
On Improving Defect Coverage of Stuck-at Fault Tests

Kohei Miyase
1
, Kenta Terashima

2
, Seiji Kajihara

2
, Xiaoqing Wen

2
 and Sudhakar M. Reddy

3

1: Innovation Plaza, Fukuoka, Japan Science and Technology Agency

2: Department of Computer Science and Electronics, Kyushu Institute of Technology

3: Department of Electrical and Computer Engineering, University of Iowa

Abstract

Recently design for manufacturability (DFM) has been

required to achieve higher process yield. Information

obtained from silicon by testing and/or fault analysis is

sometimes fed back for redesign of VLSI circuits. In this

paper we propose a method to maximize defect coverage

of a test set initially generated for stuck-at faults in a full

scan sequential circuit by using feed back information

from fault analysis. If a test set for more complex faults

than stuck-at faults is generated, higher defect coverage

would be obtained. Such a test set, however, would have a

large number of test vectors, and hence the test costs

would go up. The proposed method improves defect

coverage of the test set by not adding new test vectors but

modifying test vectors with the information obtained from

fault analysis. Therefore there are no negative impacts on

test data volume and test application time. The initial fault

coverage for stuck-at faults of the test set is guaranteed

with modified test vectors. In this paper we focus on

detecting as many as possible non-feedback

AND/OR-type bridging faults. Experimental results show

that the proposed method significantly decreases the

number of non-feedback AND/OR-type bridging faults

undetected by a test set generated for stuck-at faults.

1. Introduction

Development of manufacturing process for VLSI

circuits has been shrinking transistor feature size. A

serious problem resulting from shrinking feature size is

that it has become difficult to improve process yield. In

the past, improvement of yield is considered at

manufacturing process stage. After the start of

nano-technology it is necessary to consider improvement

of yield at design stage prior to manufacturing process

stage. Such concept is referred to as design for

manufacturability (DFM). Nowadays, information

obtained from testing and/or fault analysis has been used

in order to enhance efficiency of DFM. This is because

information on defects that occur often and location where

they often occur, can indicate how to redesign VLSI

circuits for improvement of yield. It is considered that

such information would also be useful for testing, i.e., if

we have data on type and location of defects which are

more likely to occur, tests could be generated to cover the

likely defects.

In the past, it is considered that test sets for stuck-at

faults could detect enough defects. But now, while the test

set for stuck-at faults is still necessary to detect logical

faults, this test set is not sufficient to cover non-stuck-at

faults. This is because behavior of defects due to the

effects of shrinking feature size is becoming much more

complicated than before. Consequently the goal of test

pattern generation is changing from high stuck-at fault

coverage to cover more complex fault models in addition

to stuck-at faults [1][2][3][4].

An easy way to detect unmodeled defects is to

generate tests that detect each stuck-at fault n times [22].

The method is referred to as n-detection. Since a stuck-at

fault is activated and propagated by n different test vectors

in an n-detection test set, defects on the site of the stuck-at

fault are likely detected. Thus a test set for n-detection has

higher defect coverage. Besides, the method is easy to

implement since all we have to do is to generate test

vectors for single stuck-at faults. However, the number of

test vectors increases in proportion to n, which increases

test application time and hence test cost.

When we generate a test set assuming a more complex

fault model it may detect a larger number of defects than a

test set for stuck-at faults. The problem is that the test set

size for the complex fault model may become larger than

the one for stuck-at faults. It is possible that test data

volume would exceed the limit of tester memory as well

as increase test application time if we use or add a test set

targeting a complex fault model.

Obviously detection of many defects with a small size

of a test set is really important to achieve higher test

quality and to reduce the test cost of test application.

However, it is impossible to detect all conceivable defects

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

with a small test set. One solution to achieve high test

quality with a small test set is to concentrate detection of

faults covering defects that often occur. Especially with

VLSI circuits redesigned with DFM concept, we can

select effective faults with information obtained from

testing and/or fault analysis.

Recently methods that allow us to modify test vectors

without increasing the size of a test set and without

changing stuck-at fault coverage have been proposed

[7][8][9]. The methods identify don’t-care bits in fully

specified test vectors. Then they assign logic values to

don’t-cares so as to satisfy some purposes such as test

compression [10][11] or test power reduction [12]. In this

paper, we propose a method to generate a test set that not

only guarantees to detect stuck-at faults but also

maximizes the detection of faults from another fault

model. We can select the fault model from information on

defects that often occur in the manufacturing process.

According to such information the proposed method

modifies a test set generated for stuck-at faults so as to

additionally detect other faults.

In this work, we assume that defects modeled by

non-feedback AND/OR-type bridging faults are the likely

to occur faults. The number of bridging faults in a circuit

with L lines is of the order of O(L2
) if we don’t use layout

information. But if we can access layout information it

may be reduced to O(L). We also assume that a test set for

single stuck-at faults where test vectors are fully specified

is given. In the first step of the proposed method, we

identify as many don’t-cares as possible in the test vectors.

Even though arbitrary logic values are assigned to the

don’t-cares, stuck-at fault coverage of the initial test set is

still guaranteed. In the next step we assign logic values to

them such that detection of non-feedback AND/OR-type

bridging faults is maximized. The conditions to detect a

bridging fault are to detect the stuck-at fault on one of the

lines in the pair of bridged lines and to set the opposite

value on the other line of the bridged lines. Since the

conditions are comprised of conditions to detect a stuck-at

fault, we employ a dynamic compaction technique of

ATPG [13] to assign logic values to bridged lines. As a

result we obtain a test set for stuck-at faults which detects

many non-feedback AND/OR-type bridging faults without

increasing the number of test vectors. Experimental results

for ISCAS benchmark circuits show that the test sets

obtained by the proposed method detect more bridging

faults than the test sets initially generated for stuck-at

faults.

The paper is organized as follows. In Section 2, we

review a method of test vector modification and dynamic

compaction. We propose a method to improve defect

coverage in Section 3. In Section 4 we describe how to

improve coverage of non-feedback AND/OR-type

bridging faults with the proposed method. Next, we give

experimental results for benchmark circuits in Section 5.

Finally, we conclude this paper in Section 6.

2. Preliminaries

2.1. Don’t cares in test vectors

Don’t-cares (Xs) in test vectors play an important role

for testing logic circuits today. Depending on logic values

assigned to the Xs, different features can be imparted to

the test vectors. For example the existence of Xs generally

facilitates test compression [5][6][9][10][11]. There are

two methods to obtain test vectors that include Xs. One is

not to specify logic values to Xs (unspecified bits) just

after test vectors are generated. The Xs are left unspecified

until all test vectors are generated. The drawback of this

method is that more test vectors are generated [14][15]

because this method misses accidental detection of faults

with random fill or static/dynamic compaction

methods[13]. Another method to obtain tests with Xs is

identification of entries in a fully-specified test set that can

be Xs [7][8][9]. The methods of [7][8] can identify the

input values in test vectors that can be set to Xs with

reasonable computing time. Furthermore even in

compacted test sets these methods show that up to 50% of

inputs in the test sets can be set to Xs. Therefore we can

effectively modify test vectors without increase of test

vectors to achieve higher defect coverage by filling the Xs

appropriately.

2.2. Dynamic compaction

Dynamic compaction is known as a classic technique

to reduce the number of test vectors during ATPG [13].

The concept is to detect as many yet undetected faults as

possible by each newly generated test vector. Usually just

after test generation for a fault, there are many unspecified

values left in the test vector. Dynamic compaction assigns

logic values to the unspecified values using ATPG so as to

detect other undetected faults.

3. Improving Defect Coverage

3.1. Overview of the proposed method

 The proposed method improves defect coverage with

information on defects. Therefore, we assume that such

information can be obtained from fault analysis for

manufactured chips. Fig.1 shows the flow of the proposed

method. Given a test set T for stuck-at faults, we first

identify as many positions as possible that can be set X to

obtain test set T’ with Xs. Before logic value assignment

to Xs, we select a fault model based on information on

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

defects. Then we assign logic values to the Xs so as to

detect another type of faults. Finally we obtain the

modified test set T’’.

3.2. Target faults

 When we generate a test set for complex non-stuck-at

faults, the number of test vectors becomes larger than that

for stuck-at faults. Therefore we focus on enhancing test

quality of a generated test set. Since the method proposed

in this paper does not add new test vectors but modifies

test vectors, there are no negative impacts on test data

volume and test application time.

3.2.1. Selection of faults based on characteristic of

defects

When information obtained from fault analysis

indicates that defects often occur with a particular

behavior, we select fault model representing the defects

such as 4-way bridging faults [15][16], or X-faults[2]. The

conditions to detect a stuck-at fault usually are also

necessary conditions for detection of other logical faults.

Therefore a test set for stuck-at faults already has potential

to detect them. In Section 4, we show how to improve the

defect coverage for non-feedback AND/OR-type bridging

faults.

3.2.2. Selection of faults based on location

 Recently sophisticated works of fault location have

been proposed [20][21]. One can use statistics of fault

locations for many failed chips to determine sites that are

likely to have defects. When information obtained from

fault analysis does not indicate the characteristic of

defects but only sites where defects likely occur, we

modify the initial test set such that stuck-at faults on the

suspicious sites are detected multiple times. The concept

is similar to n-detection [22], but not all faults are required

to be detected n-times. Therefore we can avoid making

test set size larger that what is necessary for the detection

of single stuck-at faults.

4. Improvement of Non-Feedback AND/OR

Bridging Fault Coverage

In this paper, we assume that defects which occurred

in many circuits under test are bridges and that the

behavior of the defects corresponds to an AND-type

bridging fault or an OR-type bridging fault. Obviously we

can’t detect all bridging faults with test vector

modification only, since the number of bridging faults in a

circuit with L lines is O(L2
). We attempt to detect as many

bridging faults as possible without increasing the number

of tests generated for single line stuck-at faults.

4.1. Logic value assignment for detection of

non-feedback AND/OR bridging faults

After we obtain a test set including Xs, we assign logic

values to Xs so as to detect non-feedback AND/OR-type

bridging faults. To abbreviate the explanation we only

discuss non-feedback AND-type bridging faults. The

condition of detection for a non-feedback AND-type

bridging fault is to detect the stuck-at 0 fault on a bridged

line and to set logic value 0 on the other line of the pair of

bridged lines. Suppose that lines a and b are bridging. This

bridging fault can be detected if a stuck-at 0 fault on line

a(b) can be detected and logic value of line b(a) is 0.

Since each condition is covered by the condition to detect

a stuck-at fault, we can detect a non-feedback AND-type

bridging fault using the technique of dynamic compaction

[13] using the modified test vectors. When we assign logic

values to Xs in the test set for the detection of bridges,

there are three cases. In the following we explain how to

assign logic values for each case.

Case 1: In this case a stuck-at 0 fault can be detected on

one of the bridging lines, and the logic value is an X on

the other bridging line for some test. In order to detect the

Initial test set T

01010110110100

10100101101101

11010111110001

Test set with Xs T’

0x01x10x101x0

10x0011x0x101

1x01x111x000x

Don’t-care Identification

Logic value assignment

Modified test set T’’

0001110010110

1010011000101

1101111110000

Information

on defects

Fig. 1: Flow of test vector modification

Initial test set T

01010110110100

10100101101101

11010111110001

Test set with Xs T’

0x01x10x101x0

10x0011x0x101

1x01x111x000x

Don’t-care Identification

Logic value assignment

Modified test set T’’

0001110010110

1010011000101

1101111110000

Information

on defects

Fig. 1: Flow of test vector modification

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

bridging fault, we assign logic values to primary inputs

that satisfy the conditions to detect the bridging fault. In

this case the detection of a stuck-at 0 on a bridged line is

already satisfied. Therefore, we attempt to set 0 on the

other line of the bridge. We show an example in Fig. 2.

Suppose that there is a non-feedback AND-type bridging

fault between lines d and e, and that we have obtained a

partially specified test vector v = <a, b, c, f, g> = <0, 1, x,

0, x> by X-identification. We perform fault simulation

with the test vector, and we find out that the stuck-at 0

fault on line d can be detected. In this case we set 0 to line

e. This operation corresponds to activation of the fault site

in ATPG using dynamic compaction. In order to set 0 on

line e, we assign 1 to line c. Finally we obtain test vector v

= <a, b, c, f, g> = <0, 1, 1, 0, x> which detects the

non-feedback AND-type bridging fault between lines d

and e.

Case 2: Suppose that a logic value on one of the bridged

lines is 0, and the logic value on the other bridging line is

an X. This case satisfies the condition that a logic value is

0 on one of the bridged lines. So, we assign logic values to

primary inputs so as to detect the stuck-at 0 fault on the

other line. An example is shown in Fig. 3. Suppose that

there is a non-feedback AND-type bridging fault between

lines d and e, and that we have obtained partially specified

test vector v = <a, b, c, f, g> = <1, 1, x, 0, x> by

X-identification. We try to detect stuck-at 0 fault on line e.

In order to set 1 to line e for the activation of the stuck-at

0 fault, we assign 0 to line c and we also assign 1 to line g

for the propagation of the fault. As a result we obtain test

vector v = <a, b, c, f, g> = <1, 1, 0, 0, 1> which detects the

non-feedback AND-type bridging fault between lines d
and e.

Case 3: Suppose that the logic values on both the bridged

lines are Xs. In this case, we assign logic values to

primary inputs so as to detect a stuck-at 0 fault on one of

the bridging lines and to set 0 on the other bridging line.

An example is given in Fig. 4. Assume that there is a

non-feedback AND-type bridging fault between lines d

and e, and that we have obtained a partially specified test

vector v = <a, b, c, f, g> = <x, 1, x, 0, 0> by

X-identification. We assign 0 to line a, and 1 to line c, and

we can detect stuck-at 0 fault on line d and set 0 on line e.

As a result we obtain test vector v = <a, b, c, f, g> = <0, 1,

1, 0, 0> which detects the non-feedback AND-type

bridging fault between lines d and e.

1

1

0

x

x

x x

0 1

0

x

a

b

c

d

f

g

h

j

ke

i

Bridging

Fig. 4: Logic value assignment for Case 3

1

1

0

x

x

x x

0 1

0

x

a

b

c

d

f

g

h

j

ke

i

Bridging

Fig. 4: Logic value assignment for Case 3

4.2. Procedure of logic value assignment

 In Fig.5, we show the procedure to detect a bridging

fault with test vector modification. After we obtain a test

set T’ with Xs, we first perform fault simulation for the

targeted non-feedback bridging faults and collect

undetected faults. After that, for each test vector t’, we

perform fault simulation for stuck-at faults. Then we apply

three modification cases proposed in the previous section

in sequence using the results of fault simulation for

stuck-at faults. After each modification, we remove the

bridging faults bf which can be detected by the

modification. Finally we obtain the modified test set T’’

which detects non-bridging faults in addition to stuck-at

faults.

5. Experimental Results

We implemented the proposed method using C

programming language on a PC (OS: FreeBSD 4.11

Release, CPU: Pentium4 2.8GHz, memory: 1.0GB), and

applied to ISCAS’85 benchmark circuits and full-scan

versions of ISCAS’89 benchmark circuits. For a test set to

be modified by the proposed method we used a compacted

1

1

0

0

1

x x

x x

x

0

a

b

c

d

f

g

h

j

ke

i

Bridging

Fig. 2: Logic value assignment for Case 1

1

1

0

0

1

x x

x x

x

0

a

b

c

d

f

g

h

j

ke

i

Bridging

Fig. 2: Logic value assignment for Case 1

1

1

0

1

0

x x

x x

x

1

a

b

c

d

f

g

h

j

ke

i

Bridging

Fig. 3: Logic value assignment for Case 2

1

1

0

1

0

x x

x x

x

1

a

b

c

d

f

g

h

j

ke

i

Bridging

Fig. 3: Logic value assignment for Case 2

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

test set [16] for single stuck-at faults. The number of

non-feedback AND/OR-type bridging faults is still large

compared to the number of stuck-at faults. The large

number of faults takes unrealistic time for fault simulation.

Besides the small number of bridging faults selected

randomly is enough for estimation of the fault coverage

[17]. Therefore, we pick non-feedback AND-type bridging

faults and non-feedback OR-type bridging faults ten times

as the number of signal lines for smaller circuits and five

times for larger circuits, respectively.

 Table 1 shows the results of test vector modification in

order to detect non-feedback AND-type bridging faults.

Table 2 shows the results for non-feedback OR-type

bridging faults. In both of the tables, the first three

columns show circuit name, the number of primary inputs

and the number of test vectors, respectively. Next column

“%X” shows the percentage of Xs in a test vector on the

average. Next column “#brfaults” shows the number of

bridging faults in the fault list treated in this work. Results

under the column headed “before” shows the number of

bridging faults undetected and the percentage of the

undetected faults before test vector modification. Results

under the column headed “after” is the number and the

percentage after test vector modification. Last column

shows the percentage of undetected bridging faults

reduced by the proposed method.

Tables 1 and 2 show that the proposed method could

reduce the percentage of undetected bridging faults

especially for larger circuits such as s15850, s35932,

s38417, and s38584. For s35932 circuit, the proposed

method could reduce over 1000 undetected non-feedback

AND or OR bridging faults. For some circuits, the

proposed method increase the number of undetected

bridging faults. This is because the don’t-care

identification guarantees not to decrease stuck-at fault

coverage, but doesn’t consider bridging fault coverage.

For these circuits the original test set should be used

instead of the test set by the proposed method. In this

experiment we tried to detect as many bridging faults as

possible. If bridging faults are scored according to

significance of detection, the proposed method can detect

faults in the order of decreasing significance.

6. Conclusions

We proposed a method to improve defect coverage

without increasing the size of a test set and without

changing stuck-at fault coverage. We assumed that we

could obtain information on defects that often occur from

fault analysis. In this work we selected non-feedback

AND/OR-type bridging faults representing the defects and

we modified a test set so as to detect the bridging faults in

addition to stuck-at faults. In the test vector modification,

we identified Xs in the test set and assigned logic values

to the Xs so as to detect the bridging faults. Experimental

results showed that the proposed method decreased the

number of non-feedback AND/OR-type bridging faults

undetected by the test sets initially generated for stuck-at

faults.

Acknowledgment

The work of S. Kajihara and X. Wen were supported

in part by JSPS Grants-in-Aid in Scientific Research

16500036 and 17500039, respectively.

References

[1] S. Chakravarty, A. Jain, N. Radhakrisnan, E. W. Savage, S.

T. Zachariah, “Experimental Evaluation of Scan Tests for

Bridges,” Int’l Test Conf., pp. 509-518, 2002.

[2] X. Wen, H. Tamamoto, K. K. Saluja, and K. Kinoshita,

“Fault Diagnosis for Physical Defects of Unknown

Behaviours,” Asian Test Symp., pp. 236-241, 2003.

[3] B. Kruseman, A. Majhi, C. Hora, S, Eichenberger, J.

Meirlevede, “Systematic Defects in Deep Sub-Micron

Technologies,” Int’l Test Conf., pp. 290-299, 2004.

[4] S. Irajpour, S. K. Gupta, M. A. Breuer,

“TIMING-INDEPENDENT TESTTING OF CROSSTALK IN

THE PRESENCE OF DELAY PRODUCING DETECTS

USING SURROGATE FAULT MODELS,” Int’l Test Conf.,

pp. 1024-1033, 2004.

[5] A. Chandra, K. Chakrabarty, “Test Data Compression and

Test Resource Partitioning for System-on-a-Chip Using

Frequency-Directed Run-Length (FDR) Codes,” IEEE Trans.

on Comput., Vol. 52, No. 8, Aug. 2003.

[6] A. Wurtenberger, C. S. Tautermann, S. Hellebrand, “DATA

Procedure to detect bridge faults (C, T’)

Circuit C; Test set with Xs T’;

{

Fault_simulation_for_BF(T’);

BF = collect_undetected_BF();

For each test vector t’ in T’{

Fault_simulation_for_SF(t’);

Modification_Case1(BF);

BF = BF-detected_bf;

Modification_Case2(BF);

BF = BF-detected_bf;

Modification_Case3(BF);

BF = BF-detected_bf;

Fault_simulation_for_BF(t’);

}

return modified T’’

}

Fig. 5: Procedure of logic assignment

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

COMPRESSION FOR MULTIPLE SCAN CHAINS USING

DICTIONARIES WITH CORRECTIONS,” Int’l Test Conf.,

pp. 926-935, 2004.

[7] S. Kajihara, K. Miyase, “On Identifying Don’t Care Inputs

of Test Patterns for Combinational Circuits,” Int’l Conf. on

Computer-Aided Design, pp. 364-369, 2001.

[8] K. Miyase, S. Kajihara, "XID: Don’t Care Identification of

Test Patterns for Combinational Circuits,” IEEE Trans.

Computer-Aided Design of Integrated Circuits and Systems,

Vol. 23, No. 2, pp. 321-326, Feb. 2004.

[9] A. El-Maleh and A. Al-Suwaiyan, “An Efficient Test

Relaxation Technique for Combinational & Full-Scan

Sequential Circuits,” VLSI Test Symp., pp. 53-59, 2002.

[10] S. M. Reddy, K. Miyase, S. Kajihara, I. Pomeranz, “On Test

Data Volume Reduction for Multiple Scan Chain Designs,”

ACM Trans. on Design Automation of Electronic Systems, Vol.

8, No.4, pp. 460-469, Oct. 2003.

[11] S. Kajihara, Y. Doi, L. Li, K. Chakrabarty, “On Combining

Pinpoint Test Set Relaxation and Run-Length Codes for

Reducing Test Data Volume,” International Conf. on

Computer Design, pp. 387-392, Oct. 2003.

[12] X. Wen, Y. Yamashita, S. Kajihara, L.-T. Wang, K. K.

Saluja, K. Kinoshita, "On Low-Capture-Power Test

Generation for Scan Testing,” VLSI Test Symposium, pp.

265-270, May 2005.

[13] P. Goel, and B. C. Rosales, “Test Generation and Dynamic

Compaction of Tests,” Digest of Papers 1979 Test Conf., pp.

189-192, Oct. 1979.

[14] B. Koenemann, et. al., “A Smart BIST Variant Guaranteed

Encoding,” Asian Test Symp., pp. 325-330, 2001.

[15] R. Sankaralingam, R. R. Oruganti, N. A. Touba, “Static

Compaction Techniques to Control Scan Vector Power

Dissipation,” VLSI Test Symp., pp. 35-40, 2000.

[16] S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy,

“Cost-Effective Generation of Minimal Test Sets for Stuck-at

Faults in Combinational Logic Circuits,” IEEE Trans.

Computer-Aided Design of Integrated Circuits and Systems,

Vol. 14, No. 12, pp.1496-1504, Dec. 1995.

[17] I. Pomeranz, S. M. Reddy, S. Kundu, “On the

Characterization of Hard-to-Detect Bridging Faults,” Design

Automation and Test in Europe Conf. and Exhibition, pp.

11012-11017, 2003.

[18] S. Sengupta et. Al., “Defect-Based Tests: A Key Enabler for

Successful Migration to Structural Test,” Intel Technology

Journal, Q.1, 1999.

[19] V. Krishnaswamy, A. B. Ma, P. Vishakantaiah, “A Study of

Bridging Defect Probabilities on a Pentium (tm) 4 CPU,” Int’l

Test Conf., 2001, pp.688-695.

[20] T. Bartenstein, et. al. “Diagnosing Combinational Logic

Designs Using the Single Location At-a-Time (SLAT)

Paradigm,” Int’l Test Conf., pp. 287-296, 2001.

[21] D. Lavo, I. Hartanto and T. Larrabee, “Multiplets, Models,

and the Search for Meaning: Improving Per-Test Fault

Diagnosis,” Int’l Test Conf., pp. 250-259, 2002.

[22] S. M. Reddy, I. Pomeranz, and S. Kajihara, “Compact Test

Sets for High Defect Coverage,” IEEE Trans. on CAD., Vol.

16, No. 8, Aug. 1997.

Table 1: Experimenatal results for non-feedback AND-type bridging faults

circuits #PIs #tests %X #brfaults %imp

#undet % #undet %

c3540 50 93 53.33 35620 1110 3.12 1023 2.87 7.84

c5315 178 46 61.36 54380 999 1.84 608 1.12 39.14

c7552 207 75 54.53 76600 580 0.76 498 0.65 14.14

s5378 214 100 73.29 27615 160 0.58 284 1.03 -77.50

s9234 247 111 69.15 47420 1740 3.67 1458 3.07 16.21

s13207 700 235 92.04 69845 722 1.03 924 1.32 -27.98

s15850 611 97 77.30 82655 1602 1.94 1224 1.48 23.60

s35932 1763 12 36.20 188300 25005 13.28 23705 12.59 5.20

s38417 1664 87 74.80 200405 1073 0.54 784 0.39 26.93

s38584 1464 114 81.15 200810 6297 3.14 6021 3.00 4.38

Table 2: Experimenatal results for non-feedback OR-type bridging faults

circuits #PIs #tests %X #brfaults %imp

#undet % #undet %

c3540 50 93 53.33 35620 1784 5.01 1556 4.37 12.78

c5315 178 46 61.36 54380 856 1.57 673 1.24 21.38

c7552 207 75 54.53 76600 511 0.67 544 0.71 -6.46

s5378 214 100 73.29 27615 187 0.68 235 0.85 -25.67

s9234 247 111 69.15 47420 1566 3.30 1386 2.92 11.49

s13207 700 235 92.04 69845 1296 1.86 1162 1.66 10.34

s15850 611 97 77.30 82655 1831 2.22 1597 1.93 12.78

s35932 1763 12 36.20 188300 15318 8.13 13763 7.31 10.15

s38417 1664 87 74.80 200405 908 0.45 563 0.28 38.00

s38584 1464 114 81.15 200810 8720 4.34 7230 3.60 17.09

before after

before after

Proceedings of the 14th Asian Test Symposium (ATS ’05)
1081-7735/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

