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Abstract

Recently design for manufacturability (DFM) has been 

required to achieve higher process yield. Information 

obtained from silicon by testing and/or fault analysis is 

sometimes fed back for redesign of VLSI circuits. In this 

paper we propose a method to maximize defect coverage 

of a test set initially generated for stuck-at faults in a full 

scan sequential circuit by using feed back information 

from fault analysis. If a test set for more complex faults 

than stuck-at faults is generated, higher defect coverage 

would be obtained. Such a test set, however, would have a 

large number of test vectors, and hence the test costs 

would go up. The proposed method improves defect 

coverage of the test set by not adding new test vectors but 

modifying test vectors with the information obtained from 

fault analysis. Therefore there are no negative impacts on 

test data volume and test application time. The initial fault 

coverage for stuck-at faults of the test set is guaranteed 

with modified test vectors. In this paper we focus on 

detecting as many as possible non-feedback 

AND/OR-type bridging faults. Experimental results show 

that the proposed method significantly decreases the 

number of non-feedback AND/OR-type bridging faults 

undetected by a test set generated for stuck-at faults.

1. Introduction 

Development of manufacturing process for VLSI 

circuits has been shrinking transistor feature size. A 

serious problem resulting from shrinking feature size is 

that it has become difficult to improve process yield. In 

the past, improvement of yield is considered at 

manufacturing process stage. After the start of 

nano-technology it is necessary to consider improvement 

of yield at design stage prior to manufacturing process 

stage. Such concept is referred to as design for 

manufacturability (DFM). Nowadays, information 

obtained from testing and/or fault analysis has been used 

in order to enhance efficiency of DFM. This is because 

information on defects that occur often and location where 

they often occur, can indicate how to redesign VLSI 

circuits for improvement of yield. It is considered that 

such information would also be useful for testing, i.e., if 

we have data on type and location of defects which are 

more likely to occur, tests could be generated to cover the 

likely defects. 

In the past, it is considered that test sets for stuck-at 

faults could detect enough defects. But now, while the test 

set for stuck-at faults is still necessary to detect logical 

faults, this test set is not sufficient to cover non-stuck-at 

faults. This is because behavior of defects due to the 

effects of shrinking feature size is becoming much more 

complicated than before. Consequently the goal of test 

pattern generation is changing from high stuck-at fault 

coverage to cover more complex fault models in addition 

to stuck-at faults [1][2][3][4].  

An easy way to detect unmodeled defects is to 

generate tests that detect each stuck-at fault n times [22]. 

The method is referred to as n-detection. Since a stuck-at 

fault is activated and propagated by n different test vectors 

in an n-detection test set, defects on the site of the stuck-at 

fault are likely detected. Thus a test set for n-detection has 

higher defect coverage. Besides, the method is easy to 

implement since all we have to do is to generate test 

vectors for single stuck-at faults. However, the number of 

test vectors increases in proportion to n, which increases 

test application time and hence test cost.  

When we generate a test set assuming a more complex 

fault model it may detect a larger number of defects than a 

test set for stuck-at faults. The problem is that the test set 

size for the complex fault model may become larger than 

the one for stuck-at faults. It is possible that test data 

volume would exceed the limit of tester memory as well 

as increase test application time if we use or add a test set 

targeting a complex fault model. 

Obviously detection of many defects with a small size 

of a test set is really important to achieve higher test 

quality and to reduce the test cost of test application. 

However, it is impossible to detect all conceivable defects 
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with a small test set. One solution to achieve high test 

quality with a small test set is to concentrate detection of 

faults covering defects that often occur. Especially with 

VLSI circuits redesigned with DFM concept, we can 

select effective faults with information obtained from 

testing and/or fault analysis.  

Recently methods that allow us to modify test vectors 

without increasing the size of a test set and without 

changing stuck-at fault coverage have been proposed 

[7][8][9]. The methods identify don’t-care bits in fully 

specified test vectors. Then they assign logic values to 

don’t-cares so as to satisfy some purposes such as test 

compression [10][11] or test power reduction [12]. In this 

paper, we propose a method to generate a test set that not 

only guarantees to detect stuck-at faults but also 

maximizes the detection of faults from another fault 

model. We can select the fault model from information on 

defects that often occur in the manufacturing process. 

According to such information the proposed method 

modifies a test set generated for stuck-at faults so as to 

additionally detect other faults.  

In this work, we assume that defects modeled by 

non-feedback AND/OR-type bridging faults are the likely 

to occur faults. The number of bridging faults in a circuit 

with L lines is of the order of O(L2
) if we don’t use layout 

information. But if we can access layout information it 

may be reduced to O(L). We also assume that a test set for 

single stuck-at faults where test vectors are fully specified 

is given. In the first step of the proposed method, we 

identify as many don’t-cares as possible in the test vectors. 

Even though arbitrary logic values are assigned to the 

don’t-cares, stuck-at fault coverage of the initial test set is 

still guaranteed. In the next step we assign logic values to 

them such that detection of non-feedback AND/OR-type 

bridging faults is maximized. The conditions to detect a 

bridging fault are to detect the stuck-at fault on one of the 

lines in the pair of bridged lines and to set the opposite 

value on the other line of the bridged lines. Since the 

conditions are comprised of conditions to detect a stuck-at 

fault, we employ a dynamic compaction technique of 

ATPG [13] to assign logic values to bridged lines. As a 

result we obtain a test set for stuck-at faults which detects 

many non-feedback AND/OR-type bridging faults without 

increasing the number of test vectors. Experimental results 

for ISCAS benchmark circuits show that the test sets 

obtained by the proposed method detect more bridging 

faults than the test sets initially generated for stuck-at 

faults. 

The paper is organized as follows. In Section 2, we 

review a method of test vector modification and dynamic 

compaction. We propose a method to improve defect 

coverage in Section 3. In Section 4 we describe how to 

improve coverage of non-feedback AND/OR-type 

bridging faults with the proposed method. Next, we give 

experimental results for benchmark circuits in Section 5. 

Finally, we conclude this paper in Section 6. 

2. Preliminaries 

2.1. Don’t cares in test vectors 

Don’t-cares (Xs) in test vectors play an important role 

for testing logic circuits today. Depending on logic values 

assigned to the Xs, different features can be imparted to 

the test vectors. For example the existence of Xs generally 

facilitates test compression [5][6][9][10][11]. There are 

two methods to obtain test vectors that include Xs. One is 

not to specify logic values to Xs (unspecified bits) just 

after test vectors are generated. The Xs are left unspecified 

until all test vectors are generated. The drawback of this 

method is that more test vectors are generated [14][15] 

because this method misses accidental detection of faults 

with random fill or static/dynamic compaction 

methods[13]. Another method to obtain tests with Xs is 

identification of entries in a fully-specified test set that can 

be Xs [7][8][9]. The methods of [7][8] can identify the 

input values in test vectors that can be set to Xs with 

reasonable computing time. Furthermore even in 

compacted test sets these methods show that up to 50% of 

inputs in the test sets can be set to Xs. Therefore we can 

effectively modify test vectors without increase of test 

vectors to achieve higher defect coverage by filling the Xs 

appropriately. 

2.2. Dynamic compaction 

Dynamic compaction is known as a classic technique 

to reduce the number of test vectors during ATPG [13]. 

The concept is to detect as many yet undetected faults as 

possible by each newly generated test vector. Usually just 

after test generation for a fault, there are many unspecified 

values left in the test vector. Dynamic compaction assigns 

logic values to the unspecified values using ATPG so as to 

detect other undetected faults. 

3. Improving Defect Coverage 

3.1. Overview of the proposed method 

 The proposed method improves defect coverage with 

information on defects. Therefore, we assume that such 

information can be obtained from fault analysis for 

manufactured chips. Fig.1 shows the flow of the proposed 

method. Given a test set T for stuck-at faults, we first 

identify as many positions as possible that can be set X to 

obtain test set T’ with Xs. Before logic value assignment 

to Xs, we select a fault model based on information on 
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defects. Then we assign logic values to the Xs so as to 

detect another type of faults. Finally we obtain the 

modified test set T’’.

3.2. Target faults 

 When we generate a test set for complex non-stuck-at 

faults, the number of test vectors becomes larger than that 

for stuck-at faults. Therefore we focus on enhancing test 

quality of a generated test set. Since the method proposed 

in this paper does not add new test vectors but modifies 

test vectors, there are no negative impacts on test data 

volume and test application time. 

3.2.1. Selection of faults based on characteristic of 

defects

When information obtained from fault analysis 

indicates that defects often occur with a particular 

behavior, we select fault model representing the defects 

such as 4-way bridging faults [15][16], or X-faults[2]. The 

conditions to detect a stuck-at fault usually are also 

necessary conditions for detection of other logical faults. 

Therefore a test set for stuck-at faults already has potential 

to detect them. In Section 4, we show how to improve the 

defect coverage for non-feedback AND/OR-type bridging 

faults. 

3.2.2. Selection of faults based on location 

 Recently sophisticated works of fault location have 

been proposed [20][21]. One can use statistics of fault 

locations for many failed chips to determine sites that are 

likely to have defects. When information obtained from 

fault analysis does not indicate the characteristic of 

defects but only sites where defects likely occur, we 

modify the initial test set such that stuck-at faults on the 

suspicious sites are detected multiple times. The concept 

is similar to n-detection [22], but not all faults are required 

to be detected n-times. Therefore we can avoid making 

test set size larger that what is necessary for the detection 

of single stuck-at faults. 

4. Improvement of Non-Feedback AND/OR 

Bridging Fault Coverage 

In this paper, we assume that defects which occurred 

in many circuits under test are bridges and that the 

behavior of the defects corresponds to an AND-type 

bridging fault or an OR-type bridging fault. Obviously we 

can’t detect all bridging faults with test vector 

modification only, since the number of bridging faults in a 

circuit with L lines is O(L2
). We attempt to detect as many 

bridging faults as possible without increasing the number 

of tests generated for single line stuck-at faults. 

4.1. Logic value assignment for detection of 

non-feedback AND/OR bridging faults 

After we obtain a test set including Xs, we assign logic 

values to Xs so as to detect non-feedback AND/OR-type 

bridging faults. To abbreviate the explanation we only 

discuss non-feedback AND-type bridging faults. The 

condition of detection for a non-feedback AND-type 

bridging fault is to detect the stuck-at 0 fault on a bridged 

line and to set logic value 0 on the other line of the pair of 

bridged lines. Suppose that lines a and b are bridging. This 

bridging fault can be detected if a stuck-at 0 fault on line 

a(b) can be detected and logic value of line b(a) is 0. 

Since each condition is covered by the condition to detect 

a stuck-at fault, we can detect a non-feedback AND-type 

bridging fault using the technique of dynamic compaction 

[13] using the modified test vectors. When we assign logic 

values to Xs in the test set for the detection of bridges, 

there are three cases. In the following we explain how to 

assign logic values for each case. 

Case 1: In this case a stuck-at 0 fault can be detected on 

one of the bridging lines, and the logic value is an X on 

the other bridging line for some test. In order to detect the 

Initial test set T

01010110110100

10100101101101

11010111110001

Test set with Xs T’

0x01x10x101x0

10x0011x0x101

1x01x111x000x

Don’t-care Identification

Logic value assignment

Modified test set T’’

0001110010110

1010011000101

1101111110000

Information

on defects

Fig. 1: Flow of test vector modification
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Fig. 1: Flow of test vector modification
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bridging fault, we assign logic values to primary inputs 

that satisfy the conditions to detect the bridging fault. In 

this case the detection of a stuck-at 0 on a bridged line is 

already satisfied. Therefore, we attempt to set 0 on the 

other line of the bridge. We show an example in Fig. 2. 

Suppose that there is a non-feedback AND-type bridging 

fault between lines d and e, and that we have obtained a 

partially specified test vector v = <a, b, c, f, g> = <0, 1, x, 

0, x> by X-identification. We perform fault simulation 

with the test vector, and we find out that the stuck-at 0 

fault on line d can be detected. In this case we set 0 to line 

e. This operation corresponds to activation of the fault site 

in ATPG using dynamic compaction. In order to set 0 on 

line e, we assign 1 to line c. Finally we obtain test vector v

= <a, b, c, f, g> = <0, 1, 1, 0, x> which detects the 

non-feedback AND-type bridging fault between lines d

and e.

Case 2: Suppose that a logic value on one of the bridged 

lines is 0, and the logic value on the other bridging line is 

an X. This case satisfies the condition that a logic value is 

0 on one of the bridged lines. So, we assign logic values to 

primary inputs so as to detect the stuck-at 0 fault on the 

other line. An example is shown in Fig. 3. Suppose that 

there is a non-feedback AND-type bridging fault between 

lines d and e, and that we have obtained partially specified 

test vector v = <a, b, c, f, g> = <1, 1, x, 0, x> by 

X-identification. We try to detect stuck-at 0 fault on line e.

In order to set 1 to line e for the activation of the stuck-at 

0 fault, we assign 0 to line c and we also assign 1 to line g

for the propagation of the fault. As a result we obtain test 

vector v = <a, b, c, f, g> = <1, 1, 0, 0, 1> which detects the 

non-feedback AND-type bridging fault between lines d
and e.

Case 3: Suppose that the logic values on both the bridged 

lines are Xs. In this case, we assign logic values to 

primary inputs so as to detect a stuck-at 0 fault on one of 

the bridging lines and to set 0 on the other bridging line. 

An example is given in Fig. 4. Assume that there is a 

non-feedback AND-type bridging fault between lines d

and e, and that we have obtained a partially specified test 

vector v = <a, b, c, f, g> = <x, 1, x, 0, 0> by 

X-identification. We assign 0 to line a, and 1 to line c, and 

we can detect stuck-at 0 fault on line d and set 0 on line e.

As a result we obtain test vector v = <a, b, c, f, g> = <0, 1, 

1, 0, 0> which detects the non-feedback AND-type 

bridging fault between lines d and e.
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4.2. Procedure of logic value assignment 

 In Fig.5, we show the procedure to detect a bridging 

fault with test vector modification. After we obtain a test 

set T’ with Xs, we first perform fault simulation for the 

targeted non-feedback bridging faults and collect 

undetected faults. After that, for each test vector t’, we 

perform fault simulation for stuck-at faults. Then we apply 

three modification cases proposed in the previous section 

in sequence using the results of fault simulation for 

stuck-at faults. After each modification, we remove the 

bridging faults bf which can be detected by the 

modification. Finally we obtain the modified test set T’’

which detects non-bridging faults in addition to stuck-at 

faults. 

5. Experimental Results 

We implemented the proposed method using C 

programming language on a PC (OS: FreeBSD 4.11 

Release, CPU: Pentium4 2.8GHz, memory: 1.0GB), and 

applied to ISCAS’85 benchmark circuits and full-scan 

versions of ISCAS’89 benchmark circuits. For a test set to 

be modified by the proposed method we used a compacted 
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test set [16] for single stuck-at faults. The number of 

non-feedback AND/OR-type bridging faults is still large 

compared to the number of stuck-at faults. The large 

number of faults takes unrealistic time for fault simulation. 

Besides the small number of bridging faults selected 

randomly is enough for estimation of the fault coverage 

[17]. Therefore, we pick non-feedback AND-type bridging 

faults and non-feedback OR-type bridging faults ten times 

as the number of signal lines for smaller circuits and five 

times for larger circuits, respectively. 

 Table 1 shows the results of test vector modification in 

order to detect non-feedback AND-type bridging faults. 

Table 2 shows the results for non-feedback OR-type 

bridging faults. In both of the tables, the first three 

columns show circuit name, the number of primary inputs 

and the number of test vectors, respectively. Next column 

“%X” shows the percentage of Xs in a test vector on the 

average. Next column “#brfaults” shows the number of 

bridging faults in the fault list treated in this work. Results 

under the column headed “before” shows the number of 

bridging faults undetected and the percentage of the 

undetected faults before test vector modification. Results 

under the column headed “after” is the number and the 

percentage after test vector modification. Last column 

shows the percentage of undetected bridging faults 

reduced by the proposed method. 

Tables 1 and 2 show that the proposed method could 

reduce the percentage of undetected bridging faults 

especially for larger circuits such as s15850, s35932, 

s38417, and s38584. For s35932 circuit, the proposed 

method could reduce over 1000 undetected non-feedback 

AND or OR bridging faults. For some circuits, the 

proposed method increase the number of undetected 

bridging faults. This is because the don’t-care 

identification guarantees not to decrease stuck-at fault 

coverage, but doesn’t consider bridging fault coverage. 

For these circuits the original test set should be used 

instead of the test set by the proposed method. In this 

experiment we tried to detect as many bridging faults as 

possible. If bridging faults are scored according to 

significance of detection, the proposed method can detect 

faults in the order of decreasing significance. 

6. Conclusions 

We proposed a method to improve defect coverage 

without increasing the size of a test set and without 

changing stuck-at fault coverage. We assumed that we 

could obtain information on defects that often occur from 

fault analysis. In this work we selected non-feedback 

AND/OR-type bridging faults representing the defects and 

we modified a test set so as to detect the bridging faults in 

addition to stuck-at faults. In the test vector modification, 

we identified Xs in the test set and assigned logic values 

to the Xs so as to detect the bridging faults. Experimental 

results showed that the proposed method decreased the 

number of non-feedback AND/OR-type bridging faults 

undetected by the test sets initially generated for stuck-at 

faults. 
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circuits #PIs #tests %X #brfaults %imp

#undet % #undet %

c3540 50 93 53.33 35620 1784 5.01 1556 4.37 12.78

c5315 178 46 61.36 54380 856 1.57 673 1.24 21.38

c7552 207 75 54.53 76600 511 0.67 544 0.71 -6.46

s5378 214 100 73.29 27615 187 0.68 235 0.85 -25.67

s9234 247 111 69.15 47420 1566 3.30 1386 2.92 11.49

s13207 700 235 92.04 69845 1296 1.86 1162 1.66 10.34

s15850 611 97 77.30 82655 1831 2.22 1597 1.93 12.78

s35932 1763 12 36.20 188300 15318 8.13 13763 7.31 10.15

s38417 1664 87 74.80 200405 908 0.45 563 0.28 38.00

s38584 1464 114 81.15 200810 8720 4.34 7230 3.60 17.09

before after

before after
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