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Cellular Automata for Weighted Random
Pattern Generation
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Abstract —Fault testing random-pattern-resistant circuits requires that BIST (built-in self-test) techniques generate large numbers of
pseudorandom patterns. To shorten these long test lengths, this study describes a cellular automata-based method that efficiently
generates weighted pseudorandom BIST patterns. This structure, called a weighted cellular automaton (WCA), uses no external
weighting logic. The design algorithm MWCARGO combines generation of the necessary weight sets and design of the WCA. In this
study, WCA pattern generators designed by MWCARGO achieved 100 percent coverage of testable stuck-at faults for benchmark
circuits with random-pattern-resistant faults. The WCA applies complete tests much faster than existing test-per-scan techniques. At
the same time, the hardware overhead of WCA proves to be competitive with that of current test-per-clock schemes.

Index Terms —Built-in self-test, weighted random patterns, multiple weight sets, cellular automata, hybrid cellular automata,
weighted cellular automata, test-per-clock pattern generation.

——————————   ✦   ——————————

1 INTRODUCTION

HE complex digital systems of today mandate the use of
design-for-testability (DFT) techniques. One such tech-

nique is built-in self-test (BIST). When applications require
short test times and high fault coverage, BIST techniques
that test with pseudorandom patterns are a cost-effective
solution. Stored deterministic testing involves large over-
head and low unmodeled fault coverage [1]; pseudoran-
dom testing, however, provides low overhead and high
fault coverage for most circuits. Some circuits, however, are
inherently random-pattern test resistant and, therefore, re-
quire prohibitively large numbers of equiprobable patterns.

In efforts to solve this problem, researchers [2], [3], [4],
[5] have found that weighted pseudorandom pattern test-
ing provides significantly shorter test lengths than pseu-
dorandom pattern testing. Analysis by Ströle and Wunder-
lich [1] and others [6] show that weighted pseudorandom
pattern testing needs multiple weight sets in order to
achieve extremely high fault coverage, i.e., 100 percent of
all detectable single stuck-at faults (the fault class consid-
ered here).

Research literature [2], [7], [8] discusses scan-based
methods of delivering weighted patterns with multiple
weight sets. The length of time required to load long scan
chains with large numbers of vectors has led some re-
searchers to investigate methods of generating and apply-
ing vectors directly to the inputs of the circuit under test
(CUT) [9], [5], [10], [7]. Two problems have arisen in these
techniques. Bou-Ghazale and Marinos [5] address one
problem—added overhead from extra flip-flops. Another
problem is added delay during normal operation and test-

ing caused by placing the weighting logic between the stor-
age elements and the normal logic. This structure and its
relation to delay are shown in Fig. 1. The multiplexer be-
tween the normal storage element, d, and the circuit adds
delay to the critical path in normal operation. Also, the
weighting logic is in series with the normal logic under test
and, thus, adds further delay during testing. Delay behav-
iors of three test-per-clock weighted pseudorandom ap-
proaches are discussed later in the paper.

Fig. 1. The problem of added delay for some weighted random pattern
generation circuits. Storage elements b and c are extra storage ele-
ments required to generate the bit with probability of 0.625.

This paper presents a different structure that can gener-
ate patterns with multiple weight sets at a test-per-clock
rate. This structure, the Weighted Cellular Automaton (WCA),
was first presented in [11]. The weight-logic outputs are
joined to the normal logic paths using the same multiplex-
ers at flip-flop inputs as those for serial scan, thus adding
little delay to normal operation. Unlike the weight logic of
the circuit in Fig. 1, the weight logic of the WCA evaluates
in parallel with the logic under test. This is because the

0018-9340/97/$10.00 © 1997 IEEE

————————————————

• D.J. Neebel is with the College of Integrated Science and Technology, James
Madison University, Harrisonburg, VA 22807. E-mail: neebeldj@jmu.edu.

• C.R. Kime is with the Department of Electrical and Computer Engineering,
University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706.

 E-mail: kime@engr.wisc.edu.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 105245.

T



1220 IEEE TRANSACTIONS ON COMPUTERS,  VOL.  46,  NO.  11,  NOVEMBER  1997

weight logic is built into the pattern generation structure.
The computation of the next weighted pattern and the ap-
plication of the current weighted pattern occur simultane-
ously. Consequently, during testing, this structure adds no
weight-logic delay to normal-operation delay.

Using a hybrid cellular automata (HCA) for the WCA al-
lows building the weight logic into the structure. Fig. 2
features an example HCA register that has null boundary
conditions, meaning that the cell inputs at the ends of the
register are set to zero. The HCA contains rule 90 and 150
cells and is a maximal-length sequence generator called a
90/150 Linear Hybrid CA or LHCA [12], [13].1 Hortensius
[14] discusses the possibility of using nonlinear uniform CA
to generate weighted patterns and presents the probabilities
of each site for small uniform CA, but does not detail non-
linear HCA.

Fig. 2. An example one-dimensional three-cell neighborhood cellular
automaton.

The succeeding two sections further describe WCA and a
design algorithm (MWCARGO) for use with WCA to gen-
erate multiple weight sets. In the fourth section, the testing
lengths of the WCA used with the MWCARGO algorithm
are compared to those of the best test-per-scan technique.
Also in the fourth section, the delay and hardware over-
head of WCA and those of two other test-per-clock meth-
ods are compared. Based on these comparisons, the final
section concludes that the combination of WCA and
MWCARGO can generate weighted pseudorandom test
patterns accurately, quickly, and at moderate cost.

2 THE WEIGHTED CELLULAR AUTOMATON, WCA
The term “weighted” refers to the patterns that the WCA
generates, not its structure. Each site in a WCA may have a
different rule, so the different WCA sites generate the value
one with different probabilities. Combining several differ-
ent rules into a single CA register allows WCA to generate
patterns with a given distribution of probabilities by using
a single register and no external weighting logic. Fig. 3
shows a small WCA and the probability of a 1 at each of the
outputs.

The design of a WCA involves choosing the proper rule
for each cell. Because there are many dependencies between
locations, this process is not straightforward. The following
sections provide more background on this process and
other characteristics of WCA.

1. The notation used for specifying CA rules can be found in any of [11],
[12], [13].

Fig. 3. A small WCA and the probabilities associated with each site.

2.1 WCA Evolutions
An often discussed and studied characteristic of CA is the
patterns generated by the CA outputs at consecutive time
steps, called evolutions. A 66-site WCA generated the pat-
tern of 90 evolutions on the left in Fig. 4. A black spot indi-
cates the value 1 and white indicates 0. The sites run hori-
zontally and the evolutions progress from top to bottom.
Note how, after a few evolutions, the WCA values at some
sites appear random, while values at other sites are fixed.
The WCA behaves this way because some of its sites are
designed to produce probabilities that are 0.5 and other
sites are designed to produce probabilities closer to 0 or 1.
Those sites that remain at 0 after only a few evolutions are
designed for probabilities less than 0.3.

Fig. 4. Evolutions for a 66 site WCA without (left) and with (right) reini-
tialization.

The fixed and short-cycle sections of the WCA need fre-
quent reinitialization or else they produce few unique pat-
terns. Reinitialization is performed by changing the CA
function, or set of rules, from the WCA to an LHCA repeat-
edly for a random number of clock cycles. To maximize
randomization in a short number of cycles, the LHCA is
constructed of maximal length sequence generators. The
pattern at the right in Fig. 4 shows the evolutions for a
WCA reinitialized by an LHCA. During reinitialization, the
WCA runs for 10 clocks, followed by the LHCA running for
20 clocks. The values for each run interval, or number of
clocks before switching the CA function, were chosen for
illustrative purposes only. The horizontal lines mark the
change from one CA function to the other. In this pattern,
the WCA runs first and the sequence repeats three times.

The authors’ short study [15] of WCA run intervals
showed that a run interval of between 15 and 31 worked
best in most cases. Although the WCA runs for a fixed in-
terval, the LHCA does not. The run interval for the
LHCA is determined by five bits of a 15-bit LFSR, so that
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the average run interval for the LHCA matches the run in-
terval of the WCA. This structure provides more effective
randomization without significantly increasing test length.

2.2 Achievable Accuracy of WCA
Analysis by Ströle and Wunderlich [1] indicates that the
effect of lack of accuracy in weights is to increase the test
length. They showed that a resolution of 0.125 (1/8th) for
an accuracy of ±0.0625 does not significantly increase the
test length. The following describes an experiment to esti-
mate the accuracy of the WCA.

Due to the nonlinear, hybrid nature of WCA, analytically
determining its achievable accuracy on probabilities is very
difficult. Even determining the output probabilities for a
given WCA is #P-complete. Since a direct solution was not
feasible, an experiment was performed to estimate the
lower bound on the local achievable accuracy for a general
WCA at a given site i. Accurate simulation of all rules for
all cells of a WCA would show exactly the achievable prob-
abilities and accuracy at all sites, but would require years of
simulation time. Therefore, a small section of a WCA was
analyzed with the 168 different rules used for WCA design
(shown in Table 1).2 Fig. 5 shows the model WCA section

for the experiment. If sites i - k to i + k make up the section
of WCA in the experiment, then k must be as large as possi-
ble but small enough to keep the experiment tractable. The
set of 168 rules yield 1682k+1 distinct WCA to simulate. The
number of rules is less than 256 because some rules have un-
desirable properties with respect to ability to generate both a
0 and a 1 and with respect to dependency upon neighboring
sites. Setting k = 2 implies over 100 billion distinct WCA.
Thus, k = 2 is too high. For k = 1, there are 4,741,632 distinct
WCA sections, a large but tractable number.

Values 0.1, 0.2, 0.3, º, 0.9 are the range of probabilities
for the boundary cells ci-2 and ci+2. To determine the accu-
racy, the desired probabilities for all three modeled cells
were set to the multiples of 0.1 between 0.1 and 0.9 (the
same range as the boundary conditions). Then, the experi-
ment sought a triplet of cell rules that gives probabilities for
ci-1 and ci+1 within ±0.05 of the desired ones and gives the
smallest error possible for the probability of ci. For example,
consider the first entry in Table 2, in which the desired
probabilities for sites ci-1 and ci+1 are 0.6 and 0.1, respec-
tively (falling in the intervals 0.55 to 0.65 and 0.0 to 0.15,
respectively). In this entry, the desired probability for ci is
0.3 and the boundary conditions for ci-2 and ci+2 are 0.4 and
0.5, respectively. To find this entry’s minimum achieved
probability error, the closest actual probability of a 1 to 0.3
had to be found, with the probability of cell ci-1 being 1
between 0.55 and 0.65 and that of cell ci+1 being 1 between
0.0 and 0.15. Rather than simulate a WCA section, the ac-
tual probabilities for such a small WCA were found exactly
using an eight-state discrete-time Markov model.

2.2.1 Results of Accuracy Experiment
Two experiments used the limited set of rules from Table 1,
with run intervals of 15 and 31. With this restricted set of

2. A discussion of these rules can be found in [15].

rules, the experiment results show that almost all desired
probabilities can be met locally within ±0.05. Of 32,805 (45 ◊
9 ◊ 9 ◊ 9) different combinations of boundary conditions and
probabilities, 136, or 0.41 percent, failed to meet the desired
probability for ci within ±0.05 with run interval 15 and 192,
or 0.59 percent, failed with run interval 31. Table 3 is a his-
togram showing how many combinations fell within seven
error ranges.

The increase in error for increase in run interval is due to
lock-up of cell values, as shown in the left side of Fig. 4. A
more detailed analysis of these transient effects appears in
[15]. As was shown in Fig. 4, some sites of the CA tend to
lock up after even a few evolutions. This lockup drives the
probabilities of 1 toward 0 or 1, making it more difficult to
achieve probabilities close to 0.5 in adjacent cells. Closer
analysis of the experimental results revealed that only
when the desired probability for cell i is 0.5 and the desired
for cell i - 1 or i + 1 is an extreme (0.1 or 0.9), did the error
from the desired probability for cell i exceed 0.05, as in the
last entry of Table 2.

TABLE 1
RULES USED FOR ALL EXPERIMENTS IN THIS PAPER

Fig. 5. WCA segment model for the experiment.
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TABLE 3
EXPERIMENT RESULTS FOR DETERMINING ACHIEVABLE

PROBABILITIES

In short, the results show that, locally, a WCA can gen-
erate weighted sequences with accurate arbitrary prob-
abilities. This local experiment indicates that a general
WCA is likely to generate patterns with a given set of prob-
abilities with a few exceptions. To accommodate these ex-
ceptions, the design algorithm (MWCARGO) includes a
feature discussed in Section 3.3.3 that achieves the accuracy
of probabilities within ±0.05.

2.3 Multiple WCA, MWCA
MWCA contain several sets of function rules—one set of
functions for each weight set plus an LHCA function set.
Fig. 6 shows a seven-site MWCA with three WCA function
sets and an LHCA function set. The sets of probabilities for
each function set appear in rows below the MWCA. Fig. 7
features a block diagram for an individual cell.

Section 2.1 noted that a WCA is paired with an LHCA in
order to reinitialize the WCA. For an MWCA with multiple
weight sets, many other operation modes are possible. Fig. 8
displays the mode used in this study because of its consis-
tency with the steps taken in the MWCA design algorithm,
which is discussed in the next section. Time flows from the
top of the diagram to the bottom. Each section of the figure
indicates the CA rules set by which the MWCA is configured
during the corresponding phase of MWCA operation.

Fig. 8. MWCA operation mode.

3 MULTIPLE WCA DESIGN ALGORITHM

The previous section described the operation and various
characteristics of the MWCA. A necessary part of the proc-
ess for learning about MWCA was the development of a
design algorithm first presented in [16]. That design algo-
rithm is the focus of this section.

TABLE 2
EXAMPLES OF DESIRED PROBABILITIES, BOUNDARY CONDITIONS,

AND CORRESPONDING RULES AND ERRORS

Fig. 6. A small MWCA.

Fig. 7. MWCA cell block diagram.
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The MWCA design algorithm works to achieve 100 per-
cent coverage of all detectable faults while limiting the
number of weight sets (hardware overhead) and the test
length within a specified maximum. Fig. 9 gives the top-
level description MWCARGO (Multiple Weighted Cellular
Automata Register Generation and Optimization). The spe-
cific tools designed for each step appear in parentheses at
the end of each line.

Fig. 9. Top level of the Multiple WCA design algorithm, MWCARGO.

In the first step, CASIM fault simulates patterns from a
90/150 LHCA to determine if all faults can be covered by
random patterns within the user set maximum test length.
A 90/150 LHCA maximal length sequence generator was
chosen because that is the structure used within the WCA
for reinitialization. MWCARGO assumes that any uncov-
ered faults are hard-to-detect. CASIM is the combination of
a simple CA simulator and ppcpt [17], a parallel pattern
critical path tracing fault simulator.

The equation in the second step of MWCARGO calcu-
lates the variable, Runs, from the user set parameters of
User Set Test Length (TLuser), User Set # of Weight Sets (WSuser),
and Run Interval (RI). Runs is defined as the number of
WCA re-initializations using the LHCA. In the equation,
the factor of two accounts for the WCA and LHCA run in-
tervals that are, on average, equal. Each time a new WCA
structure is added to the MWCA, the test length increases
by 2 ¥ RI ¥ Runs because the MWCA structure is built one
WCA (with the LHCA for reinitialization) at a time. This
process guarantees that the simulated patterns are the same
as those generated by the physical hardware.

Once the hard-to-detect faults (HTD faults) and the test
length are known, ATPGX finds a set of test vectors for the
HTD faults. P3 then partitions the vectors into multiple sets
and determines weights for each set. Then, WCARGO gen-
erates a new WCA for one weight set (first in the list). Fi-
nally, CASIM determines which faults remain undetected.
If any faults remain, the process then continues with the
ATPGX step. The next three sections describe ATPGX, P3,
and WCARGO in more detail.

3.1 Generating Patterns, ATPGX
The ATPGX program performs test generation and fault
simulation with fault dropping. After test generation (using
the PODEM algorithm [18]) is complete, the new vector is
simulated with each bit set to X in the order that PODEM

set the bits to 0 or 1 during the search. If the bit can be set to
X and the new vector still detects the target fault, the bit
remains X. If not, the bit is changed back to its original
value. The program performs this process to increase the
number of unspecified (X) entries in the test vectors. Hav-
ing more unspecified entries permits P3 to better tune the
weights to the remaining specified entries, which are criti-
cal to producing tests for the faults using weighted random
pattern generation. Once all bits have been set to X (and
reset to 0 or 1, as necessary), ATPGX fault simulates the
vector using three-valued single-fault propagation to find
and drop all covered faults remaining in the fault list.
ATPGX continues until all faults are detected, marked as
undetectable, or aborted.

3.2 Probabilities from Partitioned Patterns, P 3

P3 takes as input a set of patterns (test vectors from

ATPGX), a desired test length (TLuser), and a level of confi-
dence that all patterns will be generated within the user-set
test length. P3 starts with a single set of patterns, then cre-
ates more sets with patterns from the existing sets–one new
set at a time, as shown in Fig. 10—until the test length is
less than the user-set maximum. Fig. 11 shows the pseudo-
code for the partitioning algorithm.

Fig. 10. Actions in the first two steps of P3.

Fig. 11. Pattern partitioning algorithm for P3.
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The function Evaluate_Partition finds a pattern to move to
a new set using a “cost” function that estimates the prob-
ability of a pattern occurring. Assuming all vectors are in
one set at the beginning, the cost of placing a pattern in a
set, S, is the sum of the costs for each bit in the pattern. The
cost for bit vij in pattern Vj is the number of bits in position i

of all patterns in S that disagree with vij. The cost of bits

with value X is defined as 0. P3 places the pattern that
causes the sharpest decrease in total cost in the new set.

Table 4 includes an example cost calculation for a small
set of vectors. The cost for bit 4 of vector V4 is the number
of 1s in column 4, since bit 4 of vector V4 is a 0. The cost for
vector V4, &(V4), is the sum of the cost of its bits, which is 6.
In this example, V4 has the highest cost, so it will be moved
to the new empty pattern set. If P3 cannot find a vector with

lower cost in the new set, then P3 considers the new set
complete and checks the test length of the new partition
using Find_Test_Length.

TABLE 4
EXAMPLE COST CALCULATION FOR P3

Find_Test_Length first assigns the weights using the
method in [9] by counting 0s and 1s in a column. The
weight for a given primary input is the number of 1s di-
vided by the sum of the number of 0s and number of 1s. Xs
are ignored for weight assignment purposes because they
need not be set to any particular value to detect faults. For a
column with no 0s or 1s, the weight value is 0.5. The user
can set minimum and maximum values for the weights;
their default settings are 0.1 and 0.9. The weights are given
in the last row of Table 4.

Find_Test_Length then uses the weight sets to calculate
the necessary test length, which is the number of weighted
random patterns to be generated to insure that 0.9999 of all
patterns in the test set appear in the sequence generated by
the WCA. Because no closed form solution for the test
length, N, exists, the authors adapted the equation from
[19] for an upper bound on test length given detection
probabilities. The adapted equation appears below. PH is
the probability of occurrence of the least likely or hardest-
to-generate pattern. The number of hard-to-generate vec-
tors, k, is calculated as the number of vectors with prob-
ability within one order of magnitude of the least likely
vector. This is an overly pessimistic choice of k; however,
the value of k has limited effect on N in most cases.

N
M k

PH

=
-
-

log

log

1

1

a fc h
c h .          (1)

When the estimated test length becomes less than the
user-set maximum or the number of weight sets reaches the
user-set maximum, P3 stops and outputs a list of current
weight sets. WCARGO [11] then generates a WCA for the
first weight set on the list.

3.3 WCARGO
The design algorithm for a single weight WCA, WCARGO,
is a greedy method, using a heuristic search through a por-
tion of the complete design space. The strategy of the algo-
rithm is to generate a design, simulate it to determine the
sites where the error in probability is too high, and choose
new rules for those sites. Pseudocode for the WCARGO
algorithm is given in Fig. 12.

Fig. 12. The top level algorithm for WCARGO.

For each site, WCARGO extracts the average probabili-
ties from simulation data and calculates the error from de-
sired probability. The error is the absolute value of the dif-
ference between the desired and average probabilities. Us-
ing this error term, WCARGO finds the sites with an error
larger than the working threshold, then redesigns those sites.
The redesign process is explained further in Section 3.3.1.

Two parameters, Rate and Steps, control how fast the de-
sign process attempts to approach the user-set parameter
Original Threshold. During initialization, the Working Threshold
is set to the Original Threshold + (Rate ¥ Steps). Each time
WCARGO finds a design with worst-case error less than
the Working Threshold, it decrements Steps and recalculates
the Working Threshold. This ensures that the design process
does not try to make too many changes in one iteration.
Steps is decremented until it is equal to zero.

3.3.1 Designing a New CA
Design_New_CA redesigns, or chooses new rules for, those
cells with actual probabilities that differ from the desired
probability by more than the working threshold. To choose
a new rule for a cell, Design_New_CA estimates the prob-
ability of a cell with each of the available cell rules and
chooses the type with the estimated probability closest to
the design goal. Design_New_CA tries to redesign the
same sites k times; k = 5 is the default setting. If those at-
tempts fail, Design_New_CA redesigns the neighboring
cells. Design_New_CA stores the path through the search
space such that no WCA design is tried more than once.
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3.3.2 Splitting WCA
WCARGO, as first presented in [11], could not generate
designs for circuits with more than about 300 inputs, due to
the computation time required to search such a large design
space. To keep the design time within reason, WCARGO
was modified to split the WCA into smaller pieces. By us-
ing null boundary conditions on the smaller WCA,
WCARGO can design each piece separately and then com-
bine the pieces to build a single large WCA. WCARGO di-
vides the WCA into equal pieces as close to the user-set
average value as possible. This study used a value of 100
for all circuits in order to cover small-to-medium circuits
with one WCA and, at the same time, allow larger circuits
to use reasonably sized WCA. Due to WCA’s nonlinear
nature, correlation between the pattern sequences of sepa-
rate pieces of WCA is unlikely.

3.3.3 Increasing Desired Probability Accuracy
In early experiments, the WCA design algorithm did not
always converge to within the user-set threshold of ±0.10 of
the desired probability for all sites. These shortcomings
were expected because of the results of the local experi-
ments on the WCA. In fact, the causes of WCARGO’s fail-
ures to produce the correct probability were the same as
those of the local experiments. In the case of such errors,
MWCARGO accepts the less-than-ideal design and contin-
ues the design process. Some designers, however, may re-
quire tighter tolerances on the error. Such designers need
an alternative design function that will allow WCARGO to
complete a design for a given set of probabilities within a
given threshold.

Because most local probabilities are achievable, a local
alternative—adding dummy cells and increasing the design
iteration limit—is used to achieve probabilities within the
error threshold. Consider any site i where the probability is
not within the error threshold. If WCARGO cannot find a
rule for site i that will provide the desired probability, then
WCARGO places a “dummy” cell to the right or left of site i.
The dummy cell does not have an enforced goal probabil-
ity. The complete set of rules for adding dummy cells ap-
pears in [15].

Addition of dummy cells increases the hardware over-
head, so the user can specify a maximum number of
dummy cells. Applications that do not require such high
accuracy need few or no dummy cells. Dummy cells were
not needed to obtain any of the data in this study. Another
possible, but unexplored, method to deal with convergence
is to change the local ordering of cells in the CA.

4 COMPARISON OF WCA TO EXISTING TECHNIQUES

This section compares the WCA technique to other BIST
techniques. Section 4.1 compares test lengths and weight-
set sizes of WCA to those of the best-known test-per-scan
method; Section 4.2 compares device counts, area overhead,
and delay of WCA to those of other test-per-clock methods.

4.1 Test Length and Weight-Set Size Comparisons
To understand these comparisons, one must be familiar
with the test circuits used in this study. The circuits are

from the ISCAS 85 [20] and ISCAS 89 [21] benchmark sets.
Circuit names beginning with “c” are from ISCAS 85 and
those beginning with “s” are combinational versions from
ISCAS 89 (each of the flip-flops is replaced with a primary
output and a primary input). This study includes only cir-
cuits that contain random-pattern-resistant faults. Coverage
data is given as a percentage of all detectable faults.

Table 5 shows the parameter settings for the runs re-
ported in this section. The WCA run interval was set based
on experiments reported in [11]. The test length and maxi-
mum weight sets are usually set by design guidelines for
test time and overhead constraints. For this study, those
parameters were set to conservative values.

TABLE 5
SETTING OF PARAMETERS

A major motive for this work was to find a way for cir-
cuits to test themselves quickly with high fault coverage
and low overhead. Because most previous weighted ran-
dom test techniques are scan-based methods, the WCA re-
sults are compared to the test-application times required for
the test-per-scan technique, Pattern Based Weight Calcula-
tion (PBWC) [22]. For PWBC methods, the test-application
time is (# scan cells + 1) ¥ (# vectors) + (# scan cells).

Tables 6 and 7 compare the PBWC method to the
WMCARGO method. Two measurements are points of
comparison—ratio of test-application times and difference
in weight-set counts. The columns labeled Compare/TAT
show the ratio of the PBWC test-application time to the
MWCA test-application time, while the Compare/WS col-
umns list the number MWCA sets minus the PBWC weight
sets.

The test-application time ratios were not large for cir-
cuits with small numbers of inputs (less than 100); the ratios
increased, however, for circuits with large numbers of in-
puts. MWCA, therefore, tested circuits with large numbers
of inputs much faster than PBWC.

As for the weight-set results, the MWCA used fewer
weight sets than the PBWC method in 14 out of 21 circuits
studied. The PBWC method used fewer weight sets for only
five circuits. Therefore, MWCA usually, but not always,
used weight sets more economically than PBWC.

Note that in some cases—c2670 and s9234, for example—
MWCARGO exceeded the user-set test length. This hap-
pened because MWCARGO continued the design process
until it tested all faults or a WCA detected no more faults.



1226 IEEE TRANSACTIONS ON COMPUTERS,  VOL.  46,  NO.  11,  NOVEMBER  1997

In these cases, the user can increase the acceptable test
length or settle for lower fault coverage.

The CPU time required to generate a design varies
greatly with the size of the WCA designed and the values
in the desired weight set. Design times reported by
MWCARGO ranged from less than 12 minutes for s526 to
17 hours for s38417 on a SPARCstation 10 for the entire
MWCA design process, including fault simulation and
TPG. A worst-case analysis shows that the algorithm will
iterate and redesign a given circuit up to (N - 1) * (Steps)
times, where N is the maximum number of redesigns per
incremental change in the threshold (threshold rate) and

Steps is the number of times the threshold is decremented.

4.2 Hardware Overhead and Delay Comparisons
To determine whether WCA improves on traditional test-
per-clock methods, this section examines the overhead of
test-per-clock schemes. The three test-per-clock weighted
random pattern schemes to be compared—uncorrelated
weighting, correlated weighting, and WCA—are given in
Fig. 13; all are designed to give weight resolution to 0.125.
The traditional techniques in Figs. 13a and 13b use weight-
ing logic between the normal storage elements and the logic
being tested; thus, these methods introduce delay between

TABLE 6
COMPARISON OF RESULTS WITH SHORTEST TEST LENGTHS FOR MWCA AND PBWC

TABLE 7
COMPARISON OF RESULTS WITH THE FEWEST WEIGHT SETS FOR MWCA AND PBWC
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the storage element and the normal logic. The uncorrelated
weighting approach is a worst-case method with respect to
hardware overhead, since the weights are derived from
disjoint sets of flip-flops, requiring the addition of two flip-
flops for each input to the circuit. The correlated weighting
approach is a best case in terms of hardware overhead. Be-
cause this approach correlates bits from the pseudorandom
pattern generator, correlated weighting does not guarantee
adequate fault coverage.

The added device counts per weighting cell for the three
schemes in Fig. 13 are given in Table 8. The device counts
assume fully complementary CMOS logic with dynamic
combinational logic used where advantageous. For all mul-
tiple weight cases but the unlimited case, the weight selec-
tion lines are fully encoded. The device counts given are
worst-case assuming no minimization and using device site
counts for ROMs. For all but the 2M case, the LHCA con-
figuration is included in the design in addition to the speci-
fied number of weights for the WCA.

Overall, the WCA device counts are midway between
those for the correlated weighted case and the uncorrelated
weighted cases. Thus, the WCA hardware overhead ap-
pears competitive with that of other test-per-clock weighted
approaches.

A test-per-clock circuit not shown or tabulated here is
the GURT [10], which, with an added device overhead of
approximately seven devices per cell, is certainly a winner
in terms of device count, but has potentially high routing
overhead. In addition, it appears to apply easily only to the
single weight case.

In addition to the device counts given, actual cell de-
signs, including flip-flops and weighting logic, were cre-
ated using a commercial layout tool and simulator for the
single-weight and five-weight cases for the three ap-
proaches. These cases were chosen because they represent
the bounds on the number of weights required in Table 7
for the WCA for the random-pattern resistant ISCAS
benchmark cases. The cells were fit into a framework based

on a three-micron standard cell technology. Because of a
tight power and ground pitch, this technology limited the
design of complex cells.

The comparative area results for these approaches using
the three-micron process are given in mm2 per weight cell,
including the normal flip-flop, in Table 9. Note that the
WCA implements the LHCA function, in addition to the
weight sets. The designs use dynamic weighting logic to
reduce area where necessary. In all cases, a general design
that applies to any combination of weight probabilities was
used. Consequently, these are worst cases for area over-
head. The areas given include all logic and interconnects,
including all added interconnects, in the local routing
channels related to the weighted test pattern generation
approach.

TABLE 9
COMPARISON OF AREA OVERHEAD

FOR WEIGHTED RANDOM CELLS IN m2

When compared, the results for the three schemes are in
the same order as the device count results. The WCA is at
somewhat of a disadvantage because it is a general design
that can implement any set of W weights, plus an LHCA. In
an actual automated design situation, each cell could be
customized to its actual weight needs. This would often
result in a reduction in area. A similar, but less significant,
reduction would occur for the other two schemes.

In summary, local device counts and areas are fairly
high. Thus, using these techniques is appropriate only
when the overhead can be 1) amortized over a substantial
amount of logic or 2) hidden in areas such as the chip
boundaries. The former involves selectively applying the

Fig. 13. Three types of weighted random BIST. (x1 and x2 denote extra storage elements and CL stands for Combinational Logic).

TABLE 8
COMPARISON OF DEVICE COUNT OVERHEAD
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weighted techniques only to the subset of all combinational
logic circuits in an IC that are random pattern resistant. The
latter routinely occurs when hiding the area required by
boundary scan.

In addition to determining areas, delays for the three
test-per-clock approaches were also evaluated by circuit
simulation. The results appear in Table 10. The increase in
the delay of the circuits during normal operation are given
for one weight set and five weight sets. The increases in
delay for the competing techniques ranges between two
and three times the delay increases for WCA.

The minimum clock period during testing is also of im-
portance if the speed advantage of test-per-clock circuits is
to be fully realized. Due to the structure of the circuits, the
minimum clock period for the Uncorrelated Weighting and
Correlated Weighting cases is determined by the delay of
the test logic plus the delay of the normal combinational
logic, represented by DCL in Table 10. For the WCA, the
test logic and normal logic are in parallel. For the W = 1
case, the WCA is clearly faster regardless of the delay of the
normal logic. For the W = 5 case, the WCA testing clock
period is shorter if the delay of the combinational logic is
greater than 18.6 ns; otherwise, it is longer. An 18.6 ns delay
corresponds to the delay of five to six four-input NAND
gates connected in series implemented in three-micron
technology. Finally, at-speed testing is not considered in
these designs, which were optimized for area, not speed.

5 SUMMARY AND CONCLUSIONS

Clearly, weighted cellular automata (WCA), i.e., nonlinear
hybrid cellular automata, using a wide range of linear and
nonlinear functions, can perform weighted test-per-clock
pattern generation for handling random pattern resistant
circuits. The MWCARGO algorithm covers WCA design for
single and multiple weight-sets. WCA and the MWCARGO
algorithm form an effective solution that achieves high fault
coverage and relatively small test times compared to test-
per-scan schemes. Moreover, the solution requires over-
head comparable to other test-per-clock weighted-random-
pattern-generation schemes. Together, WCA and
MWCARGO fill the need for a generator of weighted pseu-
dorandom test patterns that is accurate, fast, and compara-
ble in cost to competing schemes.
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