs,
and try to exercise all the relations between input
and output classes. The last case is that functional
specifications are too complex to test systematically.
Testers do not try to analyze a structure of the func-
tional specifications. Testers try to show either that
the product works correctly (optimistic testing) or
that the product does not work in some cases (pessi-
mistic testing).

There arc no consistcnt algorithms used to find
X" and X* in practice. S" can be for example
obtained using the cquivslcncc partitioning method.
Testers sometimes use their informal (personal) tech-
niques which can be seen as equivalence partitioning.
The most consistent way of finding X" is random
search, though it requires a signrficant amount of test
cases. Another way often used for finding X" in
practice is: to fix values of some input variables to
reduce the search space.

A common way of finding X * is to select some
elements of X so that X* covers typical elements of
X based on the usage of a function. The most opti-
mistic way of selecting X* is to try a small set of
inputs which are expected to be the most typical
cases. The most pessimistic way of selecting X* is
to try all the inputs that have caused failures in the
past. These can be interpreted as an informal way of
finding X'. X* in these cases may not be complete
to cover Z.

The most important condition to determine if
designed test cases are sufficient is the question: "Are
all the possible output patterns covered by test
cases?" If this condition is satisfied, the next condi-
tion is the question: "Is the number of test cases rea-
sonable?" Testers sometimes refer to their
experiences to answer this question. The typical
number that is frequently referred is "1 test case per
10 lines of code."

To ensure that test cases for function test are
properly designed and completely cover Z, testers
sometimes refer to a test coverage index of their test
cases. If test cases are complete, each test case exer-
cises a part of the program which is specifically exer-
cised by the test case as well as common parts which
are also exercised by other test cases. Therefore, for
each test case there exists a part of the program
which uniquely corresponds to the test case. If test
cases are complete and adequate to cover X" or X*,
they must exercise all the parts of the program (i.e.,
100 percent test coverage).

290

3.3 Function test and test coverage

By assuming that test cases are randomly selected
from space X so as to satisfy either IX*l = lZl or
IX’I > lZl, the probability that a test case exercises k
new blocks which have not been exercised after cov-
ering n blocks more than once is given by the hyper-
geometric distribution [16]:

where S is the number of blocks in a program, and
p is the average number of blocks covered by a test
case during function test. p - k out of p blocks have
already been covered by other test cases.

The expected number of blocks newly exercised
by the i-th test case is given by:

P

I =
I , = . C j x Prob(i(n, - I > ,

where n, - I is the number of blocks covered before
running the i-th test case. n, is recursively estimated
using I , as follows:

I

n,=z4,
j = l

where = p , and il =p. Therefore, we obtain:

Since 6 can be regarded as an integration of 4, we
can formulate a continuous approximation function:

d P - n(x) = - [N - n(x)], ak N

where x is the number of test cases executed. By
solving this equation, we obtain:

n(x) = ~ (1 - e-$.>.

n(x) is the function that describes the relationship
between the number of blocks covered and the
number of test cases executed. By dividing n(x) by
N, we obtain the function that describes the relation-
ship between coverage and the number of test cases:

c(x) = 1 - e-+,

where c(x) is-coverage after executing x test cases.
The function suggests that increasing test coverage
beyond a certain point is not cost effective. The
function also suggests that some of the blocks in a
program are frequently exercised while some others
are rarely exercised.

If we assume that errors in blocks which are fre-
quently exercised are more likely to be detected and
removed, then we can cxpect that those frequently
exercised blocks are more likely to be less error
prone and more rcliable than other blocks. We can
also expect that a coverage value is not necessarily
equal to the ratio of crror free code though it is
related to reliabllity of code (a higher coverage value
implies higher reliability of code).

If we assume that errors in a program (or a part
of a program) are homogeneously distributed and
testers detect errors at the time when errors are sensi-
tized the first time, then we can expect that reliability
growth of function test in terms of the number of
errors found is exponential (e.g., Goel-Okumoto’s
NHPP model).

4.0 Test Coverage in Industry

In the survey of IBM testing organizations previ-

were familiar with test case coverage measures,
believed that the use of coverage measures would
help them find errors and improve the quality of
their products,
but generally did not use test case coverage tools.

Testers did not use coverage tools, not because of a
lack of knowledge of them, or lackaf belief in their
worth, but because coverage tools had proved to be
to difficult to use.

ously mentioned, we found that testers:

A number of test case coverage measurement
tools were available. However the available tools
could not be used for large projects, system code, or
function test in general. The reasons for this were as
follows. The code to be tested was run under
control of a debugger, and could not be tested in its
normal function test environment. The code meas-
urement process increased the execution time of the
tested programs beyond acceptable limits. The
measurement tools did not support the languages
used for specific projects. The effort to do the meas-
urement (setup time, special steps such as recompila-

291

tion of code, etc.) was too large for resource
constrained testing organizations.

Some of those tools, for example, used the history
file generated while a debugger was monitoring the
code. Some of them did not support assembler and
the IBM intemal system programming languages.
The overhead in added execution time of the
program under test, and creating the history file was
sometimes very large.

Despite thc good intentions of function testers
who wanted to measure their coverage, they often
did not have an accurate measure of their coverage.
Testers often ended up making their own estimates
of code coverage.

4.1 Tool for measuring system code

To measure the coverage of large system code
such as operating systems, compilers, etc., L. Balfour
of IBM Yorktown developed an intemal test cov-
erage measurement tool called Execution Time
Mapping Tool (EXMAP). The tool uses measure-
ment techniques that allow the tested programs to
run in their normal user environments, and not
under control of a debugger. The tool supports the
languages that are used in IBM for large project
development and systems level code: System/370
Assembler, C, and IBM intemal high-level lan-
guages. The overhead in terms of additional exe-
cution time is small. Testers have found that the
execution time of their programs is about 10%
greater when the tool is monitoring coverage.

EXMAP has been used within IBM to measure
statement and branch coverage of operating system
code, compilers, and other complex products. The
tool provides a summary of test coverage for each
function (in C) or procedure (for PL/I based system
programming languages), and also annotated listings
showing the execution status of each statement. The
tester can have reports of test case coverage for an
individual test case, or cumulative results for a group
of test cases. See Appendix B for an example of a
summary report and for an example of an annotated
c listing.

With EXMAP, testers can measure both state-
ment and branch coverage during unit or function
testing of operating systems (e.g., MVS, VM/CMS),
except for deep system code (e.g., IPL modules) To
measure test coverage of deep system code, the tool

has been enhanced to work with a System/390 hard-
ware simulation tool. With this enhancement, pro-
grammers and testers can measure any part of an
operating system.

As testers became more f d a r with EXMAP
and test coverage measurements, they have wanted
functional enhancements of the tool. Typical
requirements from the users were: 1) the graphic
prcsentation support of mcasurcment results, 2) inte-
Fation of the measurement capability into the
debugging environment that consists of the hardware
simulation tool and a source level debugger, 3) a
method to automatically select regrcssion test cases
based on test case coverage of changed modules, 4)
new coverage measurements (e.g., data flow coverage
[13]), coverage on platforms other than S/390 (e.g.,
RS/6000, PS/2). EXMAP is continuously being
enhanced based on these user requirements.

4.2 What we have learned about test coverage

Although test coverage had been measured on
some projects in IBM since the early 1970s, the
experiences of the testers were not consistently
recorded. After our review of testing in IBM, we
recommended that experiences be centrally recorded
and shared by all of our testers [l]. We started col-
lecting information about test coverage measure-
ments in 1991. We also have planned experiments
on coverage measurements to enhance our under-
standing of the value of test coverage measurements
in testing.

When test coverage had not previously been
measured, testers tended to overestimate coverage of
their test cases. The first time testers measured cov-
erage during function test, they found that the cov-
erage was in the range of 50% to 60%. The testers
were surprised at the low percentage of coverage they
were getting. They expected a much higher per-
centage of code coverage. Some testers estimated
that their coverage was 90% or higher.

Once coverage reports were available, testers were
able to design new test cases, and improve existing
ones so that coverage reached the range 70% to
80%. Increasing coverage beyond this range proved
to be difficut. These are some of the reasons. There
is code that can only be tested using special hard-
ware available during system test, but not during
function test. Some code cannot be reached. This
may point out code that was no needed, but there

292

are cases (described below) where unreachable code
may be left in a product. Some conditions are very
difficult to create, and have a low probability of
occurrence. The tester may decide that it is not cost
effective to test these conditions.

Typical examples of unreachable code are found
in the following cases. The program may have
checks for "impossible" error conditions. For
example, in a case statement, therc may be cases for
all conditions, but a default casc is still provided in
the event a future program change deletes one of the
cases. Code may be included for features that are
not part of this release. l h e project may have
standard libraries included in the program (for
example 1 /0 routines) that provide multiple hnc-
tions, and the program is only using some of the
functions.

Based on our survey of testing in IBM, and the
analysis done in "Characteristics of Function Test"
(above), we have concluded that:

70% statement coverage is the critical point for
our function test to assure that test cases suffi-
ciently exercise and cover all the output pattems
(the conditions of the proposition),

50% statement coverage is generally insufficient
for our function test to assure that test cases
exercise and cover all the output pattems (the
second condition of the proposition),

beyond a certain range (70%-80%), increasing
statement coverage becomes difficult and is not
cost effective.

From actual measurements of code coverage on
system products, 70% statement coverage can be
achieved during function test.

5.0 Relationship Between Coverage and
Errors Found

5.1 Coverage-based reliability growth model

We formulate the relationship between increase of
statement coverage and decrease of remaining errors
in a product using a simplified software reliability
growth model. Software reliability growth .models
are mathematical functions which describe relation-
ships between the number of errors found during test
and the amount of testing (e.g., time, test runs).

The amount of testing is measured in terms of the
number of runs of test cases. To find errors in a
part of code, test cases should sensitize (traverse) the
part of code at least as many times as the number of
errors that test cases detect. If we have found three
errors in a particular piece of code, we can say that
test cases sensitized the particular part of code more
than t h e times.

Here we assume that pieces of code of a product
are grouped based on the level of sensitization fre-
quency. Code is sensitized at lcast the number of
times that test cases detect crrors (i.e., the number of
errors detected). Suppose '1' is the number of test
cases which exercised a particular group of code, and
m is the number of errors detected by the test cases,
the sensitization level of the code group should
satisfy the following:

s = dT, and m c dT,

where d is a constant (0 < d 5 1).

We can describe the relationship between the
sensitization level and the number of errors found
(see Appendix A):

where m(s) is the number of errors found up to the
time when a part of code is sensitized at frequency
level s, K is a error detection rate constant, and M is
the number of errors initially in the part of code. By
normalizing (dividing m(s) by M), we obtain the
error removal ratio:

4s) = 1 - K-S.

K primarily depends on the number of errors
remaining in the code under test. K also depends on
the skill level of testers who design test cases and
analyze test results. Generally K is determined by:

K = - + b 1,
4

where b is a constant which is determined based on
historical data, and 4 is the error density (the
number of errors per unit size of code).

293

5.2 Framework for error content analysis

The following is a summary of observations

We remove approximately 60% of errors in a
product during the fust session of function test.

We remove approximately 60% of remaining
errors in a product by running a set of test
buckets once. We can remove approximately
1O0/o more errors by running an improved sct of
tcst buckets again (by changing test cases in the
buckets or changing order of running test cases).

If we run the same set of test buckets in an
exactly same order, we cannot fmd and remove
new errors.

We usually cover 50% of code during the first
session of function test. This implies that errors
are not homogeneously distributcd.
We can increase statement coverage by 10% by
knowing the coverage and improving test cases.

which we had learned from the experience:

The observations indicate that the frrst 50% of,
code (five groups) must contain more than 60% of
errors in a product. It implies that the error distrib-
ution among code groups is not homogeneous.

We found the following geometric distribution of
errors satisfies our observations:

P(i) = u(l - u) i - ' .

where i is the code group, P(i) is the error density for
group i, and a is the distribution parameter
(0 < a 1). If L is the number of code groups, it is
assumed that a is greater than 1/L. If we divide the
code under test into 10 groups, a should be larger
than 0.1. For example, if a=0.2, the most error
prone code group contains 20% of errors of a
product instead of 10% (homogeneous distribution
of ten groups).

By assuming that the sensitization frequency is
proportional to error content of each CO& group, we
obtain Table 2. In Table 2, each row represents a
sensitization level, where j is the sensitization level
that equals i, M is the number of errors, and n is the
sensitization level that is greater than the number of
code groups. There is a case in which same groups
of code are sensitized by test cases without sensi-
tizing a new group of code. The (j+ 1)th row
represents the case. In general, the number of

defects removed up to the time when the 1st to the
1-th group are covered and the 1st group sensitized n
times is given by:

I
m(l)=MCP(i)x(l , = I -K-b-i+I)),

where n 2 1.

Based on our historical data, the error distribution
parameter (a) is typically 0.2, and K is usually in the
range between 1.5 and 3. 1.7 2 K I 2.0 is said to be
realistic and typical in our environment.

In terms of error content, if we assume that K = 2
and a = 0.2, 67.2% of errors are exposed during the
fust session of function test that covers the first 50%
of code (group I through S), and 57.3% of errors are
removed. This is consistent with the first observa-
tion.

If we add a new set of test cases to increase state-
ment coverage by lo%, group 6 will be exposed and
50% of remaining errors in goups 1 through 6 will
be removed. If we assume K = 2 and a = 0.2, 73.8%
of errors will be exposed by covering the first 60% of
code, and 8.2% more errors will be removed. 65.6%
of errors will have been removed at the end of the
phase. This is consistent with the second observa-
tion.

6.0 Value of Test Coverage Analysis

6.1 Experience-based error removal model

Although simplistic, the following assumptions

1. that test buckets will sensitize clusters or groups
of Statements as a result of execution,

2. that the error distribution among groups is not
homogeneous,

3. that the error removal process is best described
by the error profie discussed in the section on
testing of large scale software,

4. that costs can be assigned to removing errors at
each phase of development and that these costs
increase at later phases of development,

5. that testing done with a priori knowledge of the
distribution of errors and that the groups with
highest error density are tested first,

6. that testing involves repetitive sensitization of
these same groups plus new groups of statements

are necessary for the development of a value model:

294

Table 2. Error distribution, sensitization and error removal
group X 1 2 3 ... i ...
Errors off a(l -a)N o(l-a)2El a(1 - a) (i -1) El

m-

15

I -
B h':1

0 -

1 aM(1- 1/K)
2 aM((l - (l /K)z)+(l -a) (l - l /K))
3 ~ M ((l - (l / K) ~) + (l - ~) (l - (l / K) ~) + (l - ~) ' (l - l / K))

-

j uM((l-(l/K):) + (l - a) (l - (l / K) ~ ~ - * ~) +.......... + (l - ~) (' - ! ~ (l - l / K))
j t l U M ((~ - (~ / K) (J + ~]) + (l - u) (l - (l / K) J) t + (l - ~) (' - '] (l - l / K) ~)

n oM((l-(l/K)") + (l - a) (l - (l/K)(n-l!) +... t (l - a) ~ ' ~ i l (l - (l / K) ~ " ~ ' + i ~) ~ +...

which were not previously sensitized (repetitive
testing with expanding test buckets).

Figure 1 shows an actual error distribution for a
product with 10 code groups of roughly equal size.

1

CROUP

Figure 1. Group Error Density for a Product

Using the above error density, a hypothetical model
can be constructed which. illustrates the relation
between code coverage and product quality. Assume
that the first test bucket run sensitizes group 1.
When the test bucket is run a second time it is aug-
mented with new test cases and sensitizes groups 1 a
second time and group 2 for the first time. The third
time it is run it sensitizes groups 1, 2, 3 and so on.
Also assume that K, the error detection rate con-
stant, is 2 so that 50% of the remaining errors are
removed with each sensitization. .This would lead to
the pattem of errors discovered in Table 3. The
cumulative error removal ratio in the right hand
column of Table 3 can be plotted against the
number of code groups to establish a hypothetical

relation between code coverage and number of errors
removed. The resulting relation can be viewed in
Figure 2.

Figure 2. Example of Error Removal Rate and Code
Coverage Relationship

6.2 Cost Model

Given the relation between the number of errors
removed and code coverage displayed in Figure 2, we
see that the 60% Function Test error removal rate in
the error removal model in the previous section
would imply statement coverage of roughly 50%.
Figure 2 also shows that a 10% improvement in
coverage would lead to approximately a 70%
removal rate. If we plug 70% back into the error
profile for Function Test (Table 1 revised to Table
4), the percent of errors shipped drops from 3.4 to
2.55. This is a quality improvement of 25% from
the original model.

295

Table 3. Examde of an Error Discoverv Pattern

Sensit-
ization

Percent of Errors Removed for Group i

i= l 2 3 4 5 6 7 8 9 10 Total

Table 4. Example of a Modified Error Profile by
Phase

Entering removed

Design
Code

F I T

S /T

U p 1 30.92 I .OO I .SO I 15.46 I 15.46 I
15.46 .OO .60>.70 10.82 4.64

4.64 .oo .45 2.09 2.55

Before After
Analysis Analysis

Furthermore, if we assume that the relative costs of
removing errors are 1, 3 and 20 for Function Test,
System Test and after shipment, respectively, we can
see from Table 5 that the overall cost of removing
errors has been reduced. (See Boehm [3] for a dis-
cussion of relative costs of removing errors.)

Reduc-
tion

Table 5. Example of Improvement in Cost of
Removing Errors

Phase I Relative I Removal Cost I Percent I

,; 9:: Ij: -;! 1 Tr;tionTest
System Test

Total Internal 17.62 17.09

After Shipment 68.00 51.00

Although function test error removal costs have
increased, the decrease in system test costs more than
offset the increase so that total internal test costs
decrease by 3%. Of course most of the reduction in
error removal costs are realized as a result of fewer
errors in the product after shipment since these
errors are expensive to correct. The total reduction
for error removal costs for this example is 20%.

7.0 Model Experience

7.1 The project and observations

In order to test the assumptions previously stated,
test coverage analysis data was collected from a large
development project. The program analyzed was
780 KLOC of "deep systems" code written in an
internal system programming language from a large
operating system. The function test team worked
continuously for one and a half years on this test.
Test cases were developed both manually and auto-
matically using random combinations of inputs.
Approximately 90 KLOC of code was added after
starting this function test.

The testing process for this project was signif-
icantly different from others. Once unit test was
done, function test and system test were done com-
pletely in parallel by two groups. Usually systcm
test is done after the completion of function test.
The different process is possible because the goals of
function and system tests are different. To ensure
that all the function needed for the system test was
available, a subset of function test cases was selected
and used as an acceptance test for the function and
system tests. One of the exit criteria for unit test was
successful completion of all the acceptance test cases.
This sigtllficantly reduced the number of errors
found during the function test.

The data is displayed in Table 6. During this test,
statement coverage was measured and reported peri-
odically (usually once a week). The measurement
was done during periodic regression runs to verify
corrections for errors found during the period. All
the test cases that had caused failures during test

296

runs were included in the regression test buckets
(suites of test cases). All the test cases in the
regression test buckets were automatically executed
during the periodic regression run. The cumulative
number of test cases shown in Table 6 is the size of
the total regression buckets (not the number of all
the test cases used for testing). The data for Period
1 represents the test coverage and errors removed
prior to test coverage analysis. The subsequent
pcriods reflect increased tcst coverage and errors
removed as a result of test coverage analysis. The
length of I'eriod 4 was as twice long as the other
thrcc periods.

Sensit-
ization

Table 6. Test Coverage Data for a Portion of a Large
ODeratina Svstem

Percent Cumula- K Percent Errors
of tive Removed

Period I Cumula- I Errors I Cumulative Test Cases I
tive Cov-

erage Total Random Found

1 64 100 420 0
2 68 90 540 70
3 69 70 900 180
4 69 80 1460 530

7.2 Analysis of the error removal process

As discussed earlier, the level of sensitization is
proportional to the number of test cases executed.
In order to determine the level of sensitizations
during each period of time, we assume that each
sensitization consisted of 100 test cases, e.g., 4
sensitizations were assumed for Period 1 since there
were 420 test cases. We also assume that the first
sensitization included approximately 34% of the
code, the second sensitization included an additional
17% of the code, the third sensitization included an
additional 9%, and the fourth sensitization included
an additional 4% to make a total of 64% coverage.

Another assumption was required for the distrib-
ution of errors in the code since this data was not
available. It was assumed that the data followed a
truncated geometric distribution (.O 1~.99OJ*--*99) with
each interval representing the error content of 1% of
the product. The intervals were then combined to
obtain error densities for each sensitization.

function test. This assumption is consistent with the
modified error profile presented earlier.

I 23.4 34 10.00
2 20.0 51 10.00
3 17.0 60 10.00
4 14.5 64 10.00 22 21
5 3.3 68 3.33 39 39
6-15 8 69 6.66 71 70

The results of the analysis are in Table 7. Table 7
shows that the sensitization model can fit the
observed data well when comparing the predicted to
actual percent of errors removed. However, this fit
is accomplished by varying the value for K between
the periods.

The value for K is extremely high for the first 4
sensitizations (Period 1). A possible explanation
would be that the test buckets for Period 1 consist
largely of test cases which have already been run in
unit test. Also, it might be that the code that is
normally tested without coverage analysis (during
unit test and the first phase of function test) is better
understood and therefore of higher quality than code
which is exercised only after coverage analysis.

The fifh sensitization (Period 2) increases cov-
erage from 64 to 68% and exercises code statements
not normally tested. Here K has a much lower
value which implies that the first set new test cases
as a result of code coverage analysis have uncovered
a si@icant number of new errors.

Finally, in going from 68 to 69% (Period 3 and
4), the code is sensitized 10 times which implies dXi-
culty in going beyond 69% coverage and a "scrub-
bing" of code that has already been covered. This
additional scrubbing of the code results in fewer and
fewer errors removed each sensitization and K rises
back up to 6.66 since the code covered is of higher
quality after the frfth sensitization.

Finally, it was assumed that the total 340 errors
removed represented 70% of the errors coming into

297

7.3 Conclusions

Some results of experiences using test coverage
measurement were discusscd. We believe that
sharing our expericnce with other people in industry
and in research is one of the keys to improving our
software testing practice and to deepen our know-
ledge of software testing. Here we discussed that
measurement of statcment and branch covcrage of
large system software can be done, and is cost effec-
tive in removing errors.

'hrough thc use of a test coverage tool designcd
to be uscd while a product is run in its normal envi-
ronment (rather than under a debugger), testers in
IBiM have shown that it is possible to measure test
coverage during function test. It is then possible to
design new test cases and improve existing ones to
increase test coverage. We have shown that it is cost
effective to spend the human and system resources to
improve test coverage. The savings in the errors
found because of the incrcascd test coverage more
than compensates for the cost of the resources
needed to measure test covcrage.

An error removal model was developed. The
application of the sensitization model to actual data
highltghts the fact that K (the error detection rate
constant) cannot be regarded as static throughout the
testing process. Furthermore, the number of
sensitizations assumed will have a significant impact
on the predicted error removal ratio. There are
many other assumptions upon which the model is
based that may raise questions. However, the model
seems to provide a reasonable framework by which
to explain the error removal ratio throughout func-
tion test.

The test case coverage results discussed here were
done during function test of large system software
products. Test coverage metrics can be applied to
unit testing of the modules of a product. Typically
the unit test process varies considerably among
developers and test effectiveness is only occasionally
reported. If the unit tester has a good tool available,
the tester can prove what has been tested. Although
it is not feasible to reach 100% statement coverage
in function test, it is possible to do that in unit test.
The unit tester has access to stubs, debuggers, etc.,
to exercise paths that are difficult or impossible to
test during function test. If a good test coverage
measurement tool is available, an exit criteria of unit
test can be 100% statement coverage.

Recently data flow coverage measures have
attracted attention. The test coverage measurement
tools should be enhanced to provide data flow cov-
erage metrics. It remains to be seen how much these
data flow metrics will aid in the development in test
case design above what can be done by using state-
ment and branch coverage metrics in large products.

Areas of work in IBM and industry are the use of
test coverage measures during unit tcst, building an
experience-base for tcst coverage measurements, and
experimentation in the arca of data tlow coverage
mcasurement s.

7.4 Acknowledgements

We thank V. R. Basili of University of Maryland
for his contribution to our study of IBM software
testing and for his advice on test coverage measure-
ment experiments. We were influenced by his ideas
on the experience factory.

We thank J. McDonnell, M. Mundy and other
colleagues of IBM Poughkeepsie for their comments,
participation and encouragement for this study. We
have learned many things from them.

And we thank our management team. Without
their understanding and support, we could not have
done the study. Especially we would like to exprcss
our personal appreciation to our friend, a colleague
and a member of our management team, J. C.
Culbertson of IBM Lexington, who suddenly passed
away during the study.

7.5 References

[l] Basili, V. R., and Caldiera, "Methodological
and Architectural Issues in the Experience
Factory", Proc. of the 16th Annual Software
Engineering Workshop (SEL-91-006, NASA
GSFC), Maryland, December 1991, pp. 29-46.

Basili, V. R., and Selby, R. W., "Comparing
Effectiveness of Software Testing Strategies",
IEEE Transactions on Software Engineering,
Vol. SE-13, No. 12, December 1987 pp.

[3] Boehm, B. W., "Software Engineering Eco-
nomics", Prentice-Hall, New Jersey, 1981.

[2]

1278- 1296.

c41

c51

C61

c71

P I

c91

Cumt, P. A., Dyer, M., and Mills, H.D., "Cer-
tifying the Reliability of Software", IEEE
Transactions on Software Engineering, Vol.

Gelperin, D., IIetzel, W., "The Growth of
Software Testing", Communications of the
ACM, Vol. 31, No. 6, June 1988, pp. 687-695.

Huang, J. C., "An Approach to Program
Testing", ACR.1 Computing Surveys, Sep-
tember 1975, pp. 1 13- 128.

Jones, C . S., "Programming Productivity",
AVcGraw-lIill, New York, 1986.

Miller, E. F., "Program Testing: An Overview
for Managers", COMSAC, 1978.

Musa, J.D., Iannino, A., Okumoto, K., "Soft-
ware Reliability, Measurement, Prediction,
Ar>r>lication", McGraw-Hill, New York 1987.

SE-12, NO. 1, Jan~ary 1986.

.-
[lo] Ohba, M., "Software Reliability Analysis

Models", IBM Journal of Research and Devel-
opment, Vol. 28, No. 4, July 1984, pp.

[113 Ohba, M., "Software Quality = Test Accuracy
x Test Coverage", Proc. of 6th ICSE, Tokyo,
September 1982, pp. 287-293.

C123 Ohba, M., and Basili, V. R., "A Study of
Large Scale Software Testing", Proc. of the
16th Annual Software Engineering Workshop

December 1991, pp. 199-207.

[13] Rapps, S., Weyuker, E., "Selecting Software
Test Data Using Data Flow Information",
IEEE Transactions on Software Engineering,

[14] Stahl, W., "Packing Your Testing Toolbox",
Computerworld, October 9, 1989, pp. 83-89.

[l5] Stott, D. R., "Improving the Quality of Critical
Decisions", ASQC Quality Congress Trans-
actions, San Francisco, May 1990, pp. 518-523.

[16] Tohma, Y. et al, "Structural Approach to the
Estimation of the number of residual software
faults based on the HFr-Geometric Distrib-

428-432.

(SEL-91-006, NASA GSFC), Maryland,

Vol. SE-11, NO. 4, April 1985, pp. 367-375.

ution," IEEE Trans. Software Engineering,
Vol. SE-15, NO. 3, 1989, pp. 345-355.

Appendix A: Coverage Based Reliability
Growth Model

It is reasonable to assume that new errors are cap-
tured if and only if new blocks of a program are
exercised the first time, because test team members
put their focus on the segment or function tested by
a test case. If we assume that errors are distributed
homogeneously, we obtain:

where 4 s) is the function that describes the relation-
ship between the number of blocks covered and the
number of sensitizations, N is the number of blocks
in the program, m(s) is the function that describes
the relationship between the number of errors found
up to the time when the program (or the part of the
program) has been sensitized s times, and M is the
number of number of errors in the code.

By solving the simultaneous differential equations
with respect to m(s), we obtain:

m(s)=M(l -e-+,.

This m(s) is isomorphic to the Goel-Okumoto
NHPP model and the Musa execution-the model.
We can simp@ the equation and obtain:

P
N where K = exp(-).

Appendix B Examples of EXMAP Outputs

An example of a report produced by EXMAP is
shown in Figure 3.

299

I EXMAP HIGH LEVEL SUMMARY: PROGRAM AREA DATA / / / I / / / /

DATE: 8/24/92
TIME: 09:08.42

TEST CASE I D : TEST4

Summary for all PAS: 3 2 24 75 .0 26 1 3 50.0
EXMAP HIGH LEVEL SUMMARY: UNEXECUTED CODE / / / / I / / /

I<-- PROGRAM I D E N T I F I C A T I O N - - > I
I
I start end start end start end

I I L I S T I N G NAME
I
I PA LOAD MOD PROC

Each
right o f the statement number to indicate what happened
during the test run:

instruction line o f the listing has a character to the

V An unconditional branch instruction that has executed
H A conditional branch instruction that has executed both ways
>

V
: Non-branch instruction that has executed
1 Instruction that has not executed

A conditional branch instruction that has branched but not fallen through
A conditional branch instruction that has fallen through but not branched

Figure 3 (Part 1 of 2). Summary of code coverage and annotated C listing

300

9: l i n t main(void) i
.....

/ I t h i s branch never taken
10 I
16V 1 I i f (TEST-PARM == yes)
17: 2 I TEST-VAL = 13; / I t h i s stmt always executed
19> 3 I i f (TEST-PARM == no) / I t h i s branch always taken
20- 4 I TEST-VAL = 17; / I ‘ th is stmt never executed
21 I / I Note t h a t t he re i s an annotat ion symbol f o r each c o n d i t i o n
22VVVV I i f ((TEST-PARM == yes W TEST-VAL == 17) I I
23 5 I (TEST-PARM == yes M TEST-VAL == 13))

25: 6 I
26 I e l s e
27- 7 I TEST-VAL = 10; / I t h i s stmt never executed
28 1
29VVz- I i f ((TEST-PARM == yes W TEST-VAL == 17) I I
30 8 I (TEST-PARM == no W TEST-VAL == 13))
31 I
32- 9 I
33 I e l s e
34: 10 I TEST-VAL = 5 ; / I t h i s stmt always executed
46 I

/ I t h i s i s always t r u e
/ I t h i s stmt always executed TEST-VAL = 5;

24 I

/ I Note t h a t t he re i s an annotat ion symbol for each c o n d i t i o n

/ I t h i s i s always f a l s e
/ I t h i s s tmt never executed TEST-VAL = 10;

.

’/
I /

Figure 3 (Part 2 of 2). Summary of code coverage and annotated C listing

301

