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Abstract

This thesis deals with the problem of obtaining meaningful and comparable

dependability measures of software through the method of fault-injection. The

thesis is specifically dedicated to safety-critical embedded software and its de-

pendability property ‘fault-tolerance’ with respect to random faults affecting

the machine instruction execution. For enabling comparability of the fault-

tolerance of different software on different hardware, a fault-injection method

is derived and presented.

The method is based on the idea of the so-called FARM sets which was

originally presented for the characterization of physical fault-injection exper-

iments. The collection of sets is broadened and adjusted to the herein con-

sidered object of evaluation ‘software in execution’. The software is thereby

conceived as a process, and the fault set F is devised accordingly by means

of a universal microprocessor model. The resulting set is software-overlapping

and forms a mutual basis regarding the fault input among the software. In

conjunction with the other sets presented, a fault-injection method allowing

for – as far as possible – comparable fault-tolerance measures is constructed.

Therewith is created a methodical fundament for fault-injection experiments

that aim at evaluating the fault-tolerance of safety-critical embedded software

affected by hardware faults.

Keywords: embedded system, dependability, fault-tolerance, fault-injection,

FARM, service-provider.
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Chapter 1

Introduction

1.1 Motivation

The father of a three-month old child went to his authorized garage in order

to get the front-seat passenger airbag of his car disabled. There, the airbag

was electronically deactivated in the airbag control device. Some weeks later,

with the child seated in a child seat on the front passenger’s seat, the man

had a rather insignificant rear-end collision. The front passenger’s airbag went

off and killed the child [MW99 p.22]. As it turned out later, the airbag had

been correctly disabled by the garage. The disabling indicators could still be

read from the control-unit after the accident. Somehow, the software of the

control-unit must have ignored the indicators and fired the airbag inadmissibly.

To date, many mechanical control systems have been replaced by micro-

processor controlled safety-critical embedded systems. A malfunction of the

system may cause harm to the users, to the public or to the environment. The

prior goal in system development therefore is to assure a high degree of safety

during operation. Safety is achieved through fault-tolerance. For cost reasons

and lack of space, hardware-based fault-tolerance mechanisms have been more

and more replaced by software-based mechanisms. A large portion of the re-

sponsibility has now shifted to the software part. Safety-critical embedded

software therefore is facing high demands on its fault-tolerance.

Software may fail on account of several causes. Software faults can be one

of the causes. The Therac-25 case [Le95 p.515] and the Ariane 5 [Nu97 p.15]
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accident are prominent warnings of incorrect software. Another reason for a

failure can be random hardware faults. These may occur in any hardware

component of the system. Of special concern are those random faults that oc-

cur in the processing hardware which is the hardware that is directly involved

in the execution of the individual machine instructions. Since the application

level functionality of the software depends on a program-conform execution,

the fault-tolerance of the software with respect to these particular faults is

vital for safety.

The development of safety-critical embedded software is not the only chal-

lenging task, but also putting the fault-tolerance capabilities into concrete

terms. According to [St96], software must not only be fault-tolerant, it must

be shown to be fault-tolerant. This is especially true when it comes to legal

aspects or to the process of gaining certification. For that, the fault-tolerance

of the software needs to be evaluated and put into meaningful and comparable

measures. Fault-tolerance evaluation, a subject within the scope of dependabil-

ity evaluation, can be done through static and dynamic analyses. With respect

to software and random faults, the assessment is performed through a dynamic

analysis method. In contrast to dynamic analyses, static analyses evaluate the

program rather than the software in execution. The common dynamic analysis

method used in dependability evaluation is hardware fault-injection.

1.2 Problem

Hardware fault-injection is an approved method for evaluating – and literally

showing – the fault-tolerance capabilities of software. However, when related

to malfunctions of the microprocessor, fault-injection faces problems. Often

there is no suitable error model of the target processor available that describes

its malfunctioning from a strict software application perspective. From there,

the approaches taken in the fault-injection experiments are rather customized

solutions. In most cases the approaches are not compatible with each other.

The measures obtained from one fault-injection approach cannot be used for a

meaningful comparison with those obtained by other approaches. One problem

lies in the often vague or missing specification of the object of investigation

‘software in execution’ and its clear demarcation from the remaining system.

Another problem is the different fault input used in the experiments. If the

fault input is not comparable, the results are not comparable. Diverse percep-

tions of what a representative fault is, what the presence of a fault actually
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means, and how the readings finally shall enter evaluation represents another

problem. The varied interpretations on common notions moreover complicate

the rating of the results. A mutual basis that allows for comparability is miss-

ing. This thesis takes a step towards comparability in fault-injection, however

with special focus on safety-critical embedded software and random faults in

the processing hardware.

1.3 Goal of the Work

Fault-injection, strictly spoken, is not concerned with why certain fault events

may occur or how representative the injected faults are [cf. Vo98 p.25]. Re-

gardless of how realistic the injected faults may be considered, by following

a standardized evaluation method no further blurring should be added to the

results. A clear fault input, irrespective of its plausibility, should result in a

clear and comparable output.

The goal of this thesis is to provide a methodical fundament for those

fault-injection experiments that aim at evaluating the fault-tolerance of safety-

critical embedded software with respect to random hardware faults affecting

the machine instruction execution. The silent background question is: “How

can – by means of fault-injection – software for different safety-critical em-

bedded systems be evaluated for its fault-tolerance, such that the obtained

measures are – as far as possible – comparable?”. The herein presented fault-

injection method tries to give an answer. Some problems, however, cannot be

solved in this work. This thesis therefore does not end up in a ready-to-go

evaluation manual, but is also considered as a basis for discussion towards

more conformance in fault-injection based fault-tolerance evaluation of safety-

critical embedded software.

1.4 Background of the Work

The basis of this thesis was build when the author was involved in a depend-

ability evaluation project of safety-critical embedded software. The software

had been developed for microprocessor based engine-controls to be used in the

latest drive-by-wire generation of automobiles. One subject within the project

was the evaluation of the fault-tolerance of the software with respect to hard-

ware faults affecting the machine instruction execution. The analysis method
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was defined as fault-injection. Of the microcontroller (the Infineon 80C167)

only the conventional documentation was available. No low-level models were

at disposal. The author developed a register model simulator for the micropro-

cessor core [Fr98]. Fault-injection was then performed by injecting state errors

into the memory – following similar approaches published in the fault-injection

community. However, since there was no standardized evaluation procedure,

the approach as well resulted in a customized solution, and the derived mea-

sures were merely of in-house expressiveness [Fr99a, Fr99b].

This thesis is not a report of the project. It is the further development of the

understandings obtained during the project.

1.5 Overview

In the remainder of this chapter the type of considered safety-critical embed-

ded systems is outlined and basic notions are restated. In particular the term

fault-tolerance in its significance for safety-critical systems is closer specified.

Chapter 2 is dedicated to fault-injection for software dependability evalu-

ation. The customary hardware fault-injection techniques are presented and

discussed. Related publications are reviewed and the state of the art is con-

cluded. Comparability aspects are addressed thereafter. Based on the FARM

sets of [Ar90], the major requirements for more comparability in evaluating

safety-critical embedded software through fault-injection are identified. The

pivotal point in the fault-injection method is a common and object-appropriate

fault set F .

In Chapter 3 the software in execution is specified as the controlling pro-

cess. The two components establishing the controlling process – the process-

ing hardware and the binary program – are outlined. A distinction of the

fault-tolerance categories of the controlling process is given, and the interior

hardware-fault fault-tolerance is identified as the category of concern. The

conceptual injection method is then determined as process fault-injection.

Chapter 4 presents the service-provider model. Its components, the storage

space and the services are discussed. In the error model section, the princi-

pal effects of random faults onto the model components are presented. It is

demonstrated that the service-provider model fully intercepts the fault prop-

agation path from the hardware to the controlling process. The services are

identified as the entry points of hardware fault effects into the controlling pro-
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cess. Service errors are in particular the representatives of the random faults

in the processing hardware.

Chapter 5 deals with service errors. The field of fault mapping is looked

at, and publications concerned with microprocessor error behavior modeling

are reviewed. The fundamental error behavior of services is addressed then.

In the major part of the chapter, the error behavior of selected combinational

circuits is investigated through fault-simulation, and is presented by means of

arithmetic error distributions. It is shown that the power-of-two errors are the

most realistic in the presence of single and double-faults. An application ex-

ample of these findings for the creation of representative service errors is given.

In Chapter 6, the requirements from Chapter 2 are put in concrete terms,

resulting in the herein presented method mutant-injection. Mutant-injection

encompasses the actual injection process and the valuation of the results ob-

tained from the experiments. The sets characterizing the method are discussed

subsequently. The concept of a simulation-based fault-injection environment

for real-time execution, injection and observation is presented then. Finally,

the method is summarized and discussed.

Chapter 7 restates the problem and summarizes the work.

1.6 Notions

1.6.1 Safety-Critical Embedded System

The following definition depicts the type of safety-critical embedded system

that is considered throughout this thesis.

Definition 1.1: A safety-critical embedded system is a controlling system

that is operated mainly by a single microcontroller. Its is small in size and low

in cost. Its presence is largely invisible to the outside world and its correct

behavior is vital.

Safety-critical embedded systems have no user interface (keyboard, display).

There is no supervising operator or maintenance personnel during operation.

The major application field is that of real-time applications. Figure 1.1 shows

a stylized hardware view of a typical safety-critical embedded system. The

microcontroller µC is the main hardware component, often these are COTS

(Commercial Off The Shelf) components, such as the Infineon 80C167, 80C51

or the Motorola 68HC05.
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Figure 1.1: Stylized plot of a safety-critical embedded system

1.6.2 Software

The term software has at least two meanings. In expressions such as “writ-

ing software” or “software fault”, the term software actually means program.

Software then is the conceptual counterpart of the notion of hardware. In

expressions such as “software failure” or “fault effects on software” the term

software depicts a process. The term software will be used in this thesis with

both meanings, the particular meaning depends on the context.

1.6.3 Program

A program is a somehow ordered sequence of instructions. A program is

static, and technically speaking it cannot ‘crash’ nor can it be safe or un-

safe [cf. Vo98 p.161]. Any considerations on the behavior of a program are

shifted here to the notion of a process. A program is denoted by P. In par-

ticular the binary machine program loaded into the safety-critical embedded

system is denoted by PM.

1.6.4 Process

According to the dictionary, a process is a connected series of actions, changes,

or functions bringing about a result. In [Kaw95] a process is defined as “a set of

identifiable, repeatable actions which are ordered in some way and contribute

to the fulfillment of an objective”. Creating a process requires some executing

device and some kind of program. In this thesis the safety-critical embedded
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Level Structural Primitives

Application Behavioral rules, functions and functionality

Conceptual Closed and open loops, algorithms, formulas, data structures

High level language Statements, procedures, classes, data types

Assembly Mnemonics

Machine Binary code words, bit patterns, bits

Table 1.1: Program abstraction levels

software in action will be referred to as controlling process (Chapter 3). Con-

trary to a program, a process can ‘crash’, and it can be attributed to be safe

or unsafe — respectively to be fault-tolerant or not.

1.6.5 Hardware

The processors used in safety-critical embedded systems are modern micro-

controllers which are incorporating a variety of peripheral subsystems on the

same chip. An exemplary block diagram of a typical microcontroller is shown

in Figure 1.2. The CPU contains the central control-logic and the common

functional units, such as the ALU and the multiplication unit. State variables

as well as important registers are stored in a small local RAM area. The main

memory comprises the internal RAM and ROM, and can be extended through

external memory components. The binary program PM usually is stored in

the ROM. The processing hardware (specification in Chapter 3) denotes those

hardware areas that are transforming the binary machine instructions into

their associated tasks. The peripheral subsystems shown in the figure are

Level Structural Primitives

Functional Constraints

Register Registers, flags, memory

Register Transfer Level (RTL) Buses, functional units (e.g. ALU)

Gate Gates, flip-flops

Device Transistors, R, L, C

Physical Atoms, crystal structures

Table 1.2: Microprocessor abstraction levels
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examples of customary subsystems found in many microcontrollers. These

include AD-converters, timers, pulse-width-modulators and serial communica-

tion interfaces. The hardware abstraction levels are listed in Table 1.2.

ADC

Interrupt
Controller

GPT

WDT

PWM

ASC

SSC OSC

ROMRAM

Bus CTL

I/O
ALU

Decode
&

Control

local
RAM

MUL/DIV

Barrel
Shifter

Bit-Mask
Generator

CPU

�C

Figure 1.2: Exemplary microcontroller

1.6.6 Fault Notions

A fault is a defect in the program [Vo98 p.37] or in the system [St96 p.12]. In

[Cl95 p.48] a fault is considered a deviation of a component from its intended

function. A fault may also be a preanomaly event [Vo98 p.40]. Interaction

faults and design faults have as well joined the concept of faults [Av97 p.52].

The following definition, slightly modified from [St95 p.187], tries to be uni-

versal.

Definition 1.2: A fault is the adjudged or hypothesized cause of a problem.

The collection of faults that a safety-critical system may be up against is

denoted by the set F0. The faults can be categorized into systematic faults
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and random faults. Systematic faults are permanently inherent to a system.

They are caused by mistakes or shortcomings in the development process.

Software faults and design flaws belong to the systematic faults.

F0

Figure 1.3: Fault set F0

Random faults are those faults whose presence, location and duration are

not predictable. Human interaction faults might have to be added to the

type of random faults from a strictly objective point of view. However, the

term random fault has become a common expression that is associated with

hardware defects.

Definition 1.3: A random fault is a physical malfunction in the hardware,

caused by a natural phenomenon of internal or external origin. Its location

and moment of occurrence is unpredictable. Its duration may be permanent,

intermittent or transient.

The presence of a fault may lead to an error. In [St96 p.12] an error is defined

as a deviation from the required operation, and is considered the mechanism

by which a fault becomes apparent. In this sense an error is behavioral and

denotes a perceptible activity that is caused by a fault. Other authors consider

an error to be a “static condition” [Le95 p.172]. For example, in [Wa78 p.9] an

error is an incorrect output. In this thesis the term error refers to both — the

static result of a fault as well as the dynamic consequence of a fault. In any

case, an error is the manifestation of an active fault and usually implies that

a constraint (e.g. required operation, correct output) is violated.

Definition 1.4: An error is the static or dynamic manifestation of an active

fault. An error violates a given constraint.

Sometimes the term fault effect is used as a synonym for an error. The dif-

ference between an error and a fault effect is that the latter does not violate
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a constraint. A fault effect is the silent and unjudged effect of a fault. Fault

propagation often means the propagation of fault effects. A fault effect may

vanish or turn into an error. Errors may induce failures which are deviations

from the appropriate behavior of a system or object. A failure is commonly

defined to be an event.

Definition 1.5: A failure is the nonperformance or inability of a system or

object to perform its intended function for a specified time.

1.6.7 Safety

An inherent goal of any safety-critical system is that the occurrence of a fault

may not result in a dangerous situation. The system must be safe, at least to

a certain degree.

Definition 1.6: Safety is the property of a system, not to harm humans or

objects that are not intended to be harmed.

Safety is not an absolute and naturally defined property, and there is no such

thing as a totally safe system. The safety of a system is always related to a

certain fault set F0. The safety measure Ssys(F0) is the measure of fulfillment

of the system with respect to the faults F0. During operation safety is achieved

through fault-tolerance.

1.6.8 Fault-Tolerance

In to order maintain safe behavior, the system must be able to somehow cope

with faults that occur during operation. The property of an operational system

to tolerate faults (or fault effects) is described by its fault-tolerance.

Fault-tolerance is the ability of a system or component to con-

tinue normal operation despite the presence of hardware or software

faults [IEEE90].

The key to the above definition lies in what is considered ‘normal’. Fault-

tolerance contributes to both the availability and the reliability of a system.

In the sense of availability, fault-tolerance aims at keeping the system in ser-

vice when faults become apparent. In the sense of reliability, fault-tolerance

aims at keeping the system safe, with or without continuation of the regular

service. It is the reliability aspect that matters with safety-related systems. A
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fault-tolerant system or subsystem, at which faults are present, is supposed to

either balance the faults or to signal their presence, such that safety can be en-

sured. In the former case, the system is hiding problems; in the latter case the

system is alerting its outside world (the other systems or the environment).

This is considered here the ‘normal’ operation and corresponds to a similar

notion from [Vo98 p.42]: “Fault tolerance traditionally refers to the level of as-

surance that the failure of one subsystem will not cascade (propagate) causing

the failure of others.”. The pinpoint lies on the unnoticed propagation of fault

effects. A system that is exposed to faults can be said to behave fault-tolerant,

if it successfully hinders fault effects from leaving the system without notice.

The system must compensate the fault effects or must signal their presence,

but no fault effect should escape silently.

Faults may enter a system from its outside via the interfaces, or may come

into being within the system [Av97 p.52], as depicted in Figure 1.4.

signal

signal

compensate

compensate

alert

Fault-tolerant system or object

Figure 1.4: Exterior and interior origin of fault effects to be tolerated

The following definition focuses on the essence that a fault-tolerant system

should neither be the emitter of faults nor be a bearer of such, unless the

system is able to signal their presence. A system may thus become unavailable

but still may be attributed to be fault-tolerant.

Definition 1.7: Fault-tolerance is the property of a system or an object, while

being in the presence of faults, to prevent fault effects from leaving that system

or object unnoticed.

The safety and the fault-tolerance of a system (or object) are closely related

to each other when referring to the same set of faults F0. At system level

the overall safety of a system is proportional to the overall fault-tolerance of

the system, Ssys ∼ FTsys. Fault-tolerance can be viewed as a shield that in-

tends to hinder faults from developing and propagating towards a location at
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which they may cause harm (usually the environment of the considered ob-

ject). Whether a non-tolerated fault actually causes harm or not depends on

the current conditions at that location and is a matter of luck.

non-tolerated

F0 FTsys
Ssys

safe

unsafe

Fault-tolerance SafetyFaults

Figure 1.5: Fault-tolerance and safety

Fault-tolerance is not concerned with luck; it is concerned with preventing

human life or the environment from being dependent on luck. If the set F0

includes all faults that could ever affect the safety of a system, then FTsys

determines the lower bound of the system safety.

FTsys(F0) ≤ Ssys(F0) (1.1)

The safety of a system then is at least as great as the fault-tolerance of the

system. Fault-tolerance is a matter of hardware and software. As mentioned,

much of the responsibility is shifted to the software. Its fault-tolerance during

operation is vital and therefore has to be evaluated and put into meaning-

ful and comparable measures. Meaningful measures require the evaluation

procedure to be methodically comprehensive as well as traceable in practice

(credibility through reproducibility). Comparable measures require the evalu-

ation(s) to follow some common procedure. Fault-tolerance evaluation is one

subject within the scope of dependability evaluation.
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Chapter 2

Fault-Injection for Software

Dependability Evaluation

2.1 Introduction

Dependability is defined as “The trustworthiness of a computing system which

allows reliance to be justifiably placed on the service it delivers” [IFIP88].

For software there is no dependability definition universally accepted and em-

ployed. Dependability is often regarded as a set of properties such as reliability,

availability, safety, fault-tolerance, robustness, and security [Co03]. It is the

property ‘fault-tolerance’ of safety-critical embedded software, respectively its

evaluation through fault-injection, that is considered in this work.

Fault-injection is a method for the deliberate insertion of faults into a tar-

get to determine its response. Fault-injection has become a valuable asset

in dependability evaluation. Two distinct fields in fault-injection can be dis-

tinguished: software fault-injection and hardware fault-injection. With the

former type, faults are implanted into a program. With the latter type, faults

are introduced into hardware. Software fault-injection is unsuited to simulate

the effects of random faults onto the machine instructions since this would

involve massive manipulations of the original program. The executed program

under test would not be the program used in the final product (there are other

reasons as well). Software fault-injection is therefore not further considered.

This chapter first gives a survey on the hardware fault-injection techniques.

The approaches taken in software dependability evaluation using hardware

fault-injection are reviewed then. After noting the state of the art, compa-
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rability aspects are addressed. Based on the FARM sets from [Ar90], the

requirements for enabling more comparability in evaluating the fault-tolerance

of software through fault-injection are determined.

2.2 Injection-Techniques

Three different injection-techniques are used in hardware fault-injection. The

difference among the techniques lies in the physical manifestation of the investi-

gated system. In physical fault-injection the faults are caused in the real hard-

ware through physical disturbances. In software implemented fault-injection,

emulated faults are injected into the real microprocessor via its regular pro-

gramming interface. Simulation based fault-injection uses a simulation model

of the target hardware; the injected faults are simulated hardware faults.

Attributes

Fault-injection is carried out through performing so-called fault-injection ex-

periments. These are characterized by the following attributes.

Injected Faults : The outward form of the faults actually injected. The faults

may be true physical faults, emulated errors at some higher abstraction

level, or simulated faults.

Fault Duration: Hardware-faults may be transient, intermittent or perma-

nent.

Operating Speed : The speed at which the investigated system or object is

operating. A system may be operated in real time or may be operated

(or simulated) at lower execution speed.

Real-time operation doubtlessly is the most desirable, because the system

can remain connected to its real environment. The system receives real-

world input and can respond through the real actuators.

Tool Intrusion: The tools necessary to inject the faults and to monitor the

effects may have to be inserted directly into the investigated system,

thereby changing the system away from its original state.

The inserted tools should not cause interferences. “In real-time systems

where time is the most precious resource, fault injection and data collec-

tion must be performed with minimum overhead to the target system.
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Otherwise, the correctness of the validation itself becomes questionable”

[Ha95 p.204].

Controllability : The ability to fine-tune the injection of faults, that is, to

select the fault location, and to determine the moment of injection and

the fault duration, is summed up as controllability.

Controllability enables selective fault-injection, which allows to focus on

a sub set of the considered faults or on a certain part of the system.

Observability : The ability to monitor the effects of the injected faults and

their propagation (geographic propagation, propagation towards higher

abstraction levels) is noted as observability.

For the final evaluation of the experiment results it is necessary to have

knowledge about the effectiveness of the injected faults. It needs to be

known whether the injected faults were effective, whether they caused

errors (where, how much) and whether or not the errors have been tol-

erated (and by which mechanisms).

Reproducibility : Controllability and observability contribute to reproducibil-

ity which is the ability to repeat fault-injection experiments under identi-

cal conditions as in previous experiments (same fault input, same system

state).

Reproducibility allows to evaluate modifications or improvements ap-

plied to the system. A convincing comparison of different versions of a

system is only possible if the systems are operated under the same con-

ditions. Reproducibility generally contributes to the trustworthiness of

the obtained results since the experiments can be repeated on demand.

This is especially important when it comes to the process of gaining cer-

tification. A short essay on “How reproducible should fault experiments

be?” can be found in [St98].

2.2.1 Physical Fault-Injection

Physical fault-injection takes place at the physical level of the target hardware.

The faults are caused through short-term variations of the physical character-

istics of the hardware. The hardware is tried not to be damaged permanently,

that is, physical fault-injection intends to be non-destructive.
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2.2.1.1 Permanent Overranging

Permanent overranging (or overdriving) can be considered the oldest approach

in non-destructive physical fault-injection. The microprocessor is purposely

operated in a parameter space outside its physical tolerance limits. This ap-

proach is traditionally used to accelerate the occurrence of dynamic faults that

are caused by fabrication defects. In [Hg82] and [Hg89] permanent overranging

was used on various fault-free 8085 microprocessors in order to demonstrate

a presented self-test approach. The parameter space has been defined by the

power supply voltage, the clock frequency and the temperature.

2.2.1.2 Heavy Ion Radiation

With heavy ion radiation (HIR), a processor chip is bombed with heavy ions

from a californium-252 source. The ions penetrate the depletion region of

a reversed-biased pn-junction, thereby only affecting stored information by

changing bit values from 0 to 1 or vice versa. The majority of heavy ions is

noticed to affect only single bits [Mi95 p.442]. The fault-injection experiments

must be performed in a vacuum chamber with the lid of the target IC removed,

because ions are attenuated by air. The radiation flux is distributed uniformly

over the chip, and error rates can be adjusted by changing the distance from the

ion source. HIR allows to introduce faults at internal locations in integrated

circuits. However, there is no direct control over where and when the injec-

tions actually occur [Cl95 p.49]. HIR was extensively used at the Chalmers

University in Gothemburg (Sweden). Most of the publications on HIR and

its application in fault-injection experiments come from there. In [Jo94], for

example, HIR was used to investigate the first error-manifestation of particles

within a NMOS Motorola 68000 and a CMOS Philips 68070. The application

of HIR in validating fault-handling mechanisms is reported of in [Ka94].

2.2.1.3 Electromagnetic Interference

This approach uses electromagnetic interference (EMI) generated by a burst

generator. Plates are connected to the generator and placed above the target

circuit of the tested system. The bursts are similar to those that arise when

switching inductive loads with relays or mechanical circuit breakers. Although

antennas may give some controllability of the target location of fault-injection,

it is difficult to determine exactly when and where a fault is actually being

injected [Fo99 p.15, 30].
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2.2.1.4 Power Supply Disturbances

Short, pulsed voltage drops are inserted at the power supply pin of the target

processor. The voltage drops can increase propagation delays and discharge

nodes. Unlike HIR, power supply disturbances affect many nodes in the target

IC, thereby producing multiple transient bit-faults. The location of these faults

can however not be precisely controlled. This injection technique is quite

sensitive to the width and amplitude of the voltage drops. Effects can also

vary widely with different circuit families [Cl95 p.49].

2.2.1.5 Pin Level Fault-Injection

With pin level fault-injection, faults are injected at the pins of the target IC.

A variety of fault models is used; e.g. stuck-at-0 or stuck-at-1, in which the

faulted pins are set to a logic 0 or 1, bridging, when several pins of a circuit

are interconnected, inverted signal, in which the level of the faulted pin is

inverted, or open connection, when the faulted pin is essentially tri-stated.

The duration of the fault can be adjusted to simulate transient, intermittent

and permanent faults [Fo96 p.11]. Pin level fault-injection was used in various

experiments at the CNRS (Centre National de la Recherche Scientifique) in

Toulouse (France). A special tool named MESSALINE had been developed

for this purpose [Ar89,Ar90].

2.2.1.6 Discussion

The most prominent advantage of physical fault-injection is that the target

hardware is not functionally modified and is operated in real time. The target

hardware can remain embedded in its original environment. This allows to

perform fault-injection experiments while the system is connected to its ex-

ternal sensors and actuators. Physical fault-injection is thus especially useful

for real-time systems. There is no intrusion into hardware or software. The

system under test is identical to the system used in the field. Physical fault-

injection has the advantage of causing actual hardware faults, but there are

some disadvantages.

Physical fault-injection causes transient faults only. Permanent overrang-

ing and pin level fault-injection may be an exception to this. Detailed fault-

localizing and selective fault-injection is almost impossible, therefore the exper-

iments are usually not reproducible. Monitoring and data collection is difficult
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as it requires additional hardware to be connected to the processor buses. The

internal components and the interconnecting buses usually cannot be moni-

tored at all. In general, physical fault-injection incurs high effort and costs,

especially when different approaches are used in order to expose the system to

as many different faults as possible, as encouraged in [Fo99 p.62].

2.2.2 Software Implemented Fault-Injection (SWIFI)

As in physical fault-injection, the SWIFI technique is applied to the real target

system. The SWIFI approach consists in repeatedly interrupting the applica-

tion process and executing specific fault-injection code that injects emulated

fault effects into software-accessible memory locations or registers. The in-

jection code may be embedded in the application program or may be a sep-

arate process on the processor. SWIFI was applied, for example, in DOC-

TOR [Ha95] for the purpose of dependability evaluation of distributed real-

time systems. The actual fault-injection has been performed by so-called fault-

injection agents which were separate processes on the target hosts.

SWIFI can become very powerful if the target microprocessor provides spe-

cial functions, such as built-in debugging- and performance features. Either

from a remote computer or from a separate software process on the target host,

the processor can be stopped and fault-injection is then performed through spe-

cial microprocessor commands. This happens transparent to the application

software under test. The FEST technique presented in [Lo95], which uses the

trace-mode feature of the 68000 processor, and the tool Xception from [Ca98],

which uses the more advanced features provided by the PowerPC 601 proces-

sor, are prominent examples.

2.2.2.1 Discussion

SWIFI is a flexible and cost-effective fault-injection technique. It offers bet-

ter controllability of the injection and higher observability of the effects than

physical fault-injection. The SWIFI technique allows for reproducible fault-

injection experiments. The experiments can be carried out near to real-time,

although the actual operation speed of the target system depends on the type of

faults injected. Usually, injecting transient faults with SWIFI causes the least

overhead. Because the injection mostly is performed by additional software on

the target system, either as a separate process or as a piece of code added to

the original program, SWIFI causes some intrusion compared to the original
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constellation. Monitoring-hardware or monitoring-software, if any, may also

pose an alien element to the original system.

A disadvantage of SWIFI is the fact, that faults cannot be injected inside

the circuits. Instead, representative errors have to be injected at the register

level. SWIFI thus demands a suitable fault–and–error model of the particu-

lar target processor. Another drawback of SWIFI is the monitoring expense.

Monitoring, if performed by software and not by additional hardware, happens

to the cost of the execution time. High observation details may require the

execution of the target application to be carried out step by step.

2.2.3 Simulation-Based Fault-Injection

With the simulation-based approach, faults are injected into a simulation

model of the target hardware. This approach can support various abstrac-

tion levels of the hardware. Often the simulation model of the hardware is

not limited to one abstraction level but incorporates several abstraction levels

(multi level, mixed mode).

2.2.3.1 Device Level

At this level, fault-injection is used to study the impact of electrical anoma-

lies. The fault model mainly is electrical. Fault-injection is usually per-

formed through mathematical modifications of voltage and current time curves,

thereby simulating the response of the electronic devices to electrical charges

intruding the system. Simulation-based fault-injection at device level was used

for example in [Du88, Ch91] to study the susceptibility of a microprocessor-

based jet engine controller to voltage and current transients. The microproces-

sor investigated was the HS1602, and the simulations were carried out using

the mixed-mode simulator SPLICE1. Device level fault-injection not only re-

quires a precise model of the target hardware, but is also very time-consuming.

Simulating a modern microcontroller at device level is infeasible.

2.2.3.2 Gate Level

Gate level fault-injection enables the simulation of larger circuits, which would

be too time consuming at the device level. Also the fault model is simpler than

with device level simulation. Commonly, stuck-faults and bit-flips are used.

Gate level fault-injection, although never termed this way, has also been used
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in classical fault-simulation on combinational or sequential circuits. The goal

in fault-simulation was to find test-patterns and to verify the fault-coverage of

given test-vector sets. Within the scope of dependability evaluation, gate level

fault-injection is also used to observe the fault propagation towards higher

levels. In [Yo96], fault-injection at gate level has been used to model the

fault effects at the register transfer level of the ROMP microprocessor. In

[Cz90] the effects of transient gate level faults onto program behavior (original

wording) were investigated through gate level fault-injection. Gate level fault-

injection nevertheless is time-consuming. This certainly is true for simulating

a microcontroller completely.

2.2.3.3 Register Transfer Level

RTL fault-injection uses a register transfer model of the target microprocessor.

The faults are state-errors being injected into buses and registers, but may also

be behavioral errors in a more general sense. For example, the ASPHALT tool

used in [Yo93] induced faults through applying state-mutation to the language

statements of the RTL model description. This caused a change in the behavior

of the microprocessor, which could not have been achieved as easily through

just injecting bit-flips or similar into memory locations or registers. As with

the device level and the gate level, an accurate model of the microprocessor

is required as well as the appropriate simulation tools. RTL fault-injection is

much faster than the aforementioned simulation-based injection-techniques.

2.2.3.4 Register Level

The register model usually is the best documented model of a given micro-

controller. Simulation-based fault-injection at register level is the injection of

faults or fault effects into memory locations, registers and public-visible state

elements of a microprocessor. Register level fault-injection is similar to SWIFI,

however much slower in execution but much more precise in monitoring the

propagation of the injected faults. Of the four simulation-based techniques,

register level fault-injection doubtless is the fastest, but it is the least accurate

in modeling real fault effects. As in SWIFI, an appropriate fault–and–error

model of the microprocessor is desired for the injection of realistic fault repre-

sentatives.
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2.2.3.5 Discussion

Simulation-based fault-injection allows a reproducible and very selective injec-

tion of faults. Depending on the modeled level of the hardware, faults can be

precisely injected at internal components or nodes of large circuits. Monitor-

ing is easy because of the all-time accessibility to the components. The fault

effects can be traced in greater detail than with the other two techniques.

Simulation-based fault-injection allows the injection of transient, permanent

and intermittent faults. It offers high controllability and high observability. In

addition, this technique is also applicable in the early phases of system devel-

opment, long before a prototype is available.

The major disadvantage of simulation-based fault-injection certainly lies in

its simulation-time overhead. Fault-injection experiments using the simulation-

based approach are usually carried out far from real-time. Another drawback

is that appropriate models of a particular hardware may not be available, at

least not publicly. Especially low-level models (e.g. device level, gate level) of

the microprocessor are difficult to obtain. Appropriate simulation tools are

also required. The only exception may be the register model. Register model

simulators are available for most microcontrollers. They are usually included

in the software-development suites. The existing simulators however provide

almost no fault-injection support.

2.2.4 Summary

Physical fault-injection introduces real transient hardware-faults into the sys-

tem, but offers no reproducibility owing to low controllability and low observ-

ability. The system can be operated in real time, and the fault-injection tools

are mostly not intruding the system. SWIFI allows the system to be executed

close to real-time. The injection-tools are intruding the system to a little or

medium extent. Reproducibility is provided. Controllability and observability

is middling because the injection and the monitoring is limited to the software-

accessible interfaces of the target microprocessor. The injected faults are data

faults (state mutations) in memory locations or registers. Injecting transient

faults needs the least time-overhead; injecting permanent faults however in-

curs more time-overhead owing to the repeatedly invocation of the injection

routines. Simulation-based fault-injection is the slowest but most accurate

of all. There is no intrusion. The injected faults – being simulated – can

be physical (e.g. ions), logical (e.g. stuck-faults, bit-errors) or structural (e.g.
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modification of RTL model). The faults which may be transient, intermittent

or permanent, can be controlled and monitored precisely. Reproducibility of

the experiments therefore is assured. Table 2.1 summarizes the attributes of

the three injection-techniques.

Fault-Injection Techniques

Attributes Physical Software-Implemented Simulation-Based

Injected Faults True physical Emulated errors in data
(memory, registers, flags)

Physical, logical,
structural. All
simulated.

Fault-Duration Transient Predominantly transient,
intermittent, permanent

Transient, inter-
mittent, permanent

Operating Speed Real-time Close to real-time Mostly below
real-time

Tool Intrusion None or little Little to medium None

Controllability None or low Medium High

Observability Low Medium High

Reproducibility No Yes Yes

Table 2.1: Attributes of hardware fault-injection techniques

Concluding, for real-time execution, injection and observation, the simula-

tion-based technique is the favorite — given that a suitable model exists. The

SWIFI technique ranks second, but on principle is slower than real-time. Even

overclocking the target processor cannot compensate the time needed for con-

current injection and observation.

2.3 State of the Art

Hardware fault-injection for dependability evaluation has been used in vari-

ous approaches for a long time. Many approaches aimed at predominantly

investigating hardware fault-tolerance mechanisms. The following survey on

the related work is limited to those representative injection experiments in

which software was involved or in which embedded systems were considered.

A discussion on the limitations follows.
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2.3.1 Related Work

Software-implemented fault-injection was used by [Ch89] to check for the re-

sponse of a commercial transaction processing system on the IBM 3081-KX

mainframe. The injected faults used to be corrupted memory pages that were

filled with an illegal instruction code. The software failures were classified as

Crash, Impairment, non-application-related, and ineffective (original wording:

Nothing Happened). In [Ba90], fault-injection experiments carried out on the

FIAT (Fault Injection-based Automated Testing) system are presented. FIAT

consists of four interconnected IBM RT PC’s. Three types of faults were in-

jected into the memory task image of a matrix multiplication workload and

a selection sort workload: zero-a-byte, set-a-byte and two-bit-compensating

faults. Five distinct error behaviors of the workloads were classified: Machine

Crash, Task Stop, Response Too Late, Invalid Output and No Error. Another

automated fault-injection tool is FERRARI (Fault and ERRor Automatic Re-

altime Injection), reported of in [Ka92,Ka95]. The tool was first implemented

on a SPARC workstation and has been ported also to IBM RISC-6000 and

VAX machines. FERRARI uses traps and system calls of the operating sys-

tem for the fault-injection. The fault types supported are XORing a bit,

resetting a bit, setting a byte and resetting a byte. Three workloads (a matrix

multiplication using checksums, a quicksort with assertions, and robust data

structures in a modular robust binary tree) were used in the experiments.

The response of the workload software was observed in terms of time out,

program exit, checksum detected, and undetected. In [Ca98] a software fault-

injection and monitoring environment called Xception is presented. Xception

is built on a SPARC workstation and uses the advanced debugging features

of the PowerPC 601 microprocessor. The reported fault-injection experiments

aimed at evaluating the impact of faults in parallel applications (here on a

Parsytec Xplorer with four nodes). The injected fault-types at register level

were: stuck-at-zero, stuck-at-one, bit-flip and bridging. Three classes of im-

pacts onto the software were categorized: undetected, no error, error. A tech-

nique called FEST (Fault Effect Simulation by Tracing) is presented in [Lo95].

The technique uses the trace mode facility of the Motorola 68000. FEST is

implemented into the ProFi (Processor Fault injection) tool which was said

to built a framework for large fault-injection experiments for the evaluation

of fault-detection coverages. The paper does not present an injection exper-

iment. Physical fault-injection was used in [Ar90]. The fault-injection tool

MESSALINE is a pin level fault-injector, consisting of a management software
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hosted on a MAC II and the experiment setup hosted by an INTEL 310. One

of the experiments aimed at testing a self-test program which was designed on

the stuck-fault hypothesis. The response of the test program was decomposed

into four classes: complete diagnosis (error detection and report), muteness (no

message), garbage (message consists of random symbols), and no detection. It

is the more formalized approach presented in the paper that makes this pub-

lication distinct from many others. The approach will be addressed again in

Section 2.4. In [Re99] embedded systems were addressed in particular. Fault-

injection was performed by making use of the Background Diagnostic Mode

(BDM) of the Motorola MC68332 microcontroller. The faults were chosen to

be transient single bit-flips which were applied to three workloads: a bubble

sort, a parser for arithmetic expressions, and a Dhrystone benchmark. The

behavior of the system was classified into fail-silent (no effect onto system be-

havior), detected (by hardware or software), fail-silent violation (faulty output

without detection), and time-out.

2.3.2 Limitations

For the following limitations the reported approaches are not directly applica-

ble for achieving comparable measures on the fault-tolerance of safety-critical

embedded software, in particular regarding the fault-tolerance with respect to

random faults affecting the machine instruction execution. In defense of the

publications it is to remark that none of the presented approaches was claimed

to allow for comparable results.

2.3.2.1 Technical Limitations

Injection Environment: In most cases the target software used to be sur-

rounded by an operating system, and a separate injection-process was then

used to perform the injection. The early approaches focused on mainframes or

interconnected computers, later approaches were carried out on single multi-

tasking machines (UNIX, MVS). Safety-critical embedded software usually is

executed bare on the host microcontroller, and for reasons of available memory

and execution time there will be no space left for additional software. Also,

with safety-critical embedded software free memory space often is filled with

so-called error-capturing instructions (ECI) which are redirecting the software

to a specific program point in case of control-flow problems. In any case,

adding non-application related software poses a distortion to the original sys-

tem.
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Host Processor: More recent approaches make use of the special debug-

ging features found in some microprocessors such as the PowerPC 601 or the

MC68332. Not all safety-critical embedded systems are however equipped with

such sophisticated processors. Software for these systems is excluded from the

presented approaches.

Execution Speed: Many of the SWIFI approaches have been stated to be

fast, but the time necessary for tracing the fault effects has often been dis-

regarded. Seeing the bundle consisting of injection and observation, SWIFI

becomes much slower than real-time. This problem was also directly noted

in [Re99].

2.3.2.2 Conceptual Limitations

Target Boundary: The boundary between the target software (the object of

investigation) and the rest of the system has not been specified clearly in the

publications. It is unclear where exactly the communication interface between

the software and its environment was considered located. Without knowledge

about the target boundary, there is no knowledge about whether a fault occurs

inside or outside the target, and about how the faults (or fault effects) cross

the boundary.

Fault-tolerance, as most of the dependability properties, is a feature

of a certain target system or object. Therefore, when evaluating a

property, a dividing line must be drawn around the target, and the

location of the interface must be identified.

Fault Input: Because the behavior of the target software was stated with

respect to the injected faults, but not with respect to their effects onto the

software at some appropriate abstraction level, and because the fault input

spectrum was varying from physical level to register level, the results are not

comparable since the fault input is not comparable. The diverse fault input

used and the absence of a common and target-appropriate fault set is a major

reason hindering the comparability of the results.

Fault–Error Relationship: The fault–error relationship appears to have

been kept quite plain in the experiments. Often the fault-injection location

was considered to be also the location of the occurrence of the error. Any

divergence between fault-location and error-location has been excluded right

from the start (no fault propagation). Also, in most of the experiments the
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injected faults were considered to be immediately effective (no fault latency),

for example when the content of a manipulated cell (memory or register) be-

came different from its original value. The problem of ineffective faults has

been addressed only in a few publications. In [Ka95 p.255] a detailed example

of a benign error is given. The error was benign in that it “did not cause the

program to deviate from its normal execution”. The authors of [Ar90] point

out that an experiment environment should provide a means to discriminate

activated faults from non-activated faults.

Because software (generally any system, object or entity) cannot be

tested for its response to something that does not become appar-

ent, it is mandatory to ensure that the injected faults have indeed

reached the target and have caused an error.

Golden Run: To some exceptions, as in [Ar90] and [Du88], the target soft-

ware used to be artificial workload that was operating on deterministic input

(e.g. matrix multiplication or sorting algorithms). The output of the fault-

injected software has been compared against the output of the golden run

through a byte-by-byte comparison. Safety-critical embedded software faces

a rather non-foreseeable and complex input. Golden runs therefore are diffi-

cult to obtain since exact reproducibility of the input is required. Even in a

simulated environment where states are reproducible, the comparison of the

output signals likely is more difficult, because it is not the physical appearance

of the output (in terms of bits and bytes) to be compared, but the meaning

(the information contained).

Fault Models: Although fault-injection, as mentioned in Chapter 1, is not

concerned with how close to reality the injected faults are, the injected faults

seem to have been chosen quite at haphazard in the approaches. Fault models

that are mapping random faults in the processing hardware onto the injected

faults have not been presented or used to be quite simple (e.g. a stuck-fault

on the internal bus will cause a bit-flip in a register).

2.3.3 Summary

Regarding the state of the art in using hardware fault-injection for evaluating

the fault-tolerance capabilities of software, the following statement from 1995

(referring to both software fault-injection and hardware fault-injection) still

holds.
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Most fault-injection experiments were not designed around a formal-

ized methodology. Experimenters typically developed customized

approaches to validate each new system. This makes it difficult to

apply specific results from different studies when analyzing other

systems [Cl95 p.54].

Next to the technical limitations, the major obstacle encountered certainly is

the lack of a common procedure, not only particularly for evaluating safety-

critical embedded software with respect to random faults, but generally in ap-

plying fault-injection for software dependability evaluation. The various types

of faults used in the experiments and the sometimes different naming of similar

faults are just examples for the absence of a mutual basis. What is missing

is a certain amount of comparability, that is, comparability of the procedures

(conformance among the experiments) and – in the end – comparability of the

obtained measures.

2.4 Comparability

From the previous it is apparent that comparability – respectively the absence

of it – is an occasionally noted topic in fault-injection. This section tries to

identify the major requirements necessary for enabling comparability in evalu-

ating the fault-tolerance of software through fault-injection. The starting point

has already been laid by Arlat, Crouzet and Laprie in [Ar89, Ar90] through

the introduction of the so-called FARM sets.

2.4.1 The FARM Sets

A formalized methodology regarding physical fault-injection for dependability

validation was presented in [Ar90]. The paper addresses the fundamental the-

ory behind fault-injection and the interpretation of the results, and presents

concrete application examples for pin level fault-injection experiments. Al-

though the publication focuses on physical fault-injection, the ideas are worth

to be considered as well for evaluating the fault-tolerance of safety-critical em-

bedded software.

According to [Ar90], fault-injection is characterized by a collection of sets:

the FARM sets. The set F corresponds to the input domain and denotes the

set of faults in general. Dependent on the abstraction level of fault-injection,
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the F set may be described by stochastic processes or may contain very spe-

cific faults. In the application example presented in the publication, the F set

consisted of physical pin level faults. The A set denotes a set of activations.

Activations are actions that are required to “functionally exercise the target

system”. A test pattern that is applied to the inputs of a circuit is an example

of an activation. Another example is the workload software that is executed

on a microprocessor-based system to trigger the injected faults. The F set

and the A set together determine the creation of errors. The responses of the

system to the injected faults form a set of readouts R. The R set is the output

domain in the fault-injection experiments. Upon these readouts a number of

predicates (Boolean assertions) regarding the behavior of the system are de-

fined. These are the predicates that the target is tested for. The M set refers

to the measures that are finally derived from the outcomes of the experiments.

At first instance the M set consists of coverages regarding the predicates and

of corresponding distribution functions. At further instance the M set may

contain the customary reliability metrics. The FARM sets form the basic en-

tities present in any fault-injection experiment.

targetA

F

R MF,A,P(R)

Activations Readouts

Predicates

Faults

Measures

Figure 2.1: The FARM sets in fault-injection

2.4.2 Prominent Example

A prominent example for conformance and comparability in fault-injection is

gate level stuck-fault simulation. Everything is quite clear from the beginning.

The object of investigation (the target) is a gate level model of some circuit.

The subject of investigation is, for example, to assess the fault-tolerance of

the circuit, or to evaluate the fault-detection coverage of a given set of test

patterns. The F set may be specified to be of the class ‘single stuck-faults’,

the individual faults and their locations then automatically arise from a circuit
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analysis. The input patterns form the set of activations A, and the readouts

refer to the node values and output patterns observed. Finally, the predi-

cates are plain (e.g. fault masked, fault detected, fault handled) and so are the

derived measures. Next to these technical aspects, there is a known terminol-

ogy and a common notion of the used terms. For example, it is clear what is

termed a fault (the stuck-fault) and what is termed an error (the inverse of the

node’s logical good value, respectively the change of the logic function of the

gates). It is clear what is meant by masking, detection, latency and coverage.

For these reasons the assessment and comparison of different circuits regard-

ing their fault-tolerance capabilities is possible and feasible. Simulating large

circuits or highly sequential circuits certainly poses practical problems, but

the theoretical fundament for a meaningful comparison does exist: the almost

standardized FARM sets and a standardized interpretation of the terminology.

As emerged from the state of the art, things are different when it is to evaluate

and compare the fault-tolerance of software. This is especially true for safety-

critical embedded software in the presence of random faults.

It is much more difficult to compare two programs in execution,

each of, say, a thousand machine instructions in size, than it is to

compare two gate level circuits having each a thousand gates.

The evaluation of the fault-tolerance of software in the presence of hardware

faults, in particular to those faults affecting the machine instruction execu-

tion, likely never becomes as straight and easy as the evaluation of the fault-

tolerance of gate-level circuits. Nevertheless, a basis for more conformance

among the fault-injection experiments and – as a consequence – for more com-

parability of the derived measures can be laid by porting the FARM sets to

the target ‘software in execution’ and the concerned random faults.

2.4.3 Requirement Identification

For the following discussion, fault-injection is considered as two processes: the

actual injection and observation process (the experiments), and the process

of inspecting and analyzing the readouts R. The sets involved and discussed

next are shown in Figure 2.2.
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Figure 2.2: The two processes in fault-injection

2.4.3.1 The F Set

The major reason hampering comparability in fault-injection is the fact that

the effects of the faults onto the target software often are not tangible (e.g. with

heavy ions, pin level faults, electromagnetic interference). There is no com-

mon fault input domain and thus no common reference point. The starting

point for enabling comparability therefore is some standardized and target-

appropriate fault input domain.

What makes gate level stuck-fault simulation exemplary, is the fact that

the injected faults not only cause sharply outlined and standardized errors,

but that the abstraction level of these errors is also in close proximity to the

abstraction level of the target (the circuit). The induced errors directly affect

the structural elements that a gate level circuit is made of: the nodes and

the gates. The errors have an immediate meaning to the object, that is, the

errors and the object correlate. Such a correlation is imperative for obtaining

comparable measures from an injection-experiment. Therefore the fault set F

should not only be standardized, but also should be settled at an abstraction

level that is close to the level of the target software. Preferably the faults in

F directly affect the structural elements of the software.

The elements in F are both faults and errors: From the bottom-up view the

elements are fault effects (or errors), from the top-down view the elements are

faults since the input domain in fault-injection is defined to be faults. The F

set should be an accumulating interface in which the effects of low-level faults

can be collected (Figure 2.3). The fault effects can then be used as fault input

in new experiments.
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Figure 2.3: Accumulating fault effects in a common F set

2.4.3.2 The A Set

The target software in conjunction with the input from the environment forms

the activations A. The sets A and F together determine the creation of errors,

as well as the subsequent effects. For obvious reasons there will be no unified

environment among different safety-critical embedded systems, and thus the

input streams to the software are likely not to be standardized. The only com-

parability requirement that can be attained is to have the software operating

in their real-life environment (or in a close-to-real simulated environment).

2.4.3.3 The RPM Sets

The physical appearance of the readouts R from the software usually is specific

to the host system. Although any software operates on memory locations, and

thus the readouts can always be expressed in terms of bits and logical signals,

the great variety of possible readouts on different systems will not allow any

attempt in unifying. As one is interested in the information that is carried

by the readouts rather than in the particular readouts themselves, the focus

in comparability rather lies on the predicates P . The readouts can remain
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customized, the predicates strip and canalize the required information. Since

all safety-critical software share at least some standard requirements regarding

their fault-tolerance, there is a shared set of predicates P and measures M

against which any safety-critical software can be assessed.

2.4.3.4 Valuation Rules V

The results obtained from the individual experiments must be inspected and

classified before entering the derivation of the final measures. For example,

redundant experiments or experiments in which the injected faults were not

activated may have to be discarded. Citing from [Sl98], “. . . even when results

have been gathered, researches are still uncertain or divided as to exactly what

the results mean, and how they should be used”. Therefore a common set of

rules for valuating the results needs to be specified.

2.4.3.5 Notions N

Another reason hampering comparability seems to be the sometimes varying

notion of common terms, such as the term ‘masking’ for instance. Even though

there would be a standardized collection of FARM sets, a differing notion of

the used terms unintentionally makes a comparison to be unfair. The term

fairness here primarily relates to the fairness towards the investigated target,

but indirectly also touches on the fairness between the software development

teams. Fairness is a prerequisite for comparability. A common notion N is a

prerequisite for fairness.

2.4.3.6 Target Definition

Finally, the object of investigation (the target software) needs to be defined

in order to give it a clear shape. The boundary between the software and the

hosting system, and in particular the location of the communication interface

must be identified. The observation of fault propagation or the measuring of

latencies – for instance – makes little sense if it is unclear when, where, and

how the faults are entering or leaving the considered target. Also the fault-

tolerance capabilities of a target may very much depend on whether a fault

enters from the outside or occurs inside the target.
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2.4.4 Summary Requirements

Summarizing, for enabling comparability in evaluating the fault-tolerance of

software through fault-injection, the major requirements identified are:

1. A common and object-appropriate fault set F ,

• located in close proximity to the abstraction level

of the target software,

• serving as accumulating interface in existing

fault-injection experiments,

• serving as artificial fault input in new experiments,

• and serving as reference point among the experiments.

2. Natural activations A through operation of the software in its

real environment.

3. Common predicates P , valuation rules V and measures M ,

• serving as mutual basis regarding the effects of the

injected faults,

• and allowing for conformity in the analysis of the

readouts R.

4. A common notion N of the used terminology, assuring fairness

in the evaluation procedure.

5. A demarcation of the target software from the remaining system,

disclosing the location of the communication interface.

Most of these requirements certainly apply for evaluating the dependability

properties of any software through fault-injection, not just safety-critical em-

bedded software and not just with respect to the property ‘fault-tolerance’.

However, the requirements regarding the F set are particularly dedicated to

those hardware faults that affect the execution of the machine instructions.

These requirements form the basis of the fault-injection method. In Chap-

ter 6, the activations A, the predicates P , and the valuation rules V , as well

as selected notions N and measures M are taken up again and put in concrete

terms. The pivotal point in achieving comparability however is the fault set F .
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In order to have the set located in close proximity to the abstraction level of

the target, preferably directly affecting the structural elements, the nature of

the target is to be identified first. What is the abstraction level of software and

what are its structural elements? For that, the target ‘software in execution’ is

to be specified more precisely. This is one of the subjects of the next chapter,

Chapter 3.

2.5 Summary

This chapter was dedicated to hardware fault-injection for software depend-

ability evaluation. The three injection techniques were discussed for their

general suitability in investigating safety-critical embedded software. Physical

fault-injection offers no selective injection and no reproducibility. Software-

implemented fault-injection is a choice, but requires the microcontrollers to

be equipped with special debugging features. Simulation-based fault-injection

was found the most suitable. It is manifold in the choice of faults, and there is

no intrusion into the target. However, an appropriate model of the hardware

is required.

The approaches taken in various fault-injection experiments were then re-

viewed, and the technical and conceptual limitations were noted. The ap-

proaches are not directly applicable for evaluating the fault-tolerance capabil-

ities of safety-critical embedded software with respect to random faults affect-

ing the machine instruction execution. Also appearing from the publications

is the lack of a mutual basis among the fault-injection experiments. Most ex-

periments used to be customized solutions and the results are not comparable.

Therefore, in the last section of this chapter, comparability aspects were

considered. Based on the FARM sets from [Ar90], the major requirements for

enabling comparability of the obtained measures were identified. Prior point

is a standardized set of faults that serves as comparable input domain among

the experiments. This fault set F should be located close to the abstraction

level of the software. Preferably the faults directly affect the components that

the target consists of. For that, the nature of the target is to be specified more

clearly.
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Chapter 3

The Controlling Process

3.1 Introduction

The controlling process which is the embedded software in action, is the prin-

cipal entity of a safety-critical embedded system. It is the intellectual part and

reflects the capacity that the software developers have put into the program.

Because the controlling process is the organizing and supervising entity of the

embedded system, it significantly determines the behavior of the system and

the connected actuators. The process is responsible for maintaining safety

through performing fault-tolerant reactions upon faults. Its fault-tolerance is

decisive for safety.

3.2 Naming

The object of investigation is termed the controlling process rather than soft-

ware. One reason for this is to pinpoint on the nature of the target. The major

reason however is to avoid terminological confusion. For example, a process

fault is different from a software fault . The former depicts some problem in

a course of activities while the latter term is reserved to depict a systematic

fault in the program. Also the fault-tolerance of the controlling process is

not necessarily the same as what commonly seems to be meant by software

fault-tolerance.

Software is deemed as fault-tolerant if and only if [Vo98 p.160] [Cig04]:

1. The program is able to compute an acceptable result even if

the program itself suffers from incorrect logic.
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2. The program, whether correct or incorrect, is able to com-

pute an acceptable result even if the program itself receives

corrupted incoming data during execution.

The focus in the definition lies on the program and usually refers to the mea-

sures taken in terms of procedures and functions, language statements, or the

binary machine instructions in the end. Software fault-tolerance then denotes

the explicitly programmed fault-tolerance mechanisms in a program which are

ought to make up the fault-tolerance of the resulting process. However, the

execution of a program may be defective.

A good program may be executed badly, resulting in a bad process.

The process may, at least for a certain period of time, be no more synchronous

to the program. Control flow errors are one example. The program being

executed may be the shadow program which is the program ‘behind’ the regu-

lar sequence of machine instructions when the program counter is misaligned

(discussed in Section 6.9.4.2). If the shadow program contains hazardous in-

structions it likely produces a non-acceptable result. Similar applies to data

accidentally being interpreted as code. Whether the definition of software

fault-tolerance also covers such irregular programs is a matter of interpreta-

tion. In any case, in order to avoid adding ambiguities to the term software

fault-tolerance, the software in action is termed the controlling process. After

all, it is a technical process that controls the system, and independent of what

may be understood of ‘hardware fault-tolerance’ and ‘software fault-tolerance’,

what finally matters during operation of a safety-critical embedded system is

the fault-tolerance of the resulting process.

With safety-critical systems, what is important in the end is the

fault-tolerance of the controlling process.

3.3 Components

The two components establishing the controlling process are the binary pro-

gram and the processing hardware.

3.3.1 Binary Program

The binary program PM is the final result of the software development process.

It is usually stored in the ROM-area within the microcontroller. Parts of it may
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also be stored in external RAM or ROM. The elements of the binary program

PM are the individual machine instructions. By means of the instructions the

task of the binary program is to control the system through the on-chip and

off-chip peripheral devices. Each machine instruction specifies a particular

action on a particular set of memory locations, such as the general purpose

registers for quick access, the condition code and interrupt flags, the special

function registers connected to the peripherals, and the conventional memory

space. The task of a machine instruction is to become the associated memory

locations served in the specified manner. The hardware that is instructed to

perform this service is the processing hardware.

3.3.2 Processing Hardware

3.3.2.1 Definition

The microprocessor or microcontroller sometimes is considered the hardware

device that executes the binary program. At a closer look, however, only

particular hardware areas are directly involved in the execution of the ma-

chine instructions. Other hardware areas are not involved in this process. The

on-chip peripherals for instance do not execute machine instructions. All hard-

ware areas that contribute to the transformation of a machine instruction into

its associated task are denoted here by the term processing hardware. The

processing hardware depicts those hardware areas, within or outside a micro-

controller, that are essential for the correct execution of a machine instruction.

The central processing unit (CPU) plays a major role. Parts of it are always

involved in code fetching, decoding, and initiating the requested actions. Also

parts of the bus-system, internal or external, and the clock-generation belong

to the processing hardware for a given machine instruction. As different ma-

chine instructions may need different hardware areas for their execution, the

areas depicted by the notion of the processing hardware may vary by instruc-

tion — and thus by time.

Definition 3.1: The processing hardware is the hardware that is directly in-

volved in the execution process of a machine instruction. The processing hard-

ware depicts those hardware areas – within or outside a microcontroller – that

are essential to the fulfillment of the tasks assigned to a machine instruction.

Figure 3.1 symbolizes the hardware areas participating in the execution of the

exemplary machine instruction ADD mem1,mem2 (add the content of mem2 onto
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the content of mem1). These areas, shown in dark gray, belong to the processing

hardware for this instruction.
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Figure 3.1: Processing hardware involved in ADD mem1,mem2

The difference between the processing hardware and the other hardware

areas of the microcontroller (as well as of the entire embedded system) lies in

the effects of random faults onto the controlling process.

3.3.2.2 Random Faults

Random faults may occur in any hardware component. Of special concern

are those random faults that occur in the processing hardware. These faults

are denoted by the fault set R. The set R is a subset of the faults that the

controlling process has to cope with during operation (Figure 3.2).

A random fault in the processing hardware, if effective, causes an error in

the execution of the current machine instruction. A fault in the other hardware

does not, although the result after execution of a machine instruction can differ

from the fault-free case. The following examples illustrate the difference.
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Figure 3.2: Random fault set R

Example 3.1: A fault shall be assumed to be present and effective in the adder

circuit of the ALU. When the processor is executing an ADD instruction, the

processing hardware includes the adder circuit since it is essential for the cor-

rect execution of this particular instruction. The task of the ADD instruction

in execution is – somewhat simplified – to fetch the operands correctly, to per-

form the addition correctly and to put back the results correctly. All hardware

involved in this execution process belongs to the processing hardware.

Example 3.2: A fault shall be present (and effective) somewhere in the I/O

unit of a microcontroller. The fault causes executed IN instructions to receive

a value that does not reflect the true data at the corresponding input pin.

Here, the fault location does not belong to the processing hardware. This is

because the IN instruction is executed correctly. The associated task is to

correctly read data from the correct input port, the task certainly is not to

read correct data. The fact that the addressed I/O-port hardware is delivering

incorrect data to the corresponding port is not attributable to the executed

instruction.

The effects of random faults in the processing hardware are execution er-

rors, while the effects of random faults in other hardware areas manifest them-

selves in a different manner. The propagation of random faults and their

fundamental effects are addressed in more detail in Chapter 4.

3.3.2.3 Fault-Tolerance

The processing hardware of a microcontroller used in safety-critical embedded

systems is ought to be fault-tolerant with respect to random faults, at least

to a certain degree (error-correcting circuitry as an example). With perfectly

fault-tolerant processing hardware the controlling process is an exact image
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of the program PM since each machine instruction is always being executed

correctly and in full accordance to the program. Any incorrect behavior of

the process, such as a crash or missing fault-tolerance at moments where it

was expected to be put into practice, is then owing to some kind of fault or

deficiency already present in the regular program PM. This fault may have

entered the program at any development stage, from the initial idea down to

the binary executable and is a clear software problem.

If the processing hardware is perfectly fault-tolerant, then the con-

trolling process is an exact image of the program PM.

With perfectly fault-tolerant processing hardware, software developers would

be released from any concerns about execution problems and could focus on

the application relevant problems.

3.4 Definition

The object of investigation is the controlling process which is, for the moment,

defined as follows (a more precise definition will be given in Chapter 4).

Definition 3.2: The controlling process Z is the timely sequence of actions,

where an action denotes the execution process of one binary machine instruc-

tion. The components establishing the controlling process are the binary pro-

gram PM and the processing hardware.

The boundary between the controlling process and its environment follows

from the input and output operations. The communication interface of the

controlling process is the collection of actions that perform an exchange of

data across the input and output locations in the memory space. Input data

is data that may carry information and that is being processed. Output data

is data whose destination is outside the process boundary. The subsequent ex-

ecutions of the individual machine instructions are actions within the process

boundary. Actions that are initiated by output data fall outside the control-

ling process (e.g. peripheral on-chip devices). Generally, all activities in the

microcontroller or system that are not strictly contributing to the transforma-

tion of the machine instructions into their associated actions fall outside the

controlling process.
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Figure 3.3: The controlling process (stylized)

When speaking about the fault-tolerance of the controlling process (or soft-

ware in general), it must be closer specified what category of fault-tolerance

exactly is considered.

3.5 Fault-Tolerance Categories

Corresponding to the origin of faults (or fault effects), two main categories

of the fault-tolerance of the controlling process are to be distinguished. The

first category is concerned with faults that enter the process from the outside.

This will be referred to as the exterior fault-tolerance. The second category is

concerned with faults that come into being within the process.

3.5.1 Exterior Fault-Tolerance

Within the scope of supervision, the controlling process must be aware of the

current state of the system and of the environment. When the process notes

the presence of faults in its environment, it must take care of these problems.

Examples are human errors (interaction errors, thoughtless actions), technical

malfunctions outside the embedded system (defect sensors or actuators, com-

munication problems), defects within the embedded system, or faults in the

microcontroller hardware (excluding the processing hardware). The effects of

these faults pass the interface of the controlling process and are supposed to

be recognized and tolerated then. The ability of the controlling process to be

fault-tolerant with respect to faults inbounding through the interface is called

here the exterior fault-tolerance. The exterior fault-tolerance can be said to

be the concern of the controlling process about the problems of others.
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Figure 3.4: On the exterior fault-tolerance

Much of the exterior fault-tolerance originates from the hazard and risk

analysis and is predominantly related to application level problems (the control

tasks). A typical example from the automotive field is the practiced fault-

tolerance of the controlling process when it recognizes the gas pedal and the

brake pedal being pushed simultaneously. The exterior fault-tolerance is the

fault-tolerance regarding the input space.

3.5.2 Interior Fault-Tolerance

In order to fulfill its application level tasks properly, the controlling process

should be a course of activities in accordance with the program PM. There

are however fault events that may cause the process to deviate from the pro-

grammed activities (e.g. control-flow error). Some of these events are caused

by faults that have entered the process through its interface beforehand. In

this case the check-in of the faults and their further treatment within the pro-

cess was just improper. This is an external fault-tolerance matter. Other fault

events however may arise within the process, that is, without having passed

the interface at all. Their cause is some fault in PM or in the processing hard-

ware. The ability of the controlling process to be fault-tolerant with respect

to these internal fault effects is called here the interior fault-tolerance. The

interior fault-tolerance can be said to be the concern of the controlling process

about its inner problems.

The interior fault-tolerance plays a hidden but important role, and can be

seen the technical equivalent of what is termed the mindfulness of a human, or

what is called internal security in state politics. Corresponding to the causes

of the interior fault events, two subcategories of the interior fault-tolerance can

be distinguished.
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Figure 3.5: On the interior fault-tolerance

3.5.2.1 Interior Software-Fault Fault-Tolerance

The category of interior fault-tolerance that is particularly related to software

faults can be closer specified as the interior software-fault tolerance of the

controlling process (precisely: interior software-fault fault-tolerance). Software

faults may arise from programming errors, such as the usage of non-initialized

pointers, incorrect loop boundaries or wrong array indexing.

3.5.2.2 Interior Hardware-Fault Fault-Tolerance

Random faults in the processing hardware may cause execution errors. These

faults address what is closer specified here as the interior hardware-fault toler-

ance of the controlling process (precisely: the interior random hardware-fault

fault-tolerance of the process).

Definition 3.3: The interior hardware-fault fault-tolerance is the property of

the controlling process to be fault-tolerant with respect to fault effects evolving

from random faults in the processing hardware.

Because the application level functionality of the controlling process depends

on a program-conform execution, the interior hardware-fault fault-tolerance is

vital. It is this fault-tolerance category that the fault-injection method aims at.

The propagation path of the random faults in the processing hardware towards

the controlling process is termed the path of impact (Figure 3.6). Somewhere

on this path must it be possible to create a comparable set of injectable faults

F according to the requirements identified in Chapter 2.
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Figure 3.6: Path of impact

3.5.3 Distinction

Different from the exterior fault-tolerance and the interior software-fault tol-

erance, the interior hardware-fault fault-tolerance has to deal with fault ef-

fects originating from the actual technology of the processing hardware. What

makes the interior fault-tolerance distinct from the other categories, is that it

has to cope with sudden asynchronous fault effects — to be outlined in the

following.

The exterior fault-tolerance relates to the proper treatment of fault effects

entering the controlling process through its interface. These fault effects are

not sudden in the sense of ‘surprising’ since they appear at well-known in-

terface locations in the program (respectively at the corresponding actions of

the process) and since erroneous input is just to be expected when designing

safety-critical software. The space of erroneous input to be considered may

be vast, but in principle, because all faults show up in form of data, this can

be dealt with. After all, the faults enter the process in synchronism to the

program. Regarding the interior software-fault fault-tolerance almost similar

applies. Software faults are systematic and thus are not sudden, although

their activation may happen to a surprise. Again, the fault events resulting

from software faults arise within the controlling process at specific (but obvi-

ously unknown) locations, that is, in synchronism to the program PM. Both

the exterior fault-tolerance and the interior software-fault fault-tolerance are

therefore concerned with faults or fault effects whose location of occurrence in
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the process is already defined in the program. These faults (respectively their

effects) enter the process synchronous to the program.

The interior hardware-fault fault-tolerance, in contrast, has to cope with

faults that may affect the controlling process at any time and, figuratively,

at any code location of the program. The affection is asynchronous to the

program (at a random code location, at a random point in time), and therefore

is considered sudden. Table 3.1 lines up the fault-tolerance categories.

Fault-Tolerance Category

Exterior Interior Software Interior Hardware

Concerned with: Fault effects inbound-
ing through the
interface, caused by
other systems or
subsystems (hardware,
software, user).

Fault events arising
inside the process,
caused by software
faults in the
program.

Fault events arising
inside the process,
caused by random
faults in the
processing hardware.

Fault type: systematic, random systematic random

Location of oc-
currence of fault
effect in the pro-
cess:

Defined by the
program and well
known.

Interfacing

Interfacing

P

Defined by the
program, but
unknown.

Software fault

P

Anywhere, not
defined by the
program.

P

Table 3.1: Fault-tolerance categories of the controlling process

Both for equipping the controlling process with interior hardware-fault

fault-tolerance during the software development phase and for evaluating the

interior hardware-fault fault-tolerance capabilities of the controlling process

through fault-injection, it needs an error behavior model of the microcontroller

(more precisely: of the processing hardware). The other two fault-tolerance

categories are not concerned with such a model.
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3.5.4 Online Error Detection

Online error detection seeks to detect faults during service so that their effects

can be minimized. There are several fault-tolerance mechanisms that can be

used to improve the interior (hardware-fault) fault-tolerance of the controlling

process. The mechanisms can be purely hardware-based, they can be based on

the cooperation of hardware and software, and can be purely software-based.

Hardware-based mechanisms are for example self-checking circuits [Wa78], er-

ror detecting codes, and register constraint checking (e.g. invalid instruction or

improper address). Signature monitoring and watchdogs are examples of mech-

anisms that need both hardware and software for detecting an error. Software-

based mechanisms are Block-Entry-Exit Checking (BEEC), Error Capturing

Instructions (ECI) and plausibility checks. The former two mechanisms have

been evaluated in [Mi95] through physical fault-injection.

Some of the hardware-based mechanisms intend to prevent hardware faults

from an unnoticed propagation into the register level or the functional level of

the microprocessor. Self-checking circuits in conjunction with error-correcting

codes can be an effective measure to protect software from fault effects originat-

ing in the processing hardware. Signature-monitoring and watchdogs are mea-

sures to pick up fault effects after the software has already been impacted. Sim-

ilar applies to the software-based mechanisms. Plausibility-checking (reason-

ability-checking) is the only mechanism above the hardware level that is able

to detect fault effects in data without preceding control-flow errors. Much of

the exterior fault-tolerance is based on plausibility-checks.

As mentioned in Section 3.3.2.3, the embedded software would be re-

leased from any concerns about faulty processing hardware if in particular

the hardware-based mechanisms would be applied massively to the hardware.

There are microcontrollers that come close to the ideal case. An example is

the AE11 (compatible to Intel 8051) which incorporates parity code checking

throughout the controller, IDDQ, and built-in self-tests (BIST). The AE11 is

designed to detect and respond to hardware faults within milliseconds [Boe98,

As98]. For cost reasons, many microcontrollers are however sparsely equipped

with such fault-tolerance mechanisms.

The common fault-tolerance mechanisms of most microcontrollers

used in safety-critical embedded systems do not intercept the prop-

agation of faults into the controlling process, but earliest take effect

after the process has been impacted.
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Especially with safety-critical real-time systems valuable time may have been

passed until the interior fault-tolerance mechanisms grasp. Meanwhile the

process may be undertaking hazardous activities, like sending malicious data

to the outside world. Therefore, within the scope of software validation, the

evaluation of interior hardware-fault fault-tolerance is an important subject.

3.6 Injection Method

After having specified the object and the subject of investigation in this chap-

ter, the injection method can now be closer determined.

3.6.1 Process Fault-Injection

The target investigated through fault-injection is the controlling process which

is the timely sequence of the individual machine instructions in execution. The

subject of the investigation is the evaluation of the interior hardware-fault

fault-tolerance of the controlling process by means of fault-injection. Fault-

injection is the deliberate introduction of a fault into a target.

Since the considered target is a process (neither hardware nor a program),

a fault is to be injected into a process. The conceptual injection method

therefore is process fault-injection. This deduction may seem pedantic, but

is hitting the point. Software fault-injection is the injection of faults into

a program, as for instance done at great length in [Vo98]. Hardware fault-

injection, of which an early stage was fault-simulation, is the injection of faults

into hardware. In the beginning, hardware fault-injection solely focused on the

target ‘hardware’. Later it was also used to evaluate the behavior of software.

In the latter case, however, hardware fault-injection is more a technique (a

means to an end) than a method, and also does not terminologically nominate

the object of investigation. Therefore the injection method is specified here as

process fault-injection. The actual injection technique may be hardware fault-

injection. Inserting a fault into a process is done through causing a process

fault.

3.6.2 Process Fault

A process is a series of actions. A process fault is a fault in a series of actions.

Random faults in the processing hardware, if effective, cause execution errors.
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Execution errors are faulty actions in the course of the controlling process,

that is, random faults in the processing hardware cause process faults.

Definition 3.4: A process fault is a faulty action within a series of actions.

The process fault is defined with respect to the binary program PM and relates

to the specification-conform execution of the individual machine instructions.

In the absence of process faults the controlling process precisely acts as pro-

grammed. However, even if the process is an exact image of PM it may perform

operations that may be classified undesired from a higher level perspective,

that is, a process error may occur.

3.6.3 Process Error

By taking a series of actions as an operation that is required for serving a

purpose, a process error can be defined according to [St96 p.12] as a deviation

from the required operation.

Definition 3.5: A process error is a deviation in the operation of a correctly

executed series of actions from the required operation.

The process error is not defined with respect to the binary program PM but

with respect to higher requirements imposed on the operation. The definition

demands that the machine instructions are executed correctly, because other-

wise the notions of fault and error would be dissolving into each other. Process

faults certainly are not ‘required’ (same with stuck-faults) but they are the first

order effects of the hardware faults at the level of the controlling process and

thus are termed faults. A process error is a second order effect. It denotes

the fact that the controlling process is correctly (with respect to the program

execution) doing something undesired (with respect to higher requirements).

3.6.4 Process Failure

As the interest is on the interior hardware-fault fault-tolerance of the process,

the failure of the process is defined straightforward. The requirements are clear

from the definition of fault-tolerance. The process can be said to be failing

if a random fault in the processing hardware manages to propagate into the

output stream of the controlling process without somehow being signaled in

good time.
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Definition 3.6: The failure of the controlling process Z is the inability to be

fault-tolerant to process faults evolving from random faults in the processing

hardware.

3.6.5 Summary

So far, the fault-injection method for evaluating the fault-tolerance of safety-

critical embedded software with respect to random faults in the processing

hardware can be summarized as follows.

• The target investigated is neither hardware nor a program, but is

a series of actions, named the controlling process.

• The subject of investigation is the evaluation of the

interior hardware-fault fault-tolerance of the controlling process.

• Random faults in the processing hardware cause process faults.

• The conceptual injection method is process fault-injection. The

input domain consists of process faults.

The starting point for a common fault set F are process faults, that is, faults

in the individual actions. For both a closer specification of the ‘actions’ as well

as for the ability to model the principal effects of random faults onto these

actions, a model of the processing hardware from the software point of view is

required. This is the subject of Chapter 4.

Remark

For the evaluation of the exterior fault-tolerance no process fault-injection is

required because it is not the controlling process to be fault-injected but the

input stream (usually done through state mutation). Faulty input causes no

process faults since input cannot affect the transformation of the machine in-

structions into their associated actions. Faulty input may cause process errors,

though (e.g. control-flow error).

As mentioned in Chapter 2, software fault-injection is unsuited to evaluate

the interior hardware-fault fault-tolerance. Software faults do not cause pro-

cess faults since software faults do not affect the execution of the individual

machine instructions. Software faults may however result in process errors.
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3.7 Summary

In this chapter the software in execution was closer specified as the controlling

process. This was done in order to avoid terminological ambiguities and to pin-

point on the nature of the target. The controlling process is the principal entity

supervising the system and the environment, and its fault-tolerance is decisive.

The two components establishing the controlling process were identified as the

binary program PM and the processing hardware. The processing hardware

denotes those hardware areas, within the microcontroller or outside, that are

directly involved in the execution of the individual machine instructions. Ran-

dom faults in the processing hardware, if effective, do affect the execution

process. These faults address the interior hardware-fault fault-tolerance of the

controlling process, which is one of three fault-tolerance categories that were

discriminated and discussed. It is the interior hardware-fault fault-tolerance

of the controlling process that the fault-injection method aims at.

In the last section the fault-injection method was deduced as process fault-

injection. Because the target is a process (neither hardware nor a program)

and because the random faults cause process faults, that is, faulty actions

within a series of actions, the injection method is process fault-injection. For

both, a closer specification of the individual actions and of the fundamental

effects of the faults on these actions, a model of the microprocessor is required.

In order to allow the method to be applied to different software on different

hardware, the model should be a generalized model of a microprocessor.
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Chapter 4

Microprocessor Modeling

4.1 Introduction

In Chapter 2 the pivotal point towards comparability in fault-injection was

identified as the fault set F . This set is to be adjusted to the nature of the

investigated target which was identified in the previous chapter as controlling

process. For investigating the path of impact which is the propagation path of

the random faults from the processing hardware into the controlling process,

a suitable model of a microprocessor is needed. The model must allow to rep-

resent the entry points of the random fault effects into the process in a unified

manner.

In this chapter the traditional register model is first discussed. Then a more

generalized model, named the service-provider model is presented. The basic

concepts of its components, the storage space and the services are outlined.

In the error model section, the principal effects of random faults, not only

those resulting from the processing hardware, onto the model components are

derived. Finally the entry points of random faults into the controlling process

are identified.

4.2 Register Model

The register model, also known as programming model when combined with

the instruction set, usually is the best documented model that is supplied with

a microprocessor or microcontroller. The model denotes the memory elements

at the programmer’s disposal (registers, flags, input and output ports, RAM
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and ROM areas), and describes the operations upon these memory elements

in terms of the machine instructions.

Although the register model is the best documented model avail-

able, it often is not the best model of a microprocessor, particularly

when related to the effects of hardware faults.

With modern microprocessors or microcontrollers the register model often

hides essential state elements. These state elements are necessary for a correct

modeling of the operations carried out upon the machine instructions.

Example 4.1: The microcontroller 80C167 supplies an instruction called EXTR

(begin EXTended Register sequence). The instruction takes a single number n as

argument. The intention of the instruction is, somewhat simplified, to redirect

future memory accesses onto a particular memory area to another memory

area for the next n machine instructions. Consequently there must be in the

hardware some counter-variable holding n. As long as n has a value greater

than zero, the redirection is active and every instruction in execution has to

consult, to react correspondingly, and to decrement this variable. Although

this counter-variable belongs to the operands of many 80C167 instructions, the

manuals of the microcontroller do not designate this state element.

Since some essential state elements are not mentioned in the manuals, the

transactions performed on these elements during the execution of a machine

instruction are as well not specified, and thus the effects of random faults in

the corresponding hardware cannot be modeled. Generally the activities in the

microprocessor hardware during the execution of a program are left opaque to

the programmer. It is not very clear which hardware activities contribute to

the execution of the current machine instruction, which activities are associ-

ated with the execution of the next instruction (e.g. pipelining), and which

activities are independent of the machine instructions at all. This knowledge

however is of interest for safety-critical embedded software, especially when

evaluating its fault-tolerance capabilities. Figure 4.1 symbolizes the activities

in a microprocessor from the common perspective.

Fault-tolerance is defined to be a property in the presence of faults,

that is, the faults must first be present to the controlling process

before any considerations start.
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Figure 4.1: Traditional view onto microprocessor activities

Therefore it is not relevant where and when the random faults do occur in

the microprocessor hardware, but through which mechanism they enter the

controlling process.

Consequently, as the register model does not clearly outline the essential state

elements and actions involved in the execution of a machine instruction, it can-

not model the effects of random faults onto the individual execution processes,

at least not entirely. There are gaps on the path from the hardware towards

the controlling process since the individual actions that the controlling pro-

cess is made of are not specified completely in the processor’s documentation.

The register model does not link hardware to software very well. The path of

impact is intercepted only in parts (Figure 4.2).

4.3 The Service-Provider Model

4.3.1 Introduction

The herein introduced service-provider model is not a new model of a micropro-

cessor. It is a generalized register model, however focusing on the processing

hardware and emphasizing the use of a microprocessor from a strict software

application perspective. The latter, the view onto a processor from out of

software (the controlling process) is put into words through the introduction
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MOV Rw,Rw
ADDB Rb,Rb
SCXT Rw, #data
POP reg
CALL cc, caddr
AND reg, mem
BCLR bitaddr
RETP reg
DIVU Rw

R0 R1

R2 R3

flags

IRSP

PC

MOV R0, A5H
SHL R0, 4H
BOR R1.0, R2.0
MOV R3, 55H
BMOV R3.4, R1.9
SUB R0, R2

MOV R1, 0FH
MOV R2, 1AH
ADD R1, R2
BSET R2.9

Z

Figure 4.2: Register model partly intercepting the path of impact

of the notion of services. To software a microprocessor is a provider of services

on request. The requests are the individual machine instructions, the services

are the activities carried out on certain memory locations in response.

Before continuing, an introductory note on instruction and service is given.

Instruction and Service

The herein introduced notion of a service fills a noticeable gap in literature

when it comes to referring to the activities of a microprocessor (respectively the

processing hardware) upon a binary machine instruction. Occasionally, these

activities are also termed instruction, as for example done in [Mi95 p.448] by

mentioning that “. . . some instructions might be more susceptible than others

to being affected by faults”. Although it becomes clear from the publication

that the statement refers to instructions in execution, it is nevertheless some-

what confusing to have assigned a second but fundamentally different meaning

to the notion of an instruction. An instruction is, in accordance with the origi-

nal non-technical sense, just a command or order. An instruction is static and

passive, while a service (the execution process of an instruction) is dynamic

and active. An instruction may be coded some way (instruction code) and can

be made understandable to the microprocessor (binary machine instruction).

An instruction is the smallest element of the binary program PM. Instructions

have no behavior and no execution time.

A service refers to what is sometimes being paraphrased by expressions

such as “instruction being executed” or “instruction in execution”, and what

had to be circumscribed as ‘action’ or ‘task’ in the previous chapter. A service
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Figure 4.3: The notion of a Service

is the behavioral answer on a static instruction. A service can read and write,

it can transform data, and it can fail due to hardware faults in the processing

hardware. Services are the basic elements that the controlling process is made

of.

Conceptual Division

Within the scope of the service-provider model, the activities in the processing

hardware during the execution of the machine instructions are chopped into

intervals and are mapped onto separate services. All essential state elements

are collected in the storage space. The storage space is the input- and output

domain of the processing hardware. Figure 4.4 symbolizes the service oriented

view onto a microprocessor.
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Figure 4.4: Service oriented view onto a microprocessor

The two components of the service-provider model thus are the storage

space and the set of services. The storage space is named like this because
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it encompasses more than what is usually understood as memory. The term

service is to be understood in the sense of rendering a service. Although used

here particularly for a microprocessor, the service-provider model is a model

of any executing device (including a human).

4.3.2 The Storage Space

The storage space incorporates all abstractions that are needed to reflect the

state of the microprocessor and of the environment from the software perspec-

tive. Most of its elements are known from the register model. These include

the registers, internal and external memory, condition flags, and input- and

output ports. The storage space also contains those state variables of the mi-

croprocessor hardware that are essential for the next machine instruction in

execution (the next service). These variables often are not mentioned in the

processor documentation. Implementation specific state elements, such as in-

ternal flip-flops and buffers, are not covered by the storage space but belong

to the processing hardware. The storage space is similar to what is called the

UVS (user visible space) in [Ri94], in that it contains “all state information

which is passed from one instruction to the next” [p.77].

Partitioning

The storage space is denoted by L, its elements are called locations. Every

location l is accessible via an address, a symbolic name, or both. Two main

areas are to be distinguished within L: the working area LW and the interface

area LF (Figure 4.5). The working area contains the program code, registers,

state and condition variables, and the random access memory. The interac-

tion between the controlling process and the environment takes place via the

interface area LF of the storage space. This area contains input- and output

locations which are connected to the peripheral devices (on-chip or off-chip).

The interface area represents the communication channel between the control-

ling process and its environment.

Interface Area

The interface area LF of the storage can be partitioned into an input area LI

and an output area LO. The input area reflects the status of the environment

and thus acts as an information desk for the controlling process. Hardware

interrupts that carry information from the environment to the software belong
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to this area, as an example. They are represented as condition flags in LI.

Hardware interrupts that signal special conditions of the processing hardware,

such as a divide-by-zero trap, do however belong to the working area LW. The

same applies to software interrupts. They do not import information from the

environment but they represent certain internal processing states. The output

area LO passes on data or control-commands from the process Z to the envi-

ronment. Both LO and LI are unidirectional. If a microprocessor allows input

and output through a single address, that particular address is represented in

the storage space as two distinct storage locations. One is located in LI and

the other in LO. Both locations are named differently. Distinguishable naming

of the locations generally applies to the storage space on the whole.

Private and Public Locations

Because the locations l ∈ LI can be modified by the environment only, they are

termed public locations. All other locations in the storage space, l ∈ LW ∪ LO,

can only be modified by the services. These are the private locations as the

controlling process has the sole right of use.

L
O

L
I

L
W

Services

Storage space L

L
F

public

private

Peripheral devices,
sensors, actuators, ...

Figure 4.5: Storage space and services

4.3.3 The Services

The services depict the individual tasks that are carried out by the processing

hardware on request of the software. Services are regarded in the context of

this model as being atomic, subsequent, and state-less. Atomic means that a
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service represents the lowest unity of inspection from the software perspective.

Subsequent means that there is only one service at a time. There is no extra

party present in program execution. State-less means that a service obtains

all information needed for the fulfillment of its tasks from the storage space.

There is no persistent information stored within the services, and information

among the individual services is shared only via the storage space.

Scope

The task of the services is to modify the storage space in a particular man-

ner. However, the tasks of a service are more extensive than what is usually

documented in the instruction set manual of a microprocessor. Once a service

is active, its task is to localize and access all relevant source and destination

operands in the storage space and to perform the required transformation. In

order to keep up the program flow, the final task of a service is to fetch and

decode the next machine instruction and to pass on control to the successor

service. Control is given from service to service.

Lt Lt+1

Service

Figure 4.6: Service modifying the storage space

ON/OFF Services

The very first service of a controlling process is usually called after powering-

on the host processor. In order to model the power-on and power-off of the

processor, the pseudo services ON and OFF are introduced. They cannot be

called directly from the software and they are introduced just for completeness.

The ON service activates the very first instruction of the program PM. The

controlling process ends with the OFF service which may be the successor of

any service. The next service after the OFF service is the ON service.
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Specification

The description of the transformations (operations) carried out by a service

actually is a description of the input-to-output function of the processing hard-

ware involved. Although a service might be indirectly specified by means of a

gate level model or a VHDL-model of the corresponding processing hardware,

the focus is not on the exact structure of the hardware but on the transforma-

tion function(s). The most comprehensive and from the software point of view

relevant description is a RTL description. A service preferably is specified by

an enclosed set of RTL statements.

4.3.4 A Z80 Example

Figure 4.7 shows an example specification of the Z80 service ADD A,B. The

Z80 was chosen for this example because it is not as complex as more typical

microcontrollers, it is however complex enough to demonstrate how internal

state elements must be named and incorporated in order to fully describe the

execution of this particular Z80 instruction. The language used in the exam-

ple is pseudo. It is similar to C, but uses the more comprehensive assignment

operator ‘:=’ and the single ‘=’ for comparisons.

Given the rather simple function A:=A+B, the listing of the specification

seems to be fairly long. The explicit task of the service – to perform the ad-

dition and to adjust the flags – is specified in a few lines. It are the implicit

tasks that require most of the specification. Like with any machine instruction

of the Z80, pending interrupts must be checked for. The selection of the next

machine instruction depends on this, after all. Non-maskable interrupts cause

the PC to be reloaded with the fixed value 0x66, while maskable interrupts

need more extensive treatment depending on the current interrupt mode of

the processor. In the case of no interrupt, the PC is just advanced by 1. Once

the instruction code of the next service is located, fetched, inspected for valid-

ity, and then decoded, the control is finally handed over to the next service.

The listing exactly specifies (although shortened for clarity) what a software

developer expects the Z80 to do when executing the instruction ADD A,B.

In the traditional view onto the machine instruction ADD A,B the operands

accessed are just the registers A and B, and the flags F (cf. Z80 instruction-set

manual). In the service-provider view however, the set of operands accessed by

the service ADD A,B is more extensive. The set contains the explicit operands

to be processed (here A, B, F) but also contains the implicit operands which
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are those storage locations that must be evaluated or processed in order to put

the hardware into the correct initial state for the next service. Table 4.1 lists

the operands of the Z80 service ADD A,B. Some operands are mandatory. They

are always accessed by the service. Conditional operands are those operands

that may be accessed in option.

Mandatory Operands Comment

A Register A (Akku)

B Register B

F Condition Code Flags (S, Z, H, P/V, N, C)

PC Program counter

NMI Flag indicating the presence of a non-maskable interrupt

IFF1 Interrupt Flip-Flop I, a flag indicating whether maskable
interrupts are enabled or not

Conditional Operands

SP Stack-Pointer

Stack The storage locations referred to as ‘stack’

INT Flag indicating the presence of a maskable interrupt

INTA Storage location in LO, generating the physical interrupt-
acknowledge signal

IFF2 Interrupt Flip-Flop II

IM Selector, indicating the current setting of the interrupt
mode (0, 1, 2)

I Interrupt register

Table 4.1: Operands of the Z80 service ADD A,B

4.3.5 Definitions

Definition 4.1: The storage space L is the collection of data sources and

data destinations for the individual services. It contains those information

entities that are essential for the services to perform their specified tasks, and

it serves as information carrier among the services. The interface area LF is

the information desk between the services and the remaining system. The

storage space is a static abstraction of the microprocessor from the software

perspective.
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Service "ADD A,B"{ Addition: A = A + B

a := L[A] localize operand and fetch content

b := L[B] localize operand and fetch content

s := a + b perform Addition

f := L[F] get the contents of the flags F

if (s = 0) f.Z = 0 set the ZERO-bit in F

... do so accordingly for CARRY C, SIGN S,

... HALF-CARRY H, OVERFLOW V and SUBTRACT N.

L[A] := s write back result

L[F] := f write back updated flags

pc := L[PC] get the value of the program counter

pc := pc + 1 increment pc

/* Before finishing, check for pending interrupts. */

nmi := L[NMI] check for a non-maskable interrupt

if (nmi = 1) { if a NMI was signaled

L[INTA] := 1 send acknowledge

sp := L[SP] get value of stack pointer

sp := sp - 1 decrement

L[sp] := highbyte(pc) put high byte of PC onto stack

sp := sp - 1 decrement

L[sp] := lowbyte(pc) put low byte of PC onto stack

L[SP] := sp put back new value of stack pointer

L[PC] := 0x66 set PC to fixed address 0x0066

next := decode(0x66) find the corresponding service

jump(next) pass on control, no return

} end NMI treatment

iff1 := L[IFF1] check the Interrupt-Enabled flag

if (iff1 = 1) { if enabled

int := L[INT] check for a maskable interrupt

if (int = 1) { if an interrupt is pending

L[IFF1] := 0 clear the interrupt flip-flops

L[IFF2] := 0

L[INTA] := 1 send acknowledge

im := L[IM] get interrupt-mode (can be 0, 1 or 2)

/* Not shown for space reasons: Depending on the current interrupt mode, the service

now has to adjust the PC to either the fixed address 0x0038 or has to fetch

the interrupt-vector and to treat it as either an address or an instruction code.

The pc then has to be put onto the stack and L[PC] has to be updated.*/

...

jump(next) pass on control, no return

} end interrupt treatment

} end test for interrupt enabled

/* There were no interrupts when reaching this point. Major work is done.

Now the PC must be updated and the regular successor service is to be

identified and given control. */

L[PC] := pc update PC

ic := L[pc] retrieve instruction code of next service

if invalid(ic) { if code is invalid

... take appropriate action

} else {
next := decode(ic) decode (extract service identification)

jump(next) pass on control, no return

}
} end service specification

Figure 4.7: Sample specification of the Z80 service ADD A,B
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Definition 4.2: A service is a well-defined and self-contained transformation-

process of the storage space L, such that the service correctly reflects the

execution of a particular machine instruction. The collection of services is the

dynamic abstraction of the functioning of the processing hardware from the

software point of view.

Definition 4.3: The service-provider model is an essential functional model

of the processing hardware from a software application perspective. The model

consists of a storage space and a set of services.

Although the service-provider model is used here particularly to model a micro-

processor, it is a model of any executing device (including a human processor)

that is performing a task through following a given guideline. The performance

is split into elementary steps, and each step is a self-contained operation on

certain input- and output locations (e.g. shelf, oven, refrigerator – with a cook

being the processing hardware).

By means of the services the controlling process can now be defined more

precisely than in the previous chapter.

Definition 4.4: The controlling process is the timely sequence of services

evolving from the binary program PM in the storage space. The process senses

and controls the environment through the interface area LF.

public
Input

Storage space L Controlling process Z

Output
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Figure 4.8: Controlling process operating on the storage space
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4.3.6 Gate Level Model and Service-Provider Model

The gate level model and the service-provider model follow a similar method-

ology. A logic gate is a behavioral abstraction of the functioning of the device

level components. The gate emphasizes the Boolean-logic point of view. In

the service-provider model, a service is the behavioral abstraction of the func-

tioning of the processing hardware. Services emphasize the application point

of view onto a processor. Both gates and services are active elements. The

nodes in the gate level model correspond to the storage locations in the service-

provider model. Both pass information and both are passive elements.

Gate

Node

Service

Storage
location

&

Figure 4.9: Structural elements at gate level and service level

Gates and services are hard-coded. Both work on their input and produce out-

put. The transformation function of a gate is simple while the transformation

function of a service is rather complex. A gate has a single output, whereas a

service has multiple outputs. Inputs and outputs at gate level are hardwired,

whereas the source- and destination addresses of a service are both hard-coded

(e.g. PC) and soft-coded. It is worth to note that incorrect input does not in-

fluence the basic functioning of neither a gate nor a service. The input is,

after all, logic. As long as the hardware is fault-free, both gates and services

precisely act in accordance with their specification. The basic functioning can

only be affected by hardware faults.

4.3.7 Discussion

Early microprocessors, like the Motorola 6502 or the Intel 8085, came very

close to the service-provider model. The processor documentation listed all

relevant state elements (with minor exceptions) and the instruction set man-

uals outlined the corresponding operations on these elements. The function

of the microprocessor from the software application perspective could be de-

scribed almost completely by the instruction set. Such a model not only was

comprehensive, but also used to be the mandatory starting point for several

investigations (e.g. the functional self-test approaches of [Ab79,Hg82]).
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Modern microcontrollers, as mentioned, often are not fully described by

the provided documentation. The service-provider model therefore gives a

framework for building a complete and comprehensive model. Actually, the

debuggers included in the integrated software development suites for mod-

ern microcontrollers (e.g. HITEX, KEIL) are in fact service provider models

(since they are fully functioning simulators of the processing hardware), how-

ever these are developed customized and show to the user only the essential

state elements known from the processor documentation (the taditional reg-

ister model view). It would be very helpful to both developers of embedded

software as well to developers of processor simulators (or emulators) if the

manufacturers of microprocessors would make available service-provider mod-

els of their processors. The models should use a common naming scheme. This

would aid in a better understanding of the working of the processor in general

(even if fault considerations play no role) and of the individual instructions in

execution. Furthermore, since the service-provider model can easily be turned

into a full-functioning simulator, the market acceptance of the microcontroller

might be sped up as well.

As will be shown in Chapter 5, none of the approaches on (error-) behavior

modeling of a microprocessor has considered the abstraction level of the service

provider model.

4.4 The Service-Provider Error Model

By means of the essential state elements collected in the storage space and

by means of the individual services acting on the storage space, the service

provider model fully describes a microprocessor (the processing hardware) from

the software point of view. Consequently the model must also be able to de-

scribe the fundamental effects of hardware faults from the software perspective.

4.4.1 Storage Space

The storage space L serves as an information carrier among the services and

between the services and the environment. Its only function is to store in-

formation. This function may be affected by faults in the storage hardware,

so that contents are altered. The storage hardware is the hardware that is

used to preserve information. Static memory cells and dynamic memory cells,
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as well as the refreshing mechanisms, belong to the storage hardware. Any

access-circuitry does not belong to the storage hardware because it is used

by the services to fetch or to deliver data, but it has no preserving function.

The spurious alteration of storage locations, caused by faults in the storage

hardware, is called retention errors here.

Definition 4.5: A retention error is the unintentional change of an informa-

tion entity within the storage space, and is caused by a random fault in the

storage hardware.

In the fault-free case, the contents of the storage space can only be modified

by either the services (private locations) or by the peripherals (input area LI).

Retention errors model the fault case where contents change independently

of any access. A retention error is a state error. It causes a state change of

the storage space. Because the storage space is passive, a retention error is

irrelevant as long as the corresponding storage location is not read-accessed by

a service. The only exception to this are retention errors in the output area

LO, which is discussed shortly in the fault propagation section, Section 4.4.3.

4.4.2 Services

Once a service is activated, it determines its operands, performs certain oper-

ations upon the operands and finally passes control to the successor service.

These basic tasks must be carried out according to the specification of the

particular service. A random fault in the processing hardware may cause a

malfunction of these tasks. The manifestation of these errors are termed ser-

vice errors.

Definition 4.6: A service error is a deviation of the behavior of a service from

its specification. It is caused by random faults in the processing hardware that

become effective during the activity time of the service.

Data-Insensitivity

Service errors are the consequence of hardware problems and are not caused

by incorrect input data. Services are hard-wired (includes microprogramming)

and their fundamental working does not depend on the state of the storage

space. To make this more clear: The rendered transformations of a service

of course depend on the storage space (otherwise fetching the operands would
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be useless), but the regulations of what to do with the inputs are hard-coded.

A conditional branch, like JMP NZ dest for example, reloads the program

counter to dest only in case the Zero-Bit is found to be cleared, but the

regulations behind this service are always the same: “get the Zero-Bit, check

for zero, do this if the test is positive or do that if not”. The regulations are

independent of the state of the storage space, therefore errors in the storage

space do not cause service errors. After all, the operands consulted by a service

are just plain data. This is similar to logic gates whose function also is defined

in hardware. Incorrect data does not influence the function of a logic gate. If it

appears that a service acts different from what is known from the specification,

then either the specification is incomplete or the input data has activated a

hardware fault.

4.4.3 Fault Propagation

As will be shown, the service-provider model fully intercepts the path of im-

pact. The propagation path from the hardware to the controlling process falls

apart into three sections.

MOV R0, A5H
SHL R0, 4H
BOR R1.0, R2.0
MOV R3, 55H
BMOV R3.4, R1.9
SUB R0, R2

MOV R1, 0FH
MOV R2, 1AH
ADD R1, R2
BSET R2.9

Storage space

Services Z

Figure 4.10: Service-provider model intercepting the path of impact

4.4.3.1 From Hardware to Service-Provider Model

Problems in the storage hardware are covered by retention errors. Problems in

the processing hardware are covered by service errors. There are also hardware

faults that neither cause retention errors nor service errors, but whose effects
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show up as erroneous data in LI. Examples are defect on-chip peripherals,

such as timers or A/D converters. The faults may also origin outside the mi-

crocontroller or even outside the embedded system. In any case, if these faults

do not affect the processing hardware or the storage hardware, their effects

either vanish or propagate into the input area of the storage space.

Figure 4.11 shows a microcontroller with six exemplary fault locations. The

service currently busy shall be something like ADD mem1,mem2 (add the con-

tent of one memory-location onto the content of the other). The faults shall

be single-faults, that is, there is only one fault considered at a time. Also the

faults are assumed to be effective in the end.
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Figure 4.11: Hardware faults during service ADD mem1,mem2

Fault 1 is a fault in the ALU. The fault will lead to a service error. There is

one exception. If the fault directly affects a memory element in the ALU that

belongs to the storage space (in which case it is an essential state element),
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then the fault causes a retention error. The similar applies to fault 2 in the

Decoding-Unit. It causes a service error or a retention error, depending on

its location in the circuit. Fault 3 in the Barrel-Shifter unit is irrelevant for

the current service. Still, if the Barrel-Shifter contains a memory element that

is mirrored in the storage space, and if the fault directly affects the storage

hardware of that memory element, then the fault causes a retention error. Be-

cause the current service does not access that storage location (otherwise the

processing hardware would have also included the path to the memory element

in the barrel-shifter), this fault has no meaning to the current service. The

same applies to fault 4 in the Pulse-Width-Modulator. This fault shall denote

a defect in the output-stage of the unit. Assuming that the PWM currently is

active, the fault causes an error in the output signal. The fault may then prop-

agate across the circuit-board into the environment of the embedded system.

Since safety-critical embedded systems are feedback-systems (closed-loop con-

trol), the fault effect is likely to return to the microprocessor at a later point in

time. The effect will then either show up at the regular input-interfaces that

are used to retrieve the condition of the controlled environment (e.g. ADC,

I/O), in which case it will end up in the input-area LI of the storage space as

just data, or the fault effect becomes more serious by affecting the processing

hardware external to the microcontroller, in which case the service busy at

that time will become erroneous. Fault 5 is a fault affecting the bus. This

fault may change data during transportation or it may affect the address sig-

nals. It causes a service error. Finally, fault 6 denotes a problem in the storage

hardware of a memory-cell. This fault turns into a retention error.

Summarizing, the effects of hardware-faults first manifest themselves

1. as retention errors,

2. as service errors,

3. or wrapped in some input data in LI.

This is depicted in Figure 4.12. Hardware faults that neither cause reten-

tion errors nor service errors, nor show up in the input stream to the controlling

process, are irrelevant from the software perspective. Software cannot do any-

thing about the fault effects, nor can software be tested against these faults.
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Figure 4.12: Manifestation of hardware faults

4.4.3.2 Among Storage Space and Services

Service errors usually cause the state of the storage space to be different from

the fault-free case, that is, service errors produce data faults in the storage

space. Service errors may be ineffective such that the storage space is left iden-

tical to the good case. The ineffectiveness of service errors will be addressed

more thoroughly in Chapter 6. Service errors thus have two consequences.

They are either

1. ineffective

2. or produce data faults in the storage space.

Data faults in the storage space are either the result of a retention error or they

have been deposited there by a service beforehand (propagation). Since the

storage space is passive, a data fault needs to be picked up by a service in order

to potentially pose a problem for the controlling process. Data faults may be

masked, in which case the output of the service is unaffected. Data faults may
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Figure 4.13: Masking and blanking a data fault
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be blanked, in which case the fault is overwritten with the (or a) good value.

Data faults may propagate unnoticed through a service or they may be de-

tected by a service (e.g. invalid address, invalid instruction code). Figure 4.13

shows an example of masking and blanking.

Summing up, data faults in the storage space may be

1. dormant (no read access)

2. masked (service output unaffected)

3. blanked (fault nullified)

4. detected (constraints at functional microprocessor level)

5. or propagate through a service (output affected).

The propagation of fault effects (or errors) in the storage space and the corre-

sponding predicates are addressed in Chapter 6.

4.4.3.3 Towards the Controlling Process

Random faults in the processing hardware manifest themselves as service er-

rors. Since the controlling process is a timely succession of services, the random

faults do affect the controlling process by means of affected services. Services

therefore are the natural entry points of random fault effects propagating into

the controlling process.
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Figure 4.14: Service errors are the fault effect entry points
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This not only applies for random faults in the processing hardware, but for

all fault events causing data faults in the storage space (e.g. software faults

or corrupted and carelessly checked input data). In any case must the faults

propagate through the services, either from input to output (data fault propa-

gation) or in terms of a service error, in order to have a potential meaning for

the controlling process.

4.4.4 Discussion

Although the subject of investigation is the interior hardware-fault fault-tolerance

of the controlling process (thus focusing on the processing hardware), the er-

ror model describes the effects of any random fault for the reason of com-

pleteness. The effects of random hardware faults manifest themselves in the

service-provider model

• as retention errors (malfunctioning storage hardware),

• in form of erroneous data or error-information in the input area LI,

• or as service errors (malfunctioning processing hardware),

otherwise they are irrelevant to the controlling process. The service provider

model thus fully intercepts the path of impact.

Because the fault effects always must propagate through the ser-

vices in order to pose a potential problem, services are the natural

inlets into the controlling process.

Services therefore are the suitable starting point for fault-injection when it is

to evaluate the fault-tolerance of the controlling process. This is especially true

for random faults in the processing hardware since these faults, on principle,

cause ‘action-problems’, that is process faults. The effects of random faults

in the processing hardware are represented by service errors. The interior

hardware-fault fault-tolerance of the controlling process is thus the ability to

be fault-tolerant to service errors. In Chapter 6 the intentional falsification of

services for the purpose of fault-injection is called mutation.

4.5 Summary

This chapter started with a discussion on the register model and its limita-

tions. The register model often hides essential state elements and associated
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activities that are involved in the execution of the individual machine instruc-

tions. Therefore a more generalized model, named the service-provider model,

was presented. The model consists of a storage space and a set of services.

The introduced notion of a service not only fills a terminological gap, but

also conceptualizes the link between hardware and software. Services are well-

specified, enclosed, behavioral answers upon the static machine instructions.

They emphasize the software point of view onto a processor. The services

are successive, that is, there is only one service active at a time. Information

among the services is exchanged only via the storage space. The storage space

incorporates, next to the traditional memory and registers, the essential state

elements that are needed for the services to perform operation and continua-

tion. The hardware constituting the services is the processing hardware. The

service-provider model is a unified abstraction of a microprocessor.

By means of the services, the controlling process was then more properly

redefined as a series of services. The interface area LF in the storage space is

the geographical location of the communication interface between the control-

ling process and the remaining system. It was also pointed out that the gate

level model and the service-provider model follow a similar methodology. As

with logic gates, the principal functioning of services can only be affected by

random faults in the processing hardware.

In the error model section, the fundamental effects of hardware faults onto

the model components were outlined. Hardware faults manifest themselves

as retention errors (malfunctioning storage hardware), as service errors (mal-

functioning processing hardware) or affect the input stream to the controlling

process. It was shown that the service-provider model fully intercepts the path

of impact which is the fault propagation path from the hardware into the con-

trolling process. Finally it was deduced that the services are the pivotal point

in the fault-injection method. Any hardware fault, not only those from the

processing hardware, must first propagate through a service in order to pose

a potential problem for the controlling process. Services are the link between

hardware and software. Service errors in particular are the representatives of

random faults in the processing hardware. They form the representative fault

set F in the fault-injection method.

In the next chapter service errors are being looked at closer.
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Chapter 5

Service Errors

5.1 Introduction

In the previous chapter services were identified the conceptual link between

hardware and software. Services are the structural components that the con-

trolling process is made of. Random faults in the processing hardware must

propagate along the path of impact in order enter the controlling process by

means of service errors (Figure 5.1). Service errors are the representatives of

the considered random faults.

This chapter intends to obtain a more concrete insight into realistic service

errors. Work related to the field of fault mapping is reviewed first. After giv-

ing the state of the art, some service error classes are identified, and multiple

affections are discussed. The major part of this chapter is dedicated to in-

vestigations on the error behavior of combinational circuits in the presence of

faults. The circuits investigated are typical customary circuits used in micro-

processors (e.g. Adder, ALU). These findings allow for the creation of realistic

and representative service errors, which is exemplary shown then. The chapter

ends with an appeal to the manufacturers of microprocessors.

5.2 Fault Mapping

Although fault-injection, by principle, is not concerned with why certain ad-

verse events occur or how representative the injected faults are, most fault-

injection methods stand or fall with the availability of a plausible set of in-

jectable faults. Fault mapping is the process of achieving an artificial set of
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representative faults for the purpose of fault-injection. Fault mapping therefore

plays an important role. There are however differences in the assessment of its

significance in the end. This is because fault mapping is a difficult process. The

main problem of practical fault mapping is the lack of detailed information:

information about the so-called real faults, about the affected system, and

especially about the propagation paths of the faults towards higher abstrac-

tion levels. Although representative fault sets are desirable, they cannot be

achieved sometimes. Therefore some authors even encourage to “... avoid the

trap of spending all of our time worrying about how realistic certain anoma-

lies may be, and simply observe how those anomalies impact the software”

[Vo98 p.25].

5.2.1 The ‘real’ faults

There is a consensus of opinion among the publications, that transient faults

occur more frequently than permanent faults. Ratings however vary. In

[Ma90 p.513], transient faults are estimated to occur 10 to 30 times more

frequently than permanent faults. In [Cz90 p.238], the rate of occurrence of

transient faults is assessed to be 20 to 100 times more likely than with perma-

nent faults. As reported in [Du88 p.272, Ch92 p.1515, Ma90 p.513], experience

has shown, that approximately 85% of the system errors were caused by tran-

sient faults. However, the experience that is being referred to by the above

papers – as well as by other fault-injection publications – dates back to the

early 80’s and predominantly originates from investigations on mainframe com-

puters, as done for example in [Iy86]. Although some statistics on transients

were collected, no particular detailed information about them (cause, dura-

tion, energy) is available. Because the chips are getting more densely packed

and the timing margins are decreasing, transient faults are likely to continue

to play a major role among the random faults. On the other hand, as the

dense chip-structures have become more susceptible, the chance of permanent

faults increases as well. A disturbance that caused a transient fault in a circuit

twenty years ago might now inflict a permanent damage. Little can be said

about the real-life proportion between permanents and transients for today’s

hardware, not least because this also depends on the current environment of

the system. In addition, the trend towards deeper sub-micron geometries tends

to alter the statistical distribution of defects and also creates new classes of

timing-related defects which currently have no adequate fault models [Ga01].
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Real faults thus are elusive and can hardly be encircled. Because they are a

“moving target” [Ca99 p.50], and the fault models at device level have to be

rethought, there is a general need for a higher representative fault model for

the purpose of fault-injection. A short review on related work in fault mapping

is given next.

5.2.2 Related Work

There are some publications from the fault-injection community that in par-

ticular attempt to obtain a more distant error behavior portrayal of a micro-

processor. The approaches differ in the analysis method and in the abstraction

level of the error model. An early approach, presented in [So86], is the inves-

tigation of program-flow disturbances (original wording) caused by transients

in standard microprocessors. By way of a statistical analysis of the instruction

sets of six microprocessors (8085, Z80, 8086, 8048, 8051, 8096) the probabil-

ity of a microprocessor deadlock was determined. In [Du88] and [Ch91] the

susceptibility of the HS1602 microprocessor to upsets caused by current- and

voltage transients was analyzed through simulation-based fault-injection at de-

vice level and gate level. Focus was put on error propagation, however, not

towards higher abstraction levels but towards the microprocessor pins. On

the “effects of transient gate-level faults on program behavior” was reported

in [Cz90]. Gate level transients had been injected into a simulation model

of the IBM PC RT. The effects were not presented in terms of instruction

execution errors, but in terms of the completion states of the workload soft-

ware. A microprocessor error behavior function (EBF) that maps faults onto

errors at the functional level was presented in [Ri94]. Two state elements were

assigned to the processor model: a user visible state (UVS) and an internal

state (IS). The UVS includes the registers that are defined by the instruction

set, and it contains all state information that is passed “from one instruction

to the next”. The outputs of the processor are defined by the type of bus

access states (BAS). Seven error classes were then specified “by their effect or

function on the UVS and BAS”. Fault-injection (single bit-flips and simulated

pin level faults) was used on models of the TRIP processor for obtaining two

EBFs. Concrete error examples, such as the error(s) caused by a faulty adder

circuit, have however not been presented. Although the functional level chosen

in the paper is stated to correspond to the programmer’s view of a processor,

the model still is too implementation oriented. The model incorporates the
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buses and their states (fetch, read, write, idle) as well as the execution phases

(fetch, decode, execute, read, write). From a strict software application per-

spective these details should be invisible. Another publication concerned with

fault mapping is [Yo93,Yo96]. The work tries to bridge the gap between ac-

curate but time-consuming gate level fault-injection, and rapid but inaccurate

high-level fault-injection. Fault-injection experiments were carried out on a

RTL model and a gate level model of the IBM ROMP processor. The RTL

model was called “näıve” because it had been constructed without detailed

knowledge of the hardware implementation. In total 91 different machine in-

structions in execution have been separately investigated. The results showed

that the RTL fault model covered 97% of the gate level faults in the mean.

5.2.3 State of the Art

The approaches taken in [Ri94] and [Yo96] certainly are the most far-reaching

from a strict software perspective. The UVS is similar to the storage space

but does not contain all essential state elements. The RTL statements from

[Yo96] are similar to service specifications, however, the essential and the

implementation-specific state elements of the ROMP microprocessor are not

clearly separated. Although all approaches try to obtain a more distant view

onto a microprocessor, the presented models contain – at least in parts – rem-

nants of the implementation, such as the bus states. Concrete examples of

errors in the execution of the individual machine instructions (service errors)

were not given. This also applies to similar publications not reviewed here.

Most of the publications are nevertheless encouraging in that the used hard-

ware models, the injection techniques and the simulation environments would

have allowed to obtain concrete service errors. Because the observation of

the fault effects onto the workload software did belong to the objectives of

many experiments, the injected faults have actually passed the service level in

these experiments, though without being noticed or captured. Some authors

also reviewed their work from an inter-processor portability perspective. Error

models at RTL and register level were indicated or proposed to be suitable to

form a portable set of injectable errors. Summarizing, it can be stated that

there is a demand for a high level error behavior model of a microprocessor.

The model should also provide some inter-processor portability. The service

level has not yet been considered, though.
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5.3 Error Behavior

Any service modifies the storage space according to hardware-defined rules. It

does so in terms of transformations. A service can be considered as an enclosed

set of transformations. These are performing according to what is stipulated

by the service specification.

transformation

transformation

ServiceL t L t+1

Figure 5.2: Transformations within a service

The term transformation is kept general here. A transformation can be the

process of calculating the sum of two input operands, it can be the process

of addressing the input and output locations, it can also be the process of

instantiating the next service. In any case, random faults in the processing

hardware influence the transformations and thus cause service errors.

5.3.1 Error Classes

A service error, if effective, produces data faults in the storage space. Service

errors may be classified by their effects onto the storage space.

Placement Errors: Placement errors denote those service errors in which

the output data is correct, but is placed in the wrong storage locations. Place-

ment errors are due to random faults in the addressing mechanisms. Note

that incorrect input data (e.g. used for indirect addressing) does not cause a

placement error since the service is doing right, through on wrong data.

Processing Errors: Processing errors denote those service errors in which

the output data is incorrect, but is placed in the right output locations. Again,

the cause are random faults in the corresponding circuitry involved.
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Indication Errors: One of the tasks of a service is to update the PC accord-

ing to the input (e.g. interrupts) in order to indicate and identify the successor

service about to be instantiated. Indication errors (more precisely: successor

indication errors) denote those errors in which the PC is updated incorrectly.

These errors result in control-flow errors at process level.

Instantiation Errors: Although the PC may be updated correctly, when

finally fetching and decoding the instruction code, the successor service in-

stantiated may be different from what is requested by the instruction code.

Random faults affecting the decoding unit are one cause. In this case the con-

trolling process still is on the correct program path (no control-flow error), but

is being delivered a wrong service by the provider.

5.3.2 Timing Errors

Some hardware faults can cause the services to deviate from their specified

timings. Timing errors may be related to certain transformations within a

service or to the service on the whole. A service may also become stuck in

which case all activity is stopped. The controlling process then implodes into

a halt. Timing problems usually result in a too late delivery of service (delay)

rather than in a shortened delivery. However, no statement on concrete timing

errors can be made here. Timing problems certainly are not to be neglected,

but given the fact that obtaining concrete models on the error behavior of

a microprocessor already is difficult enough (Section 5.2.3), timing problems

legitimately can be postponed for future consideration. Anyhow, if a slight

variation in the timing of a service causes the controlling process or the em-

bedded system to be non-fault-tolerant, then something fundamental is wrong

with the system from the start.

5.3.3 Multiple Affections

Depending on the location in the processing hardware, a permanent fault is

likely to affect several services, that is, a single hardware fault can cause a

number of services to become erroneous. A defective address unit will cause

errors in most of the services. A permanent fault in the ALU may at least affect

the services such as ADD, SUB, AND, OR and similar. Owing to the fact that the

details of the processing hardware are kept confidential by the microprocessor

manufacturers , the relationship between a given random fault and the set of
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services potentially affected often remains vague. Sometimes it is possible to

pick out from the processor documentation an idea of which services depend

on which functional units. Again, no statement on concrete relationships can

be made here.

ADD AND OR XOR NOTSUB

Figure 5.3: Multiple affection example

Multiple affections are not necessarily limited to permanent faults. A transient

may latch up in some flip-flop in the processing hardware and may influence

the subsequent services for a certain period of time. In [Ch91] the induced

transients were observed to almost disappear after 9 clock-cycles. This finding

however cannot be generalized for obvious reasons.

The only statement that can be made is that it is not unlikely that the

controlling process is not only affected by a single service error, but is affected

by a collection of service errors over a certain period of time. The controlling

process thus may be facing a timely spectrum of faults. Although the F set

is defined in [Ar90] to be the input domain the fault-injection experiments,

which is true for each individual injection, the input domain in evaluating the

fault-tolerance of the controlling process must be generalized to be what will

be called in Chapter 6 a fault scenario. A fault scenario is a constellation of

service errors that is applied to the controlling process. A fault scenario may

of course contain just one particular service error.

5.4 Error Behavior of Combinational Circuits

In this section fault mapping investigations on customary combinational cir-

cuits used in functional units of microprocessors are presented. The obtained
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findings can be used for describing or creating realistic service errors to be

used in fault-injection experiments.

5.4.1 Retrospective

Many fault-injection experiments were conducted by applying bit-flips to the

registers of a microprocessor. For a n-bit register, there are 2n − 1 choices to

falsify the content distinctly. In order to avoid combinatorial explosion, the

experimenters have limited the amount of actually injected faults. The num-

ber of simultaneous bit-flips to be applied as well as the choice which bits to

be affected however was chosen ad hoc in most cases. In [Yo96], as an exam-

ple, single bit-flips for each register bit, zero-all-bits and set-all-bits were used.

This reduced the fault space to n + 2. In [Ba90], two-bit-compensating faults

were applied, and in [Ca98] the injected bits seem to have been selected rather

randomly.

Undoubtedly, the number of faults to be injected must be somehow re-

duced. The question arises, whether the reduction process can be guided by

some à-priori knowledge or whether there is no way other than to choose the

faults arbitrarily. The answer certainly is important to those aiming at inject-

ing realistic representatives of random faults.

Example 5.1: It shall be assumed that a microprocessor has just delivered the

service R := A ADD B, where A and B are registers holding the numerical values

2 and 3, and where R is a register holding the sum 5. If the register R is about

to get fault injected for the purpose of emulating an effective stuck-fault in the

adder circuit involved in the delivery of the ADD-service, then the question is,

which bits of R have to be modified, or, in arithmetic terms, which value shall

R be assigned to in order to represent a realistic fault situation? Are all com-

binations of bit-flips, thus all values other than 5 even likely or do stuck-faults

in the adder circuit produce a certain error pattern (Figure 5.4)?

The answer is, that stuck-faults indeed produce a certain error pattern in

the output of the adder circuit. For the above example, assigning the value 7

to the register R is a good choice, while using 8 or 10 is not favorable. The

reason for this decision will be shown.
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Figure 5.4: Addition R:=A+B

5.4.2 Introduction

The execution of a particular machine instruction involves particular functional

units of the microprocessor. These units contribute to the delivery of the re-

quested service. A fault that has become effective in such a functional unit is

likely to cause a service error, that is, at least one of the transformations of

the service may get affected and will then differ from the specification. For the

example given previously, the ADD service is likely not to perform R:=A+B in

case of a faulty adder circuit, but some other function R:=g(A,B). The function

g is a function of the affected circuit and thus it must be possible to give some

shape to g by investigating the error behavior of the corresponding circuit.

Many circuits used in functional processor units are pure combinational cir-

cuits or have at least combinational equivalents. This certainly applies to com-

mon adders, multipliers, barrel shifters or multiplexers, for instance. Although

it is difficult to obtain specific gate level models for current microprocessors,

the fundamental functioning and the structure of these circuits is neverthe-

less well known. It is assumed here that these basic principles still apply to

most of the current processors used in safety-critical embedded systems. In
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any case, no statement will be made here about a particular microprocessor.

The intention of this section is not to present an extensive research on existing

microprocessor circuits, but to demonstrate that the circuits used in this in-

vestigation show a typical error behavior, and that there is a strong indication,

that the findings are universal and thus can be carried over to other circuits.

Terminology

Figure 5.5 shows an arbitrary combinational circuit with two data inputs, one

control input and one data output. The data inputs are connected to the

registers A and B, and the output is connected to the register R. The control

input is fed by some control register C whose content determines the operation

to be carried out on the inputs. While A, B, C and R denote registers, thus

storage locations, the lower-case letters a, b, c, r denote their corresponding

content — a value that will be expressed either in terms of an unsigned decimal

integer or as binary representation. For the output register R, the lower-case

letter r depicts the value in the fault-free case, while r’ depicts the value when

a fault is present in the circuit. The number of used bits of a register, also

termed size, is denoted by a Greek letter as follows.

Size A = α, size B = β, size C = χ, size R = ρ.

Register A, for example, can hold 2α distinct values. The sizes of the registers

are determined to be equal to the number of input or output lines associated,

that is, no bit of a register is left unconnected.
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B
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c

C
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r,r'

=1

&

& &

&
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Figure 5.5: Circuit constellation

The circuit consists of basic gates as shown in Figure 5.6 (page 88) for the

4-bit Adder circuit which will be the first simulation example to be discussed
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straightaway in Section 5.4.4.1. The inputs and outputs of the gates are called

ports .

5.4.3 Gate Level Fault-Simulation

The investigations are carried out through fault-simulation at gate level. The

injected faults are single stuck-faults, that is, there is only one fault in the cir-

cuit per simulation. A good-simulation is the fault-free logic simulation with

fixated inputs a and b for the purpose of obtaining r. A fault-simulation is the

logic simulation with fixated inputs a and b, and a particular fault f for the

purpose of obtaining r’(f). A simulation run denotes the combined sequence

of one good simulation followed by one fault-simulation, while the inputs a and

b remain fixated during the complete run. The run unravels the error evoked

in r’, if any. A simulation section denotes a set of simulation runs, where all

runs use the same input values a and b, but each run uses a different fault.

The faults are injected into the input and output ports of the gates. How-

ever, injecting a stuck-at-0 fault into a port that already has the logic value

0 makes no sense because this procedure poses no error to the circuit. The

similar applies to stuck-at-1 faults when injected into ports already set to log-

ical 1. It is to emphasize that the primary goal of this investigation is to force

a logical fault into the circuit in order to observe the effects onto the output

R. This goal is achieved when at least one gate behaves different from the

fault-free case. Therefore the stuck-faults are chosen to be the inverse of the

actual logic port value. The port values are known from the preceding good-

simulation and thus the input values do not change during a simulation run.

After fault-simulation the fault is retracted. The next run starts with a good

simulation in which the nodes of the circuit are brought back to their fault-

free values in accordance to the applied input. Another port is then selected

and the injected fault will force the port value to its logic inverse during the

fault-simulation. When all fault locations have been visited, the next input

combination of a and b is applied to the circuit, and the next section with

p simulation runs follows. The letter p denotes the number of ports that the

faults are injected into (the visited ports). Some of the investigated circuits

have output lines that are not used during a particular simulation. All gates

driving these unused outputs are removed from fault-injection, therefore the

number of visited ports p sometimes is less than the total number of ports of

the circuit.
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For a given circuit having the inputs A and B, and p fault locations, the

maximum number of distinguishable simulation runs is

No = 2α · 2β · p. (5.1)

The size of the control input C is not taken into account because the investiga-

tion of each circuit was carried out separately for each of its operation modes,

that is, the value of c was one in each investigation. Some circuits anyway have

no control input since they perform only one specific function. The number of

simulation runs that have been carried out on a circuit and a given operation

mode is depicted by N . For all investigations presented here, is N = N0. The

simulation software has been written by the author. The circuits are taken

mainly from textbooks.

Fault model: Single stuck-at-0 and stuck-at-1 faults, adjusted to the logic
value of the fault location (acting like inverters).

Fault locations: Input and output ports of the gates driving the output un-
der observation. Total number = p.

α, β, ρ: The size (number of bits) of the input registers A, B, and of
the output register R.

Simulation run: Sequential combination of one good simulation and one
fault-simulation, the latter with one particular fault, while
the inputs remain constant (a = ai, b = bj).

N : Total number of simulation runs for a given circuit, such
that all input combinations are applied onto all faults.

Feature: None of the injected faults is ineffective at gate level, that
is, each fault causes the affected gate to act different from
the good case. Therefore the core error behavior of the
circuit is revealed.

Table 5.1: Summary fault-simulation procedure

5.4.4 Error Model

The goal of the investigations is to find out of what kind the effects of the

injected faults onto the output register R are. More precisely, if the output of

the circuit is in error, to which degree will r’ differ from the correct value r and

how can this error best be described? Obviously, the fault effects should not

be itemized for each particular input combination and each individual fault,
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which would sum up to N0 information entries in total. Two reasons forbid

such a procedure anyway. First, the circuits investigated are exemplary circuits

which could have been constructed using another internal structure, thus other

gates and different wiring while maintaining the same logical function. Second,

and in consequence of the first, focusing on a very particular fault is much too

detailed in this situation as this particular fault and its location may not exist

in the real hardware that the error model may be used for. Furthermore,

usually the least of all is known about very individual faults. For the purpose

of portability, the error model should average over all faults and all input

combinations. The model thus becomes a probability distribution function of

the particular errors observed.

Error probability distribution

In statistical terminology, each simulation run is an experiment. The outcome

of the experiment is the observation of one particular error ek(r,r’) out of a set

of possible errors. This set of errors forms a sample space Ω defined on R and

it includes the null-error which depicts the outcome r = r’. The errors e(r,r’)

in Ω are scalar quantities which are derived through some measure-function

mapping the difference between r and r’ onto an ordered scale. Counting the

number of flipped bits in r’ with respect to r is a commonly used measure to

describe e(r,r’), for instance. A random variable E shall now be defined on

Ω. For a single simulation run, E takes exactly one error from the set. For a

simulation section, thus a = ai and b = bj and all p faults, E is assigned a

distribution of the particular errors ek(r,r’) observed. A complete simulation,

thus all input combinations onto all faults, yields an error distribution function

in E for a given circuit and operation mode. This function describes each

individual error in r and its likelihood of occurrence, independent of the input

values, and under the presumption that a stuck-fault is present at the very

moment at which the circuit performs an operation on the inputs, while all

faults are to occur with the same probability. It should be noted, that the

error model applies to both permanent and transient stuck-faults. The only

requirement is, that a single fault is active at the very moment at which the

input signals propagate through the circuit. The model thus describes the

worst case, namely that either a permanent fault (which acts like an inverter)

is present or that a transient fault occurs and flips the logic value of some port

whenever the circuit is used.
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Before continuing on the error model, the 4-Bit-Adder, ADDER4, shall be in-

troduced in brief. The circuit serves as exemplary basis for the subsequent

discussion.

ADDER4: The function of the 4-bit Adder shown in Figure 5.6 is

to perform an addition on the inputs A and B such that R:=A+B.

The inputs are each of 4-bit size, yielding 256 distinct input com-

binations to the circuit. The output R is of 5-bit size. The number

of ports (= fault locations) is 96. In total, N = 24576 simulation

runs were carried out on the circuit.

5.4.4.1 Bit-flip Distribution

As mentioned beforehand, a commonly used measure to describe the error

e(r,r’) is to count the number of bits flipped in r’ with respect to r. For the

4-bit Adder ADDER4 the distribution of bit-flips obtained from simulation is

shown in Table 5.2. Since the output R is of 5 bits, the number of bits to flip

ranges from 0 to 5.

Bit-flips %

0 25.68

1 55.60

2 12.11

3 4.72

4 1.69

5 0.20

Table 5.2: Bit-flips in the output of the 4-Bit Adder

In 25.68% of an effective fault present, its effects did not propagate to the

output of the circuit, that is, no bits in R flipped and r was identical to r’. A

fraction of 55.6% of the fault-injections caused one bit to flip, while in 18.72%

two or more bits flipped. The following finding is not new.

Not every stuck-fault effective at the logic level

produces an error in the output of the circuit.

From the bit-flip distribution it however cannot be drawn, which particular

error is the most likely. Obviously, focusing on the number of bits flipped

is not very expressive for practical fault-injection experiments. First, it is
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not known which bits actually were affected and thus which bits should be

manipulated for the purpose of injecting an error. Second, as bits are a means

to an end rather than the means, it should be observed what the fault effects

mean to the integer represented by the collection of bits. Therefore a more

descriptive error is to join the traditional bit-flip error.
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5.4.4.2 The Arithmetic Error

In coding theory, especially with arithmetic codes, an error can be described by

the arithmetic error. The following informal definition is taken from [Wa78 p.35]

with slight adjustments.

In the arithmetic error model, instead of viewing an error as chang-

ing a certain number of bits in a binary vector, we consider its

effect on the integer represented by the vector. Thus the effect of

an arithmetic error on the binary representation of an integer r is

to change it to the binary representation of r + e, where e is called

the error value.

The error value, for convenience just termed error here, is a signed integer-

value representing the difference between the two unsigned integers r and r’

such that r’ = r + e. Because the range of values of r is limited by the size of

the register R, arithmetic addition and subtraction must be performed within

the scope of the number circle spanned by R (modulus-2ρ calculus). The size

of e is equal to the size of R, hence e may take any value from the integer range

E = [−(2ρ−1), . . ., 0, . . ., +(2ρ−1 − 1)] (5.2)

and thus depicts the shortest distance between r and r’ on the circle, as shown

in Figure 5.7. Demanding by definition, that e must take a value from E

avoids two potential problems. The first problem, owing to the modulus arith-

metic, is that e could be substituted by (e + n·2 ρ), where n is an arbitrary

integer. The error mapping would become ambiguous then. The second prob-

lem addresses the question, which way to take from r to r’ on the number circle

when both are located exactly opposite of each other, thus when r’ = r + 2ρ−1

(see Figure 5.7c). The answer is to go counter-clockwise, because the distance

−2ρ−1 between r and r’ can be represented by e whereas the same distance

going clockwise, +2ρ−1, can not.

Definition 5.1: The arithmetic error e(r,r’) is a signed integer of size ρ,

defined on two unsigned integers r and r’, each of size ρ, taking values from

the set
E = {−(2ρ−1), . . . , 0, . . . , +(2ρ−1 − 1)}

for the purpose of unambiguously describing the error in r’ with respect to

r, such that r’ = r + e(r,r’) in modulus-2ρ calculus. The set E contains 2ρ

elements.
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Figure 5.7: The arithmetic error e on the number circle.

For simplicity, the error e(r,r’) will be notated just as e. The error e = 0 is

the null-error, depicting the outcome r = r’. In order to ease the distinction

between the null-error and the remaining errors e �= 0 in the further discussion,

the set E is split into a set E0 and a set EE. The former contains the arithmetic

null-error and the latter contains all remaining arithmetic errors.

E = E0 ∪ EE = {0} ∪ {−(2ρ−1), . . . , −1, 1, . . . , +(2ρ−1 − 1)} (5.3)

The null-error often is not termed as such, rather it is said that no error

occurred. This terminology will be used in the following figures when indicating

the frequency of occurrence of elements originating from either set. In the

figures shown shortly, noerr is the percentage of occurrence of the null-error

and err is the percentage of the remaining errors e �= 0.

5.4.4.3 Arithmetic Error Distribution

The distribution in the random variable E for the 4-bit Adder ADDER4, when

the particular errors have been collected in terms of arithmetic errors, is shown

in Figure 5.8. The x-axis lists the particular arithmetic errors e(r,r’) observed.

Because the output of the circuit is of size 5, the errors may range from –16 to

+15, thus taking 25 = 32 distinct values. The y-axis indicates the frequency of

occurrence of each possible error. The frequency is given in percent of the total

number of fault-simulations N . It is to note that each of the N fault-injections

used to be effective.

Figure 5.8 shows a discrete error distribution function of the errors in the

output of the 4-bit Adder for all input combinations when single stuck-faults
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Figure 5.8: Arithmetic error distribution ADDER4

are present and effective at gate level. From the distribution function it is evi-

dent that some errors appear more often than others. The null-error, e = 0, is

the most frequent with a percentage of 25.68. This matches with the percent-

age of no bit-flips from Table 5.2. However, for the purpose of fault-injection,

the remaining errors e �= 0 are of more importance. For fault-injection it is

instantly recognizable from the distribution, which particular errors should be

selected preferably. As may be noticed, the arithmetic error distribution rep-

resents the error behavior of a circuit in a more concrete manner than does

the bit-flip distribution

Now the initial question from Section 5.4.1 (Figure 5.4, page 82), how to

manipulate r in order to inject a most likely error, can be answered for this

particular circuit: If there is a single fault present in the circuit, then adding

an error e = 2 to the content of R is a good choice because this error is the

most likely to occur. Thus, if r = 5, as assumed in the example, then the

value 7 should be assigned to R. However, given the fact that the probability

of occurrence of the individual stuck-faults is likely not to be equal for the

considered faults in reality, the likelihood of the errors e will vary slightly.

Thus, taking an error other than e = 2, for example e = 4 or e = 8, is a

good choice as well. In any case, there are errors that do not occur, regardless

of the real probability of occurrence of the stuck-faults. For example, assign-

ing the values 8 or 10 to R, as already discouraged in Section 5.4.1, is indeed

not favorable because the corresponding errors e = 3 and e = 5 have the like-
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lihood zero for this circuit and this fault model. These errors will never appear.

For the ADDER4 circuit, the following finding can be formulated.

Despite the presence of an arbitrary and effective single-stuck fault

in the circuit, there are some arithmetic errors that never occur.

Also it appears from the figure that the arithmetic error distribution follows a

certain pattern, which is discussed next.

5.4.4.4 The Power-of-two Errors

Next to the finding that some errors do occur, while others do not occur at

all, the set of occurring errors e �= 0 can be specified more precisely for this

circuit. From the simulation results it reveals that all errors e �= 0 solely are

powers of two, regardless of the number of flipped bits.

EE = { -16, -8, -4, -2, -1, 1, 2, 4, 8}, ∀e ∈ EE : e = ±(2n).

Thus for the ADDER4, the number of possible arithmetic errors in the output

amounts to just 9 (excluding the null-error) and these error values can be

summarized by a simple formula. This insight very much eases the selection

of errors to inject. Given that the circuit is affected by an arbitrary single

stuck-fault, the following statement applies.

If it is to inject realistic errors, then error values that are

to a power-of-two are the first choice.

According to [Wa78 p.140], indications on power-of-two errors have already

been given in the late 60’s and early 70’s, as for instance in [Se68]. The findings

resulted from analytical considerations of specific circuits ([Se68 p.101] used

the Boolean Difference on selected adders). The considerations were however

not concerned with any error frequencies.

It should be noted, that power-of-two errors are not identical to single bit-

flips. Single bit-flips always cause an arithmetic power-of-two error, but not

vice versa. For example, adding e = 8 to the value 9 needs two bit-flips, and

adding e = 2 to the value 14 requires 4 bit-flips.

Single bit-flips do not fully describe the error behavior of a circuit.

For later use, the powers-of-two contained in the value-range of a signed integer

of size ρ will be denoted by Pρ. The number of elements in Pρ is 2 · ρ − 1.
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Completing the error model

Because of the noticeable presence of the power-of-two errors, the errors in

EE will be further categorized by whether they are to a power-of-two or not.

The percentage of the former will be denoted by pow2, the percentage of

the latter by ¬pow2 as shown in the new error distribution figure for the

ADDER4, Figure 5.9. The values are given with respect to both E and EE ,

thus describing the absolute fraction (with respect to N) of the power-of-two

errors and the relative fraction (with respect to all e �= 0). As can be seen

from the figure, the absolute frequency of power-of-two errors for the circuit is

74.32%, which makes a relative fraction of 100%. Thus, if there is an error in

the output register R, its value is to the power of two.
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Figure 5.9: Error distribution ADDER4 (with embedded table)

5.4.4.5 Summary

The error behavior of a circuit, while a fault is present and effective at gate

level, can be given in form of the traditional bit-flip distribution and in form

of an arithmetic error distribution. While the bit-flip focuses on the physical

representation of data, the arithmetic error emphasizes the meaning of the

stuck-faults to the data’s numerical values. The distributions are obtained

through fault-simulation. They are frequency distributions, describing the er-

ror behavior of a circuit when all stuck-faults occur with the same likelihood.

The distribution functions are also probability-density functions, indicating the
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probability of occurrence of each error in the output when an arbitrary but un-

known single-stuck-fault is present in the circuit. Compared to the traditional

bit-flip distribution, the arithmetic error distribution is more expressive.

5.4.5 The Circuits

The following are the circuits investigated. The schematics use the BS3939

standard for logic symbols.

• The 4-bit adder already introduced (ADDER4, schematic shown in Figure 5.6).

The adder is constructed of 4 full-adders (FA).

• A 4-bit carry-look-ahead adder (CLA-ADDER4, schematic shown in Figure 5.10).

• A 4-bit ALU ALU4, schematic shown in Figure 5.11. The ALU uses the

same Full-Adder as the ADDER4 circuit. For space reasons these are

shown as modules in the schematic.

• An 8-Bit ALU (ALU8, no schematic) which is of the same structure as the

ALU4. This ALU is the 8-bit version of ALU4, having 8 stages instead

of 4.

• The 4-bit ALU 74181 (ALU74181, schematic in Figure 5.12).

• A 4-bit barrel shifter (BS4, schematic in Figure 5.13).

• A 4-bit multiplier (MUL4, schematic in Figure 5.14). The Full-Adders

used in the circuit are the same as in the ADDER4 and the ALU4.

A table summarizing the essential data of the circuits is given in the fol-

lowing section (Table 5.4 on page 102).

The error distribution functions of the investigated circuits are presented and

discussed as well in the following section (page 100 – after the schematics).
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5.4.6 Single-Fault Error Behavior

In this section, the error behavior of the investigated circuits in the presence

of single-stuck-faults is presented. Both the bit-flip distribution and the arith-

metic error distribution will be shown. Standing in for all the investigated

circuits, the ADDER4 is used to first outline the figures and tables in this sec-

tion.

The 4-Bit Adder ADDER4

The function of the 4-bit Adder from Figure 5.6 is to perform an addition on

the inputs A and B, thus R:=A+B. The inputs are each of 4-bit size, therefore

yielding 256 distinct input combinations. The output R is of size 5, yielding up

to 32 arithmetic errors from the range [−16. . .+15] as well as up to six bit-flip

errors within the range [0. . . 5]. The number of ports that faults are injected

into amounts to p = 96 for this circuit. Table 5.3 summarizes the essential

circuit information.

Circuit Mode Function α β ρ p N Reference

ADDER4 ADD R := A + B 4 4 5 96 24576 fig. 5.15

Table 5.3: Circuit data ADDER4

In total, N = 24576 simulations have been carried out on the circuit. The

obtained error distributions, in terms of bit-flips and in terms of arithmetic

errors, are shown in Figure 5.15 which is the final type of figure used for

presenting the circuits’ error behavior. The arithmetic errors are displayed in

form of a histogram while the bit-flips are embedded in tabular form. Focus will

however be given to the arithmetic errors and the term distribution will mainly

refer to the arithmetic error distribution. The header of the distribution figure

identifies the circuit through a short name (here ADDER4) and a mnemonic

of its actual operation mode (ADD). The circuit function for the particular

operation mode (here R:=A+B) and the number of simulations that the error

distribution is based on, N , is given as well in the header.

The other Circuits

Table 5.4 summarizes the essential circuit data of the investigated circuits.

Again, α and β denote the number of bits of each the inputs A and B. Some

circuit functions, for example R:=A+1, only use input A. In these cases the input

B is unused and β = 0. The size of the output ρ also depends on the circuit
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function. With some functions, the carry-bit belongs to the output, while

with other functions the carry-bit is irrelevant. In consequence, the number

of fault locations p varies for a given circuit because all gates driving unused

outputs are removed from the simulation. N denotes the number of simulation

runs that were carried out on the circuit and particular operation mode. The

corresponding distribution figures are referenced in the last column.

Error Distribution Figures

For space reasons, only six error distributions are shown in the following

(Figure 5.16 – 5.21). The other figures are shifted to appendix A (page 171).

As appears from the figures, the circuits show specific error patterns in

response to the injected single-faults. None of the distributions comes close to

an equal-probability distribution, they rather contain a predominant group of

errors whose likelihood of occurrence is much higher than that of the remaining

errors. This predominant group are the power-of-two errors. Of all errors

e �= 0, the power-of-two errors make up a proportion between 93.57% and

100%, independent of the circuit and its operation mode (see also column

pow2 in Table 5.5 on page 110). Thus, given one of the circuits presented

here, and given an arbitrary single-stuck fault present in the circuit, the error

produced in the output (if not the null-error) will be a power-of-two error by

a chance higher than 93%. Consequently, if it is to emulate realistic errors in
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fault-injection experiments, the power-of-two errors are far the most realistic

ones when single stuck-faults have affected a circuit.

Circuit Mode Function α β ρ p N Reference

CLA-ADDER4 ADD R := A + B 4 4 5 126 32256 fig. 5.16 pg. 103

ALU4 ADD R := A + B 4 4 5 254 65024 fig. 5.17 pg. 103

ADDINC R := A + B + 1 4 4 5 254 65024 fig. A.1

SUB R := A - B 4 4 5 254 65024 fig. A.2

SUBDEC R := A - B - 1 4 4 5 254 65024 fig. A.3

INC R := A + 1 4 0 4 241 3856 fig. A.4

DEC R := A - 1 4 0 4 241 3856 fig. A.5

AND R := A ∧ B 4 4 4 241 61696 fig. A.6

OR R := A ∨ B 4 4 4 241 61696 fig. A.7

NOT R := ¬A 4 0 4 241 3856 fig. A.8

XOR R := A ⊕ B 4 4 4 241 61696 fig. A.9

THRU R := A 4 0 4 241 3856 fig. A.10

ALU8 ADD R := A + B 8 8 9 486 31850496 fig. 5.19 pg. 104

ADDINC R := A + B + 1 8 8 9 486 31850496 fig. 5.20 pg. 105

SUB R := A - B 8 8 9 486 31850496 fig. A.11

SUBDEC R := A - B - 1 8 8 9 486 31850496 fig. A.12

INC R := A + 1 8 0 8 473 121088 fig. A.13

DEC R := A - 1 8 0 8 473 121088 fig. A.14

AND R := A ∧ B 8 8 8 473 30998528 fig. A.15

OR R := A ∨ B 8 8 8 473 30998528 fig. A.16

NOT R := ¬A 8 0 8 473 121088 fig. A.17

THRU R := A 8 0 8 473 121088 fig. A.18

ALU74181 ADD R := A + A 4 0 5 208 3328 fig. A.19

ADDINC R := A + A + 1 4 0 5 208 3328 fig. A.20

ADD R := A + B 4 4 5 208 53248 fig. 5.18 pg. 104

ADDINC R := A + B + 1 4 4 5 208 53248 fig. A.21

SUB R := A - B 4 4 5 208 53248 fig. A.22

SUBDEC R := A - B - 1 4 4 5 208 53248 fig. A.23

INC R := A + 1 4 0 4 181 2896 fig. A.24

DEC R := A - 1 4 0 4 181 2896 fig. A.25

AND R := A ∧ B 4 4 4 181 46336 fig. A.26

NAND R := ¬(A ∧ B) 4 4 4 181 46336 fig. A.27

OR R := A ∨ B 4 4 4 181 46336 fig. A.28

NOR R := ¬(A ∨ B) 4 4 4 181 46336 fig. A.29

XOR R := A ⊕ B 4 4 4 181 46336 fig. A.30

NOT R := ¬A 4 0 4 181 2896 fig. A.31

THRU R := A 4 0 4 181 2896 fig. A.32

BS4 ROL R := A � B 4 2 4 128 8192 fig. A.33

MUL4 MUL R := A · B 4 4 8 528 135168 fig. 5.21 pg. 105

Table 5.4: Circuit data
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Figure 5.16: Single-fault error distribution CLA-ADDER4
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Figure 5.17: Single-fault error distribution ALU4 (R := A + B)

Assuming a single-fault affected circuit, the power-of-two errors are

the primary choice for fault-injection. They are to occur with a

likelihood of 98% on the average.

Because the arithmetic error e is a signed integer and because any signed

integer of size ρ can take exactly 2ρ− 1 values that are to a power-of-two, the

error set reduces from 2ρ − 1 potential errors to 2ρ − 1 realistic errors.
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Figure 5.18: Single-fault error distribution ALU74181 (R := A + B)
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Figure 5.19: Single-fault error distribution ALU8 (R : = A + B)

Double-Faults

There may arise the objection, that the single stuck-fault model used in these

investigations might not be appropriate to certain real circuits or to some

extremely rough environments a processor may reside in. On one hand, the

single-stuck fault model is a widely accepted and adequate model. Despite all

doubts, it serves at least to take a first approach in error modeling and fault-
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Figure 5.20: Single-fault error distribution ALU8 (R : = A ∧ B)
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Figure 5.21: Single-fault error distribution MUL4 (R := A · B)

mapping. On the other hand, given the tiny layout dimensions of nowadays

circuits, radiation and wear-out certainly may cause more than one fault at a

time. Therefore the investigations on the error behavior of the circuits have

also been carried out using two simultaneous stuck-faults.
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5.4.7 Double-Fault Error Behavior

In the second investigation presented here, two simultaneous stuck-faults have

been injected into the circuits. For a circuit having p fault locations, the

number of useful unique combinations of the two faults across all locations is

c =

(
p

2

)
(5.4)

and the total number of simulation runs for the circuit sums up to

N0 = 2α · 2β · c. (5.5)

Compared to the single-fault injection, the number of simulation runs for a

circuit and operation mode using double-fault injection multiplies by the factor

c

p
=

1

p
· p!

2!(p − 2)!
=

(p − 1)!

2!(p − 2)!
=

p − 1

2
. (5.6)

For the 4-Bit Adder ADDER4, having p = 96 fault locations, the number of sim-

ulation runs increases from 24,576 to 1,167,360. Simulation took about 2 hours.

Though, just simulating the circuit function R:=A+B of the 8-Bit ALU ALU8

requires N0 = 7,723,745,280 runs for double-fault injection, which would have

taken 8 months with the equipment available to the author. The ALU8 circuit

and the Multiplier MUL4 are therefore not considered in the double-fault in-

vestigation.

Four error distributions are shown in the following. These are the distributions

of both the adders and of the two ALUs performing the function ADD. The

other distribution figures are shown on page 188 in the appendix.

The figures show, that double-faults cause more errors to appear at the out-

put, both in quantity and in value. All individual errors from the set EE can

be found in the distributions, however to the exception of the circuits ADDER4

and CLA-ADDER4, where the particular error values e = ±11 and e = ±13 still

have the likelihood zero. For these two circuits even double-faults never raise

these errors. For all other circuits, the error values e = {±11, ±13} appear to

have the least likelihood of occurrence among all errors. This finding indicates

that some arithmetic errors seem keeping to occur with a low likelihood among

all circuits.
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Figure 5.22: Double-fault error distribution 4-bit Adder
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Figure 5.23: Double-fault error distribution 4-bit Carry-Look-Ahead Adder

The similar, but the other way round, still applies to the power-of-two

errors. Regardless of the circuit and operation mode, their likelihood of occur-

rence ranks between 66.1% (ADDER4) and 86.49% (BS4). The power-of-two

errors are not as predominant as they were in the single-fault investigations,

but they are still dominant. Roughly, their relative proportion among all arith-
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Figure 5.24: Double-fault error distribution ALU4 (R := A + B)
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Figure 5.25: Double-fault error distribution ALU74181 (R := A + B + 1)

metic errors is 76% on the average. For the investigated circuits the following

statement can be made.

If a circuit is assumed to be affected by double-faults, the power-of-

two errors are still the primary choice in fault-injection experiments.

They are to occur with a likelihood of roughly 76%.

As may be seen from the figures, the power-of-two error patterns from

the single-fault error distributions of a given circuit and operation mode are
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repeating themselves in the corresponding double-fault error distribution. The

shapes are almost identical, that is, the particular power-of-two errors seem

to keep their relative proportions among each other. There are only slight

variations. With negligible loss of accuracy the single-fault error distribution

is forecasting the appearance of the power-of-two errors in the double-fault

case. A double-fault circuit simulation may be dropped if concentration is on

power-of-two errors.

In a double-fault affected circuit, when focusing on the power-of-two

errors only, it is sufficient to use the single-fault error distribution

as a guideline for double-fault-based error-injection.

5.4.8 Summary

In total 288, 836, 352 simulation runs were carried out on selected combina-

tional circuits. Table 5.5 on page 110 summarizes the major attributes of

the distribution functions for both the single-fault model and the double-fault

model. The simulation results demonstrate that the circuits respond to the

faults with a specific error pattern. These patterns clearly point out the errors

that are most to be expected for a given circuit and operation mode. Across all

circuits and modes investigated, the power-of-two errors, Pρ, have the highest

likelihood of occurrence among the errors.

If the output of a single-fault affected circuit is in error other than

e = 0, then this error is to a power-of-two by a chance of 98% on

the average (lowest value is 93.57%, highest is 100%).

If the output of a double-fault affected circuit is in error other than

e = 0, then this error is to a power-of-two by a chance of roughly

76% (lowest value is 66.10%, highest is 86.49%).

Because these errors are the most realistic errors in case of a faulty circuit, the

error set can be reduced from 2ρ − 1 to 2ρ − 1 errors.

The dominance of the power-of-two errors does not depend on the structure

of the herein investigated circuits nor on their size. Therefore it is reasonable to

assume that other circuits of same functionality but different structure behave

in a similar way. This assumption holds as long as the fundamental mode of
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operation of the circuits are comparable. The findings are considered portable.

If it is to emulate realistic errors that are caused by a random fault affecting a

combinational circuit of which the function is known but its structure is not,

then it is legitimate to use power-of-two errors.

Owing to the similarities of the error distribution functions, the error dis-

tribution of a circuit is likely not to reveal the precise structure of a particular

circuit. The manufacturers of microprocessors may thus, without giving away

secrets, frankly hand out such error distribution functions to those concerned.

5.5 Creating Realistic Service Errors

Following the previous section, if a microprocessor service performs a trans-

formation function R := g(A,B) and the transformation g uses a fault-affected

circuit similar to those investigated, then the transformation function turns

into

g’= g(A,B) + pE(e),

where pE(e) is the circuit-specific distribution of arithmetic errors in R, as-

suming that all faults occur with the same likelihood. The question how to

manipulate a transformation function in order create a most likely (and thus

representative) error in the output of a service can now be answered more

precisely.

• If the error distribution pE(e) is known, the answer is at hand instantly.

The power-of-two errors are the most realistic ones, and the error distri-

bution shows which among them have highest precedence.

• If pE(e) of the particular circuit is not known, but error distributions of

similar circuits are available, then these are a legitimate guideline.

• If nothing is known, choosing arbitrary power-of-two errors is justified.

Example 5.2: The service MUL A,B is assumed to be active (Figure 5.26). The

multiplication circuitry in the microprocessor shall be affected by a random

fault. Using the arithmetic error distribution from Figure 5.21 (page 105), the

transformation function of the input operands A and B turns from A:=A*B into
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A:=(A*B)+16 with highest probability. Other transformation tasks within the

scope of the MUL service are not affected as the multiplication circuit likely is

not involved in other operations, such as incrementing the program counter or

decoding and instantiating the next service. The service error results in a data

fault in the storage space at location A. This is a typical processing error of a

service.

A

MUL A,B

A

B B

...
a := L[A]
b := L[B]
a := a*b + 16
L[A] := a
...

Figure 5.26: Service error on MUL A,B

Example 5.3: The adder circuit located in the address unit shall be affected

by a random fault while the service PUSH A (push register A onto the stack)

is active (Figure 5.27). Register A shall be 16-bit. In the fault-free case the

transformation of the stack pointer is SP:=SP-2. Taking the error distribution

from Figure 5.19 as a guideline, the arithmetic errors 2, 4, 8 and 16 are the

most likely (null error excluded). Using the error e = 16 for instance, the

transformation turns into SP:=SP+14. In any case will the content of the

register A be stored at a wrong memory location. Depending on the contents

of the storage locations in the fault-free case, the service error may cause up to

3 data faults in the storage space. One fault occurs in the location SP. One fault

occurs in the original stack where the content of register A should have been put

originally (missed upload), but only again in case the content is different from

that of register A. The third data fault occurs in the storage location where A

is being put now, but also only in case the previous content was different from

register A. Because the address unit is also used for incrementing the program

counter, the PC will be faulty as well (not shown in the figure).

113



A A

PUSH A

SP SP...
sp := L[SP]
sp := sp + 14
L[SP] := sp
L[sp] := L[A]
...

Figure 5.27: Service error on PUSH A

Discussion

The findings from Section 5.4 certainly can be applied onto services to more

extent than done in the examples shown. With slight exceptions, all services

likely make use of circuits similar to those investigated. With the knowledge of

the power-of-two errors a manifold collection of realistic service errors can be

created if the specification of a service is known. The service errors obtained

are more realistic than are the unbound injections of single bit-flips into mem-

ory locations, as done in many SWIFI approaches. This is because a service

(its specification) tightens the coupling between real random faults and the

creation of data faults in the storage space.

Without doubt, there are service errors that cannot be modeled using the

power-of-two errors. Although not verified, examples may be faults affecting

the pipeline or the decoding unit. Nothing can be said here about how the

corresponding service errors will look like in particular.

5.6 Urging Manufacturers

The manufacturers of microprocessor certainly can say little about the like-

lihood of occurrence of random hardware faults in their products. However,

the manufacturers principally can make statements about the effects of ran-

dom faults, at least when the product is well-understood. Rather than feeling

compelled of handing out any low-level models of their microcontrollers (which

often are ranked secret), manufacturers should supply their products with an
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appropriate error behavior model. Arithmetic error distributions are a good

start, concrete service errors are a better continuation. It is not the complete

microcontroller to be error-modeled, but merely the processing hardware. In

any case, it is the author’s opinion that the manufacturers should (be able

to) explain their products comprehensively, both for the good-case and for the

fault case.

5.7 Summary

This chapter was dedicated to service errors which form the injectable repre-

sentatives of random faults in the processing hardware at the process level.

Publications concerned with fault mapping which is the process of achiev-

ing a set of representative errors at a higher abstraction level for the purpose of

fault-injection, were discussed first. The publications substantiate the demand

for a high-level error behavior portrayal onto a microprocessor. However, the

approaches taken have not reached the service level, but are encouraging in

that the used injection-techniques and available hardware models principally

allow for obtaining concrete service errors. The work of [Yo93,Yo96] moreover

indicates that even with a “näıve” service specification a high percentage of

low-level faults can be error-modeled.

In the error behavior section, some error classes were discussed, and timing

errors as well as the multiple affection of services was broached.

In the major part of this chapter investigations on the error behavior of

combinational circuits in the presence of single and double faults, carried out

by the author through gate level fault-simulation, were presented. The circuits

investigated are customary circuits used in functional units of the processing

hardware. Instead of using bit-flips for describing the error behavior of a

circuit, the arithmetic error was introduced. The arithmetic error was demon-

strated to be more descriptive than the traditional bit-flip. Almost 300 million

fault-simulations were carried out. It appeared from the obtained error distri-

butions that the power-of-two errors have the highest likelihood of occurrence

(≈ 98% with single faults, ≈ 76% with double faults). The dominance of these

errors was found independent of the structure and the size of the circuits. It

is therefore concluded that other circuits of same functionality but different

structure behave likewise. When it is to create representative service errors,

assuming that the service makes use of a similar circuit affected by a random
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fault, the power-of-two errors are the preferable choice for manipulating the

corresponding transformation functions of a service.

The findings from the circuit investigations were then used for the exem-

plary creation of representative service errors. These service errors are more

realistic than are ad-hoc injections of bit-flips into memory locations. How-

ever, as outlined, the power-of-two errors are not capable of modeling all ser-

vice errors possible. The chapter closed with a request to the microprocessors

manufacturers to provide error distribution functions or service errors of their

products to those concerned.

This chapter ends the search for an appropriate fault input domain. In

the next chapter, following the requirements identified in Chapter 2, the sets

involved in the fault-injection method are instantiated, resulting in the method

of mutant-injection.
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Chapter 6

Mutant-Injection

6.1 Introduction

In Chapter 2 the requirements for enabling comparability in evaluating the

fault-tolerance of software through fault-injection were identified. With re-

spect to random faults in the processing hardware the set of faults F was de-

sired to directly affect the structural elements of the target. In Chapter 3 the

target was specified as the controlling process, and the subject of the investiga-

tion was stated more precisely as the evaluation of the interior hardware-fault

fault-tolerance of the controlling process. In Chapter 4 the structural elements

of the process were defined as services. Examples for the creation of realistic

service errors, however limited to faults in customary combinational circuits,

were given in Chapter 5.

This chapter presents mutant-injection which is a fault-injection method

for the evaluation of the interior hardware-fault fault-tolerance of safety-critical

embedded software in execution, and which forms a fundament for more con-

formance in fault-injection in order to achieve – as far as possible – comparable

measures. The method is characterized by a collection of sets — according to

the requirements from Chapter 2. In preview of the chapter, the method is

summarized as follows (see also Figure 6.1).

The fault set F consists of mutants which are deliberate service

errors. Depending on the hardware fault assumptions, one or more

mutants form a fault-scenario. The fault scenarios are then applied

to the controlling process. The readouts R are filtered through the

predicates P , and the resulting data describes the error scenarios
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that the controlling process has gone through. The set of error sce-

narios is then valuated and revised. The remaining error scenarios

are the basis for the derivation of the fault-tolerance measures.

Controlling Process

target

Activations A=

R

Mutants F Predicates P Valuation rules V

fault
scenarios

error scenarios

Measures M

Figure 6.1: Mutant-injection for evaluating the controlling process

The sets involved in mutant-injection are addressed first. Starting with the

fault set F , some notions N are defined and proposals for the predicates P

and the valuation rules V are given. General issues, such as the golden run

or time-censored data, are discussed then. In the section on the measures M

the coverage proportion is selected as a measure of the fault-tolerance. After

presenting the concept of a simulation-based fault-injection environment, the

chapter is summarized and the fault-injection method is discussed. Remaining

problems are outlined.

6.2 Fault Set F

For enabling comparability in fault-injection experiments, the used fault set

F should consist of a type of faults that is transferable to other systems or

objects as well. Also the abstraction level of the faults should be close to the

abstraction level of the investigated object, such that the injected faults do not

blur or vanish during their propagation along the path of impact. Preferably

the injected faults directly affect the structural elements of the target.
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6.2.1 Services

For evaluating the interior hardware-fault fault-tolerance capabilities of the

controlling process through fault-injection, services are the obvious starting

point for such a fault set. First, most microprocessors share the same services

(e.g. addition, subtraction, multiplication, bit-operations, logical operations,

data movement). Second, services have the same (or at least a similar) mean-

ing among different software. The meaning of a service is independent of the

microprocessor architecture (e.g. Harvard, von Neumann) and of the data for-

mats used (little endian, big endian). It is also independent of the coding

format of the binary machine instructions and of the location of the binary

program PM within the storage space. The meaning of services to software

is invariant of the particular microprocessor, certainly with the exceptions of

some very specific services. The third reason pleading for services is more

fundamental. Random faults in the processing hardware, if effective, cause

service errors. By means of service errors the random faults propagate into

the controlling process. Services therefore are the natural inlet into the object

of investigation. Service errors directly affect the structural elements that the

controlling process is made of. Finally, service errors cause process faults (ac-

tually they are process faults), such that the fault–error–failure relationship at

process level can be maintained and is also in accordance with [Ar90] in that

the input in fault-injection experiments is ought to be called faults. Service

errors therefore are the faults the interior hardware-fault fault-tolerance finally

has to cope with.

6.2.2 Mutants

The deliberate corruption of memory or registers is also called state mutation.

Similarly, the deliberate corruption of services for the purpose of fault-injection

is called service mutation here. State mutation is the manipulation of states,

service mutation is the manipulation of motion.

Definition 6.1: Service mutation is the deliberate cause of a service error for

the purpose of fault-injection. Service mutation is the manipulation of motion.

The result of mutating a service is called a mutant. A mutant is a service that

somehow differs in its transformation activities from the specification.
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Definition 6.2: A mutant is an intentional service error, representing the

effects of random faults in the processing hardware at the service level for the

purpose of fault-injection at the process level.

Mutants form the desired fault set F in fault-injection experiments regard-

ing the interior hardware-fault fault-tolerance of the controlling process.

Instead of evaluating the fault-tolerance of the controlling process

with respect to the random faults in the processing hardware, the

process is evaluated with respect to mutants.

Mutants form an object-appropriate and therefore comparable input domain

in the fault-injection experiments. By using mutants, it is now possible to

investigate different software with respect to equivalent or even identical fault

input. For example, different software may be investigated for their response

to a particular mutation of the ADD service (e.g. sum is always wrong by +2).

The space of possible mutations that a service principally may undergo doubt-

less is vast, but mutants at least enable to collect the effects of low level

faults at a common abstraction level. Moreover, following the philosophy from

[Vo98 p.25], not to worry about how realistic certain anomalies may be, but

to simply observe how those anomalies impact the software, mutants allow for

the creation of artificial dependability benchmarks which any software can be

tested against.

6.3 Notions N

As emerged from Chapter 2, one problem in comparing the results of the fault-

injection experiments lies in the sometimes differing interpretation of common

notions. In this section the fundamental notions used in mutant-injection are

discussed and defined. In particular it will be distinguished between true fault-

tolerance, masking and blanking.

6.3.1 Fault, Error, Failure

The role of the faults in mutant-injection is taken over by the service mutants.

Definition 6.3: A fault is a particular mutation of a particular service. The

mutant always causes a process fault.
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Figure 6.2: The fault set F (Mutants)

If effective, a mutant causes one or more data faults in the storage space.

Following the customary practice in fault-injection experiments, the data faults

are considered the errors induced. An error then denotes the fact that the

content of a storage location is somehow differing from its fault-free value,

that is, each bit is considered significant. A comment on this opinion follows

in Section 6.6.4.

Definition 6.4: An error is a data fault in a storage location.

An error in the storage space is not to be confused with a process error. The

latter is an error in (or of) a process, thus a motion error, while a data fault in

the storage space is a state error. State errors in the storage space may cause

process errors – if a process exists and if the error is read-accessed – but they

are not identical.

A particular error is denoted by ei. The collection of errors present in

the storage space at some point in time is denoted by E. Owing to error

propagation, an error ei may found an error family e+
i which is the collection

of the root error ei and its descendants. If the controlling process is perfectly

fault-tolerant, no error will propagate into the output area LO without being

signaled at the time of output latest. Definition 3.6 can be reformulated as

follows.
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Definition 6.5: The failure of the controlling process Z is the inability to

tolerate mutants.

6.3.2 Error Detection

Sometimes the moment of error detection is already considered the relieving

moment. The term error detection then encompasses error handling as well.

Here, the term error detection will be used in its original meaning. According

to [Ar90 p.170], where the error detection latency is defined as “the time

interval between an error and its first perception by the FT mechanisms”,

detection is understood as recognition and does not imply any subsequent

error treatment or signaling. A detected error therefore is not yet a safe error,

it still has to be dealt with by the controlling process.

Definition 6.6: Error detection is the process or moment of recognizing the

presence of a fault effect. A detected error is not yet a safe error.

6.3.3 Fault-Tolerance

Fault-tolerance stems from three fundamental mechanisms: from tolerance in

the narrow sense of the word, from masking and from blanking. As far as

safety is concerned, there may be no need for further detailing. The higher the

fault-tolerance of a system, the better for safety. However, two reasons urge a

distinction between true fault-tolerance and the other two mechanisms. The

reasons are quoted after a closer specification of what is meant here by true

fault-tolerance, masking and blanking.

6.3.3.1 True Fault-Tolerance

Fault-tolerance in the technical sense is the quality of compensating the effects

of faults. Tolerance in the original sense is the quality of tolerating opinions,

beliefs, customs, behavior or similar different from one’s own. Tolerance then

implies that the differing opinions etc. have been taken notice of beforehand.

The term true fault-tolerance will be used here when a system or entity is

performing fault-tolerance through appropriate reaction on a fault effect. True

fault-tolerance implies error detection. The mechanisms of a voter and the

mechanisms behind error-correcting codes work this way, for instance. True

fault-tolerance is reactive.
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Definition 6.7: True fault-tolerance applies when a system or entity know-

ingly tolerates the presence of an error. True fault-tolerance implies prior

detection.

6.3.3.2 Masking

Masking is related to the propagation of faults (here: data faults in the storage

space). A fault is said to be masked if its propagation is gated out. Mask-

ing can be the result of a system’s minded act or can happen by chance. In

the former case masking bases on (re)cognition. For example, the voter of a

TMR system is sometimes attributed to mask the effects of a fault, as stated

for instance in [St96 p.131]. Fault masking in that sense refers to the utiliza-

tion of static redundancy and is a fault triggered action. Within the scope

of mutant-injection however, masking refers to the non-cognitive process of

gating out fault effects. Masking then is not a function of the fault and thus

happens incidentally. An example is the masking of fault effects in gate level

fault-simulation. The propagation of a fault effect may be stopped by some

gate, as shown on the left in Figure 6.3. Similarly, at the process level the

propagation of a data-fault may be stopped by a service.

a

b
&

0

0
1

0 0 0 0 1 1 1 1

0 0 0 0 .. .. ....

.. .. .. .. .. .. ..

b

a

AND

Figure 6.3: Masking analogy

Although the actual process of masking out a fault effect is incidental,

masking is nevertheless a quality characteristic of an entity. Increasing the

chance of these incidents through appropriate design or implementation is one

measure to make an entity more fault-tolerant.

Definition 6.8: Masking is the non-cognitive process of gating out fault ef-

fects. A masked error is hindered in its propagation.
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6.3.3.3 Blanking

A fault effect in the storage space (a data fault) may become overwritten with

correct data. Correct data is data that is not directly or indirectly affected

by a fault, that is, data that is considered to be correct in the current situa-

tion. The data fault can be said to be blanked out. Blanking, as understood

here, is different from fault-removal. Fault-removal (actually error-removal)

is a deliberate act which follows a previous detection of an error. Blanking,

like masking, is considered to happen incidentally. On the left of Figure 6.4

a service is blanking out a data fault. The data fault does not belong to the

input operands of the service. On the right of the figure a data fault does

belong to the source operands. Owing to the other input operand and to the

current operation, the data fault becomes overwritten.

0 0 0 0 1 1 1 1

0 0 0 0 .. .. ...... .. .. .. .. .. ..

ANDS

Figure 6.4: Blanking

Another example for blanking is the periodical reset of the microprocessor,

followed by a re-initialization of the memory. Although this action may be

a precautious measure and thus is not incidental, the actual clearing of data

faults in the storage space still is incidental and non-cognitive.

Definition 6.9: Blanking is the non-cognitive process of overwriting an error

such that the error is extinguished.

6.3.3.4 Distinction

True fault-tolerance bases on the cognition of fault effects and implies some

form of systematic redundancy to be present in the system. It is a design issue

which requires additional effort and costs. Masking and blanking are based

on non-systematic, coincidental redundancy. It may also be a design issue,

but very often masking and blanking are side effects that are achieved without

additional effort. Through masking and blanking a system becomes to some

extent naturally robust [cf. Ar90 p.169].
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A system that gains its fault-tolerance purely from masking and blanking,

may, in sloppy wording, be termed dumb but good-natured (regarding faults,

not regarding its application task). A system that gains its fault-tolerance

purely from true fault-tolerance, may, in similar terms, be called intelligently

good-natured. All systems can be classified somewhere in-between these two

extremes. This naturally applies to software as well.

The other reason to distinguish between true fault-tolerance, masking and

blanking is because of their different contribution to reliability and availability.

A system that draws its fault-tolerance from masking and blanking provides

both high reliability and high availability. A system whose fault-tolerance

stems from true tolerance provides high reliability, but usually some lower

availability. The fault-handling mechanisms of the system may work smoothly

(error recognition and immediate nullifying), they may work in an interruptive

manner (error recognition and recovery), or even the beseeching way (error

recognition, fail safe stop, signaling the operator). The duration of suspension

of the primary service certainly depends on the implemented fault-handling

strategy, but in general the availability obtained through true fault-tolerance

is lower or at the most equal to the availability that is achieved when the same

faults would have been masked or blanked. Therefore, a distinction should be

present between true fault-tolerance and the other two mechanisms.

6.3.4 Fault Scenario

As mentioned in Chapter 5, a single random fault in the processing hardware

may affect multiple services, either because the random fault is permanent

or because its effects have latched somewhere in the hardware for a certain

period of time. In addition, the processing hardware may be affected by more

than one random fault at the same time. The controlling process may thus be

facing more than a single mutant during an experiment run. The constellation

of which services are assumed to be affected and in which way they are affected

is defined as fault scenario here.

Definition 6.10: A fault scenario is a set of particular mutants provided for

a fault-injection experiment run.

A fault scenario may be based on assumptions, it may result from field ex-

perience, or it may be derived from a low-level hardware-model investigation

125



(fault mapping). A scenario may contain just a single mutant (e.g. transient

random fault assumption without latching), or may contain several mutants.

The result of a fault scenario is an error scenario.

6.3.5 Error Scenario

The effect of a given fault depends on the system activity at the moment of

(and following) the sensitization of the fault, so the input space consists not

only of the injected fault but also of the subsequent activity. An activity is

a trajectory in the system’s state space [Cu99 p.708]. The combination of an

effective fault (or a series of effective faults) and the resulting activity poses

an error scenario. For mutant-injection an error scenario can be defined as

follows.

Definition 6.11: An error scenario is the process starting from, and follow-

ing, the effectiveness of the first mutant.

Each error scenario, respectively the corresponding data obtained from the ex-

periment run, contains information about which mutants of the applied fault

scenario have actually been used by the controlling process (activation, effec-

tiveness) and about the consequences.

6.4 Activations A and Readouts R

Activations are actions required to activate and functionally exercise the target

system [Ar90]. The controlling process is guided by the input stream (respec-

tively its history in the storage space) and itself forms the activations. In [Cu99]

the term activations has been replaced by the more appropriate term activities.

As noted in Chapter 2, the only comparability requirement that can be made

on the set A is to have the controlling process operating in its real environment.

The readouts R form the output domain in fault-injection experiments.

They are the responses of the system or entity being investigated. For the

controlling process, the readouts are obtained through observing the storage

space L, especially the output area LO. The physical manifestation of the

readouts R is identical among different microprocessors and different software

applications since they are always in form of bits or combinations of bits in

LO. The contents of the storage locations in LO and their change over time
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are however specific to each application software. More important than the

technical readouts are the predicates P .

6.5 Predicates P

Many fault-injection approaches did not use a unified classification scheme of

the observed effects of the injected faults (e.g. activation, effectiveness, detec-

tion). Arlat et. al. recommend the use of predicates to describe the observa-

tions [Ar90 p.170]. This section proposes an exemplary collection of predicates

which allow for comparable statements on the properties of the induced errors

in the storage space.

Predicates are Boolean assertions that are made on the readouts. A pred-

icate leads to two observable states (true, false). Some predicates may assert

more than once during a fault-injection experiment (e.g. fault activation). For

the reason of simplification, it is assumed that a predicate asserts once at

maximum. In extension of [Ar90 p.170], it is to remark that some predicates

actually are tri-state, incorporating the state n.a. (not applicable). For ex-

ample, the predicate on the effectiveness of a given mutant is n.a. until the

mutant is first activated.

6.5.1 Fault Activation

The faults in mutant-injection are the injected mutants. The mutants are ini-

tialized in the fault-injection environment and are activated at the moment the

controlling process is using the mutated services (Figure 6.5). The following

predicate is taken over from [Ar90 p.170] and indicates whether a provided

fault is activated or not.

fault activated(M): Indicates whether the mutant M is used by the

controlling process.

If the predicate remains false the mutant must not enter evaluation since injec-

tion did not take place. A time variable ti (injection) may be associated that

holds the point in time at which the predicate becomes true. A distribution

function of ti helps in optimizing the injection-process.
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Figure 6.5: Activation of mutant

6.5.2 Fault Effectiveness

As with any fault, an injected mutant may be ineffective in its consequences,

that is, the storage space may still be identical to the fault-free case.

Example: The service CMP A,B is mutated such that the N-bit (the Negative

bit) is always set, independent of the operands to be compared. If the current

source operands are such that the N-bit would have been set anyway, the

mutant is ineffective.

t
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A

N
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31

49
dec

dec

1
Service "CMP A,B" {
...

N:=(A<B) ;

N:=1 ;
...

}

original

fault!

Service specification

Figure 6.6: Non-effective mutant

If an injected mutant is ineffective then there is nothing left to be detected

by the controlling process. The mutant may not enter evaluation of the fault-

tolerance capabilities of the controlling process. The following predicate asserts

to true if the mutant is effective.

fault effective(M): Indicates whether the injected mutant M is ef-

fective, that is, whether an error is induced in the storage space.

The associated time variable is te which is ti+1 when the mutant is effective. As

errors in the storage space do not only arise through mutants but also through

propagation (proliferation), each error in the storage space can be assigned
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an individual time variable to in order to record its time of occurrence. The

time interval between the occurrence of an error and its detection is the error

detection latency [Ar90 p.170].

6.5.3 Error Activation

An error may lay dormant for a certain period of time. Dormant errors are

harmless. They cannot be detected earliest before a service is read-accessing

the corresponding storage location. The moment of a read-access onto the

error activates the error.

error activated(e): Asserts to true when the error ei belongs to the

input operands of a service.

The time variable ta denotes the point in time of activation. The time interval

between the occurrence of an error to and its use by a service (activation) is

the error dormancy.
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Figure 6.8: Error dormant over two periods

Errors that are never activated do not serve to evaluate the fault-tolerance

capabilities of the controlling process (except blanking) since the process never

can get notice of their presence.

129



6.5.4 Error Masking

The following predicate becomes true if an error ei is being read-accessed by

a service but does not affect the output.

error masked(ei): Indicates whether a particular error ei is masked

by a service.
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Figure 6.9: Masking

Masking implies the prior activation of an error. Non-activated errors cannot

be masked, but they can be blanked.

6.5.5 Error Blanking

An error in the storage space may be overwritten with correct data. If the

process of overwriting happens by coincidence, then the error is blanked out.

error blanked(ei): Indicates whether a particular error ei is inadver-

tently overwritten with correct data.
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Figure 6.10: Blanking

The blanking of a non-activated error might be termed the silent death of an

error. An example is error e1 in Figure 6.10. Silent deaths certainly are the

most preferred events.
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6.5.6 Error Propagation

Propagation is the locomotion of fault effects. At gate level, a logic error oc-

curring at some node may propagate through the circuit. While doing so, the

logic error is conducted along the nodes and passes the logic gates. Owing to

the fan-outs the error may multiply from gate to gate. In the same way the

errors in the storage space may propagate and proliferate. Propagation implies

that the error belongs to the input operands of a service.

t

&

1

a

A A

c

C C

d

D D

b

B B

AND

Figure 6.11: Error propagation analogy

The following propagation predicate yields true if the error ei propagates,

that is, when it causes at least one descendant in a different storage location.

error propagate(ei): Asserts to true when the error ei traverses a

service and causes one or more errors in the storage space.

The propagation predicate may also be applied to an error family, in which

case the predicate yields true when at least one member propagates.
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Figure 6.12: Propagation of error ei

The example shown in Figure 6.12 follows the common view on propaga-

tion, in that the errors seem to be transported along the lines of action (here:

the read and write accesses of the services). As a matter of fact, an error

may also be created in a storage location that does not belong to the output

operands of a service. An example is shown in Figure 6.13. The error e1 is
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assumed to cause the service to write into a wrong storage location. Two new

errors arise: the error e2 in the now addressed location which should not have

been updated, and the error e3 in the original location which should have been

updated. Here propagation applies as well, although it may be less obvious

from the figure. The absence of some activity in the fault case is after all a

fault effect. Propagation is related to the causal connection of fault effects and

is not restricted to the corporeal movement of errors.
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fault-free case fault case

Figure 6.13: Another propagation example

6.5.7 Error Releasing

One predicate has to be assigned to the event of having an error propagated

into the output area LO. At that particular moment the controlling process

has lost grip on the error. The error is likely to proceed into the environment,

dependent of the type of peripheral devices connected and on their hardware

fault-tolerance mechanisms. The following predicate applies when an error

occurs in the output area.

error released(): Asserts to true when the output area LO contains

an error.

The predicate is general and relates to the appearance of any error in LO. As

a matter of fact the predicate can also be assigned to a particular error family.

The period of time between the occurrence of an error ei and a descendant

propagating into the output area (denoted by tr) may be called the transit

time Tt.

If the transit time appears to be zero then a mutant has directly caused a

data fault in LO. For reasons of fairness the injected mutant must be excluded

from the evaluation since the controlling process cannot do anything about

this situation. Such failure injections are addressed in Section 6.6.1.
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Figure 6.14: Error propagating into output area

6.5.8 Error Detection

At a certain point in time an error may be recognized by the controlling pro-

cess. As outlined, a detected error is not yet a safe error. However, what is

exactly the point in time at which an error can be considered detected? One

condition is, that something must happen that would not have happened in

the absence of the error. The second condition is, that the activities triggered

by the error are some kind of error handling procedure.

In Figure 6.15 a simple error recognition analogy is shown. At gate level the

error can be said to be recognized if the output of the XNOR-gate is assigned

a special meaning among all nodes because some error handling circuitry is

td
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A
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A

b

B
Z Z
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XOR JMPNZ

error

00 Error
01 ok
10 ok
11 Error

Figure 6.15: Error detection analogy

connected to its output. Similar applies to the controlling process. The XOR

service is setting the Zero-bit Z since the contents of A and B are equal (as-

sumption in the fault case), that is, the error propagates into the location Z.

This is no detection yet, this is still the normal flow of activities. The next

service is checking Z and because Z is found set, the service reroutes the process

course to a new code address. If the now addressed sequence of services is an

error handling routine, then the error can be said to have been detected at
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t = td. Otherwise the upcoming activities are just fault effects caused by ordi-

nary error propagation. In the figure it is assumed that some error handling is

about to start, for that reason the PC contains the error symbol in gray color

in the figure. The current value of the PC certainly is a fault effect, but it is

supposed to be a good fault effect, that is, the PC is not considered erroneous

in the current situation.

Whether or not an error can be said to have been detected by the controlling

process depends on the meaning of the error-triggered activities. Usually the

sequences of machine instructions for error detection and error handling are

known from the program sources, therefore the corresponding code locations

in the storage space can be flagged accordingly.

The following predicate indicates whether an error is detected. The associated

point in time is td.

error detected(ei): Asserts to true when the error ei is detected by

the controlling process.

The predicate can of course also be applied to an error family, denoting that

a member of the family is detected.

6.5.9 Error Signaling

If the controlling process cannot compensate the effects of the injected mu-

tant(s), it must notify the environment. The only way to report is through the

output area LO of the storage space. Notification can be the presence of some

signal or the absence of a specified signal.

error signaled(): Asserts to true when the output area LO contains

notification about the presence of problems in the controlling process.

The predicate is the most global and refers to the signaling of the effects of the

injected mutant(s). The predicate may also be assigned to a particular error

family. Similar to error detection, the notification must trigger some subse-

quent error (or failure) handling mechanisms (on-chip, on-board, off-board)

connected to the output area.

A time variable ts can be assigned which denotes the moment of occurrence of

a notification in the output. The period of time between the occurrence of an

error and its signaling is the error signaling latency Ts = ts − to.
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6.5.10 Fault-Tolerance

The predicate on fault-tolerance evolves from the definition of fault-tolerance

and informally reads as follows.

fault tolerant(): No error escapes the controlling process without

being signaled by the process at the same time or earlier.

The predicate may be assigned to a mutant M or to an error family. The valid-

ity of the predicate starts at the point in time at which a mutant (respectively

the first mutant out of multiple mutants) becomes effective. The predicate

asserts to true when either no error is released or when Ts � Tt (signaling

latency � transit time). The associated time variable is tt. However, owing to

the fact that the event of “no error released” occurs at the end of the observa-

tion interval and thus is artificial, the variable tt may be time-censored. The

problem of time-censored data is addressed in Section 6.7.1.

6.6 Valuation Rules V

After completion of the fault-injection experiments, and after filtering the re-

quired information from the readouts R by means of the predicates P , a col-

lection of error scenarios is obtained. Each error scenario describes the living

of the errors in the storage space and the corresponding behavior of the con-

trolling process. Before the error scenarios enter the derivation of the final

fault-tolerance measures, the scenarios must be valuated and, if necessary, be

purged. What is to bear in mind when revising the error scenarios is discussed

in this section.

6.6.1 Period of Grace

Injecting a fault directly into the output of the investigated object, and imme-

diately stating the failure of the object in tolerating the injected fault, clearly

is inappropriate. Such injections, where the system or object of investigation

à priori is given no chance to tolerate the fault, are failure injections. Failure

injections are adverse to fairness. The questions thus arises how ‘far’ from the

output may faults be injected into an object without being principally unfair.

The answer depends on the intelligence of the structural elements and on the

complexity of the signals or data being processed by these elements. For a

fault-tolerant gate level circuit the distance between the injection location and
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the primary output likely should not be closer than one or two levels (the

number of gates to pass) — from an intuitive guess.

Similar, safety-critical embedded software must be granted a period of grace

after injection in order to give the controlling process a principal chance to cope

with the problem. The period of grace can be given in number of services.

A rough guess of an appropriate period is 2 – 4 services. Expecting fault-

tolerance, at least true fault-tolerance, within this period is doubtful. For the

reason of fairness the period of grace has to be considerd when valuating the

experiment results.
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Figure 6.16: Period of grace

6.6.2 Distinct Error Scenarios

It is common sense in fault-tolerance evaluation through fault-injection that

the object of investigation should not only be exposed to a reasonable high

number of faults (quantity), but to as many different faults as possible (qual-

ity). This is especially true when the obtained measures are used for predicting

future behavior. Therefore as many different fault scenarios as possible should

be applied to the controlling process. Although this is true and desirable, it is

not yet the finalized request. Different fault scenarios may result in identical

or equivalent error scenarios, that is, different fault scenarios may pose the

same ‘fault’ (in a generalized sense) to the controlling process. Therefore the

request for different faults (or fault scenarios) more accurately reads as the

request for obtaining distinct error scenarios.
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Next to the hope that a reasonable number of distinct error scenarios covers

future scenarios in the field, another reason for requiring distinct scenarios is

to avoid redundant experiments.

6.6.3 Redundant Experiments

Identical or equivalent error scenarios result in redundant fault-injection ex-

periments. A redundant experiment reveals no new information. Redundant

experiments, if not recognized as such, may lead to incorrect measures. The

measures are not incorrect in the mathematical sense, but in their expres-

siveness. They are either too optimistic or too pessimistic and thus are not

reflecting the truth. If n experiments have been carried out and if k experi-

ments used to be redundant then the statement on the considered predicate(s),

such as the predicate on fault-tolerance, must be related to n−k experiments,

otherwise the measures are bogus.

Redundant fault-injection experiments therefore are to be noted and ex-

cluded from the final derivation of the measures. This is decisive for main-

taining trustworthiness of the evaluation procedure and the final results. As

can be imagined, through intentionally incorporating the results of redundant

experiments, the final measures can be manipulated at will (e.g. Example 6.1

in the next section).

6.6.4 Relevance of Errors

Safety-critical embedded software is not a test program aiming at detecting

low-level faults. Safety-critical embedded software, strictly spoken, also is not

interested in bit-flips (data faults), but should be interested in errors. An

error, besides being the consequence of a fault, is associated with a change

of meaning of the affected data (information view). Often, what is finally im-

portant is the information carried by the data, not the technical representation.

Data faults that cause no information change with respect to the fault-

free case are termed benign errors. Benign errors are errors whose presence

makes no difference to the software (cf. Ka95 p.255]). Benign errors cannot

be detected.

Example 6.1: The Boolean variables true and false are often implemented

the following way: true is represented by any arbitrary value greater 0 (in
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the unsigned representation), and false is represented by 0. If, for exam-

ple, a memory location contains true (11111111) in the fault-free case, then

none of all possible bit-combinations in the fault case, except the combina-

tion 00000000, poses an error to the process. The memory location will still

be evaluated by the controlling process as true. To the process there is no

change of meaning and thus no difference to the fault-free case. Of the 255

bit-manipulations possible, 254 will be resulting in benign errors.

Benign errors may lead to redundant experiments and finally to incorrect

measures. Similar applies to data faults resulting in identical errors (fault

equivalence). Errors are identical if they have the same meaning, that is, if

they hold the same information. Identical errors also can result in redundant

experiments.

Example 6.2: The controlling process is reading the temperature from some

sensor in order to check whether the temperature is above a certain threshold

(Figure 6.17). The temperature value which is coded 8-bits in this example, is

thus used for a binary decision. From the sight of the controlling process the

environment has only two relevant states regarding the temperature: either

below (or equal to) the threshold, or above. Consequently, when it is to simu-

late a defect of the sensor through state mutating the storage location in LI

(e.g. input testing), there is only one error, namely that the mutated data

reflects the converse of the real state of the environment. All remaining bit-

manipulations of the storage location are either equivalent to the good-case

(benign errors) or to the fault case.
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Figure 6.17: Two relevant temperature states

For the sake of trustworthiness, the relevance of the errors must be taken into

account in the experiments.

An error can be relevant or irrelevant to both the controlling process, and

– only when propagated into LO – to the environment. The judgment whether
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or not an error in LO is considered relevant to the environment is, as a matter

of fact, beyond the scope of the controlling process. It is one of the major

subjects of software design to make these errors relevant to the process too.

The fault-tolerance capabilities can only be judged with respect to the mean-

ing that the errors have to the controlling process.

relevant relevant

irrelevant irrelevant

masked, blanked

detected signaled

Controlling Process Environment

LOError

Figure 6.18: Error relevances

Errors that are irrelevant to the controlling process (benign errors) do not

serve to test error detection mechanisms for obvious reasons. These errors

however, if propagated into LO and if then ranked relevant to the environment,

can serve to identify the absence of fault-tolerance. Errors that are relevant

to the controlling process are principally detectable. An error is relevant to

the controlling process if the data is evaluated by the process, that is, if the

information is used for some decision (e.g. conditional branches, data-indexed

calls or storage accesses) and the consequence is different from the fault-free

case (cf. examples). A relevant error thus has some form of control character

and influences the process. A relevant error may cause a process error, that is,

the services may be correctly operating on incorrect data, however resulting

in an operation that is deviating from the requirements.

Remark

Instead of speaking about the relevance of errors, one may from the very be-

ginning distinguish by dint of the predicates between data faults and errors.

A data fault then is just a fault effect and has no meaning to the controlling

process (irrelevant error). At the moment at which the data fault however be-

comes relevant to the controlling process, it turns into an error. Definition 6.4

then is to be adjusted, and some predicates dedicated to data faults are to be

added to the proposed predicates. For the reason of compatibility with the
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existing SWIFI approaches, as well as for space reasons, this separation was

not made.

6.7 General Issues

6.7.1 Observation interval

Each fault-injection experiment is assigned a certain observation interval [0,T].

During that interval a given predicate P may assert at time tp or may re-

main unasserted. For obvious reasons the interval cannot be [0,∞]. Some

Fault Predicate asserted

0 Ttp

Observation Interval

Figure 6.19: Characterization of an experiment [Ar90]

measurements may therefore result in time-censored data. The predicate on

fault-tolerance is a predicate that may be bound to the artificial event of a

time-out. A time-out occurs when no error is released and no signal is given

and there are still errors present in the storage space. The controlling process

can be attributed to have been fault-tolerant so far, but there is no natural

point in time bound to this fault-tolerance. Therefore it might be necessary

to construct two auxiliary predicates.

P0: asserts when all errors in the storage space are removed or blanked,

or when a signal is given in time.

PT: asserts at time-out, that is, there are errors remaining, but none

has been signaled nor has propagated into LO.

The predicate P0 defines a natural point in time which is specific to the con-

trolling process. In case of PT asserting, although the process has been fault-

tolerant so far, problems still could arise for t > T.

6.7.2 Error Proliferation

While error propagation focuses on the fact that an error causes descendants at

other storage locations, error proliferation focuses on the amount of subsequent
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errors. A proliferation factor may be assigned to an error family, giving the

multiplication rate per propagation step. The rate may either indicate the

number of new errors caused, or the total number of descendants present after

propagation. For the latter case the proliferation factor would be defined as

fp(e
+
i , t) =

nf (e
+
i , t + 1)

nf (e
+
i , t)

, (6.1)

where nf (e
+
i , t) is the number of family members at time t. A very high pro-

liferation factor over a short period of time is identifying the event of an error

explosion. There is no proliferation without propagation. Diminution is due

to fault-removal or blanking, in which cases fp < 1.

The total number of errors nf(e
+
i , t) can be sketched over time, as done

in Figure 6.20. During the time interval t1 none of the errors is propagating.

Since the number of errors remains constant, the errors are dormant or are

masked. In the time interval t2 the number of errors is decreasing. Since

propagation is false, the only reason for the diminution is blanking or removal.

During the interval t3 as many errors are produced as are blanked or removed.

Also shown in the figure is the point in time at which detection is taking place.
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Figure 6.20: Error proliferation

The diagram gives valuable insight into the relationship between the controlling

process and the living of the errors in the storage space. The grade of infection

at any time is visible, and the reactions of the process may be judged also
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with respect to the number of errors present at a particular moment. For

example, it might be interesting to know, how many errors – on the average

or in particular – are present in the storage space at the moment of detection

or signaling. The answer gives an indication on how many errors are needed

to trigger the detection mechanisms or to cause signaling.

6.7.3 Golden Run

In the fault-injection experiments discussed in Chapter 2, the golden runs were

carried out separately from the injection process. This conception requires

reproducibility of the input, which was no problem in the reported experiments

since the input used to be deterministic (e.g. matrix multiplication). Safety-

critical embedded software however faces a rather non-foreseeable and complex

input that may not be perfectly reproducible (e.g. engine temperature, air

pressure, oxygen content).

Parallel Fault-Simulation

A solution could be to perform the golden run in parallel to the injection run

(parallel fault-simulation). Both runs are separate but synchronous processes.

During each time slot, the service-provider (a simulator) is executing two ma-

chine instructions concurrently. One instruction belongs to the injection run

(the fault-injected process) and the other belongs to the golden run (the fault-

free process). The storage space must be available twice.
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Figure 6.21: Parallel fault-simulation

Both processes are starting with identical input from the environment. The

introduction of an error or a deviation in program flow can be recognized
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immediately. However there is one major drawback. Since two independent

processes are operating in parallel, both of them need to interact with indi-

vidual environments. There is only one environment which of course must be

dedicated to the fault-injected process. The golden process therefore cannot

control anything and may fall down after a period of time because of the lack of

appropriate responses from the environment. Therefore, executing the golden

run in parallel makes sense only when the fault-injected process is reacting

upon the mutants much quicker then does the environment on the generated

control-signals (quasi static environment).

A Must?

The golden run is a guideline of how the controlling process behaves in the

general absence of faults. In the presence of faults, the controlling process

likely takes other routes through the program (error detection and handling),

that is, the golden run and the fault-injected run become diverse qua pro-

gram paths and corresponding activities. In consequence, the storage space L’

no longer represents the time-synchronous fault-free case of the affected stor-

age space L. This is a general issue often missing in the publications where

the golden run is considered the only basis for comparison. As soon as the

controlling process has reacted upon the injected mutant, the situation is a

new one: from this very moment it is not the task of the controlling process Z

to realign with the golden run, but to compensate the fault effects its own way.

The golden run is not the ultimate criterion and therefore is not compul-

sory. Nevertheless it must be possible to differentiate between fault-free data

and affected data. For that, each storage location can be assigned two contents:

one for the fault-free data and one for the actual data (whether erroneous or

not). The services are transforming both contents, that is, a service concur-

rently processes the actual data value and the unaffected value.

S
�

L L
unaffected value

actual value
unaffected value

actual value

Figure 6.22: Concurrent processing

Whether the actual value (the foreground data) is erroneous or not can be
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determined from comparison with the unaffected data (the background data).

It is not necessary to perform the comparison each time. If the input of a

service is known to be erroneous, often the output is erroneous as well (e.g.

bitwise complement, negation, bitwise rotation).

6.7.4 Divide and Conquer

Similar to testing sub-circuits of a circuit, the injection-experiments can focus

just on particular parts of the program. Preferably these program parts per-

form a dedicated task, such that their input, actions, and output are known

and comprehensive. If the program PM is created from a high-level language,

such as ADA or C, certain subroutines (modules, procedures, functions) may

be advisable candidates. At assembly language level, certain program paths

may be candidates for an individual investigation. In any case, each part of

the program PM is mapped by the service-provider into a corresponding pro-

cess which forms a sequence within the overall process Z. Each partial process,

denoted here as zi, can be evaluated the same way as the controlling process.

Like in gate level fault-simulation, where the sub-circuit under investigation

is assigned pseudo-primary inputs and outputs (PPI, PPO), the process zi

defines its input and output locations. These may be located in LI and LO,

but usually they are located somewhere in the working area LW of the storage

space (e.g. stack, local variables).

...

...

zi

Z

input

Sub-program

input

output
output

L

Figure 6.23: Investigation of partial process zi

The fault-tolerance capabilities of zi can then be assessed through inject-

ing mutants. The results indicate how and in which way the other parts of

the controlling process can rely on the tested component. A process zi may
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also be tested just for its behavior regarding faulty input (local input-testing)

or may be subjected to a data-sensitivity analysis (input variation-analysis).

An interesting approach for analyzing the propagation paths of data faults

in modularized software is given in [Hi01]. The modules are assigned error

permeability values, which are defined as the conditional probabilities that an

error propagates from a module input to a module output. In any case, the

results obtained from a partial analysis describe the behavior of a functional

component of the controlling process. The ‘functional block’ zi may then sta-

tistically be combined with other blocks in order to derive final measures for

the controlling process Z.

6.8 Measures M

A well-known measure used in fault-injection is the coverage. A coverage is a

statement that is made on the assertion(s) of a certain predicate or a combina-

tion of predicates. The coverage factor is a probability parameter. It requires

the conditional probability of each error scenario – out of all scenarios ever

possible – to be known (exhaustive testing). The coverage proportion is a fre-

quency parameter. It is based on those error scenarios that are obtained from

the experiments. Each error scenario is considered equally likely. Since little

can be said about the probability of the ‘real’ faults, the coverage proportion

is proposed as the suitable measure. A short recall on the coverage proportion

and on the corresponding time intervals is given next.

6.8.1 Coverage Proportion

Following [Cu99], the coverage proportion can be defined in terms of the error

scenarios. Let G denote the set of error scenarios that enter the derivation

of the measures. Let H denote a discrete random variable characterizing the

assertion of a particular predicate, such that H = 1 if the predicate asserts,

otherwise H = 0 (or vice versa). If h(g) denotes the value of H for a given

error scenario g, then the coverage proportion is defined as

c =
1

n

n∑
i=1

h(gi), (6.2)

and gives the frequency of having a certain predicate asserted with respect to

the total number of n error scenarios.
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6.8.2 Time Intervals

According to [Ar90 p.169] an experiment can be considered a Bernoulli trial

regarding a given predicate P. The associated time variable is tp. Each tp can

be assigned a random variable TP . From the experiments a frequency distri-

bution of TP is then obtained. The distribution can be a density function c(t)

or can be a cumulative function C(t) as used in [Ar90]. Note that C(t =T),

where T is the observation interval, can be smaller than 1 owing to time-outs.

1

t

C( )t

Figure 6.24: Sample distribution (cumulative)

Each function fully characterizes the coverage with respect to the associated

predicate. For estimating future behavior, the error scenarios G need to be

representative of future scenarios. In [Po95] and [Cu99] the estimation of cov-

erage through statistical processing is addressed in detail.

As different software likely is executed at different clock speeds, the timing

measurements preferably should not be taken in terms of the real time passed,

but in terms of executed machine instructions (services). This allows for direct

comparability of the time interval distributions.

6.8.3 Interior Hardware-Fault Fault-Tolerance

The interior hardware-fault fault-tolerance capabilities of the controlling pro-

cess can be assigned various attributes and corresponding measures. For ex-

ample, a measure may be dedicated to the average error proliferation factor

(Section 6.7.2) or to the number of errors present when the controlling process

is giving signal. The latter is an indication of how important the signaling is

to be classified. Another measure may be dedicated to the number of control-

flow errors, either in sum or separated into severe and non-severe errors. There
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is certainly a variety of attributes and corresponding measures that serve to

elucidate the behavior of the controlling process in the presence of mutants,

however, in the following only the fault-tolerance coverage and the error de-

tection coverage is discussed.

For the discussion it is assumed that the valuation rules have been applied,

that is, the set G contains only distinct error scenarios in which also the period

of grace is granted.

6.8.3.1 Fault-Tolerance Coverage

The fault-tolerance coverage, for short ftc, is the coverage proportion regard-

ing the predicate on fault-tolerance (Section 6.5.10). It is a measure of the

fault-tolerance in the quantity domain. The corresponding distribution func-

tion of the time intervals gives a measure regarding the time domain. Note

that the measures may contain time-censored data (Section 6.7.1). The ftc is

the most important dependability measure in safety-critical embedded systems.

The fault-tolerance coverage does not give any details about which fault-

tolerance mechanisms contributed to mastering the applied fault scenarios. For

a more detailed information about the interior hardware-fault fault-tolerance

capabilities of the controlling process, it may be further distinguished between

signaling, blanking and masking. The corresponding coverages then are rela-

tive coverage proportions, that is, they are related to those fault scenarios that

were successfully tolerated.

Relative Signaling Coverage: The relative signaling coverage, rsc,

gives a measure of how many fault-scenarios were tolerated through giv-

ing signal in good time.

Relative Blanking Coverage: If the fault-tolerance was achieved only

through blanking, then the corresponding error scenarios contribute to

the measure of the relative blanking coverage, rbc. Having the effects

of a fault scenario blanked out doubtlessly is the most desired form of

fault-tolerance (full availability).

Relative Masking Coverage: Similar, if the effects of a fault-scenario

(the errors in the storage space) were masked, but not tolerated some

other way, the corresponding error scenarios may enter the measure of

the relative masking coverage, rmc. However, although the controlling

process has proved to be resistant to the induced errors in the storage
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space, this form of fault-tolerance certainly is the least desired since the

errors are still present at the end of the observation interval.

6.8.3.2 Error Detection Coverage

Another common coverage proportion is the error detection coverage (edc).

It gives a measure of the detection capabilities of the controlling process. Be-

cause a detected error is not yet a tolerated error, the edc may be greater than

the ftc, that is, more errors may have been detected than tolerated in the

end. If so, the effectiveness of the true fault-tolerance mechanisms is imperfect.

The edc may principally be based on all error scenarios G. However, a

portion of the fault-scenarios may have produced only irrelevant errors in the

storage space. These errors are undetectable on principle. Therefore it is

advisable to remove the corresponding error scenarios from G and to relate

the edc to the remaining set of error scenarios. This might be termed the

redc (relevant-error detection coverage). The measure then gives the detec-

tion capability with respect to those fault-scenarios that, on principle, can be

detected since relevant errors influence the controlling process (e.g. decisions)

while irrelevant errors do not. The measure has more expressiveness as the

basis is more clear.

6.9 Fault-Injection Environment

6.9.1 Simulation-Based Fault-Injection

The most suitable fault-injection technique to be applied in mutant-injection is

the simulation-based approach. Several reasons account for using a simulation-

model of the target microprocessor. First and foremost, the service-provider

model of a microcontroller can only be simulated since the real hardware hides

essential storage locations — both for the controlling process and for the in-

strumentation. Even if the hardware would not be hiding essential locations

to the software, real microcontrollers (SWIFI approach) do not allow a con-

current and transparent all-time access to the storage space from outside. The

only workaround would be to use the advanced debugging features provided

by some modern microcontrollers, but then the experiment would have to be

conducted as a continuous stop-and-go of the controlling process in order to

constantly check for the predicates (especially propagation). The execution
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speed would be far from real-time, such that the controlling process cannot be

connected to its real environment. Also, as mentioned in Chapter 2, only a

few microcontrollers used in safety-critical embedded systems do provide these

special debugging features. Software for other microcontrollers would be ex-

cluded from this assessment. Moreover, a real microprocessor hardly allows

for simulating timing errors. A simulation model of the target microcontroller

therefore is the most appropriate solution. While a real microcontroller can-

not be operated much faster than with its specified clock frequency, and even

overclocking would not catch up the loss of time needed for monitoring, a

simulation-model in principle can be operated at real-time. It depends on the

particular implementation of the simulator (hardware, software) and is a tech-

nological issue.

In addition, a simulator can provide special features for the dynamic analy-

sis (the fault-injection experiment) as well as for a static analysis of the binary

program PM. The major requirements on such a simulator, its benefits and its

feasibility are discussed in the following.

6.9.2 A Simulator Concept

The evaluation of the interior hardware-fault fault-tolerance of the control-

ling process is preferably carried out with having the process connected to its

destination environment. Therefore the peripheral on-chip devices may not

be missing in a simulator. The simulator should consist of two parts which

together simulate the real microcontroller in real-time. One part, the service-

provider simulator (SPS), implements the service-provider model. The other

part, the communication channel simulator (CCS), covers the peripheral on-

chip devices and the signal generation.

6.9.2.1 The Communication Channel Simulator

The CCS simulates the communication channels between the I/O area of the

storage space and the circuit board of the embedded system. Preferably, as

with in-circuit emulators, the CCS physically connects to the microcontroller

socket on the board. The CCS generates the necessary signals to the outside

and to the service-provider simulator. The main task however is to provide

the peripheral devices that are used in the real microcontroller. For reasons of

execution speed the CCS should be implemented in hardware. Another task

of the CCS is to record the input-stream to the LI. The recorded input stream
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Figure 6.25: Simulator concept

may be used at a later time – completely or partly – to simulate a certain state

of the environment. Although the stream will then be static and for the most

part non-reacting upon the outputs in LO, some injection-experiments may

still be reproduced. This is especially true for those experiments in which the

injected mutants cause a rapid reaction of the controlling process, such that the

real environment appears to be static meanwhile. A more sophisticated version

of the CCS could be collecting statistical information on the individual signals

from the environment (e.g. distribution functions on signal values), as well on

the signals generated by the controlling process. The correlations between the

signals can then be used to build a fully-functioning environment-simulator.

6.9.2.2 The Service-Provider Simulator

The SPS provides the individual services of the microcontroller. At the first

step, the SPS is nothing else than the well-known and common register model

simulators that are shipped with the microcontrollers’ software-development
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suites. The only difference lies in the broadening of the memory space to

the storage space (incorporating formerly unnamed but essential state ele-

ments) and in the corresponding extensions of the activities of the services

(adding transformations). Because the existing register model simulators are

fully functioning models of the real target processor, all essential state ele-

ments and activities are already implemented. These just need to be named

and shifted to the right locations, that is, into the storage space and into the

services.

Principally the SPS may be implemented in software. The microcontrollers

used in safety-critical embedded systems usually operate at clock-frequencies

of some decades of MHz (the Infineon 80C167 is clocked with 20 MHz, similar

applies to others). Modern high-performance computers are operating at more

than 100 times these frequencies. The application of parallel computing and

the usage of specially designed hardware-boards for the simulator (dual-ported

memory for example) can extend the time margin much further. There is no

technological problem to overcome for the construction of a real-time SPS.

6.9.3 Requirements

The basic requirements on a fault-injection environment and on the instrumen-

tation tools are known and common. The SPS, like any processor simulator,

must of course allow to upload the binary program PM into the storage space.

Preferably, the simulator should also be able to extract from the assembly

listing or from a map-file the local names that are given to certain storage

locations (variable names). These are assigned to the storage locations in ad-

dition to the regular addresses, which eases very much the identification and

meaning of certain storage locations when inspecting the controlling process

step by step, or when examining the storage space. Similar applies to the

locations in the code area. The mutants are either hard-coded manipulations

of the services or, certainly favorable, given as configuration file to the SPS.

A storage location in the simulator is not just a plain memory location, but

is likely to be a rather complex object in the sense of object-oriented modeling.

Each storage location is to be flagged with various attributes. These attributes

control the access-methods and the monitoring. For example it needs to be

specified whether a storage location is read-only, whether it belongs to the

LO or to the LI, whether it has a special meaning to the application software

(user definable attributes), whether special simulation-events are bound to it
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on read or write access (breakpoints for example), whether it belongs to the

code section of the program PM, whether and which predicates are bound to

the location, and similar customary attributes. Also the number of accesses

onto the storage location may be counted for statistics.

6.9.4 Benefits

Most of the benefits of using a simulator are known from the simulators used in

the common software-development suites. Stepping through the process while

observing the storage locations of interest as well as identifying the current

position in the source code is one acknowledged feature. A built in online-

disassembler may not only aid in reengineering a binary program PM but also

elucidates what is about to happen in case the controlling process undergoes a

control flow problem and resumes execution in the data area (similar applies

when the binary code of the program is changing). Collecting statistics on

the program PM, such as the number of machine instructions contained, the

number of instruction classes used, and other information can as well be carried

out by the SPS.

6.9.4.1 Automatic Program Path Analysis

Of special interest may be what is called here the automatic program path

analysis. No input data is required for this semi-dynamic procedure. In this

operation mode the simulator walks along the program paths (beginning at

some initial point) and executes all services as if they were NOP-services (no

operation), that is, the simulator only advances the PC according to the cur-

rent service but performs no other transformations (except stack operations on

calls and similar). Conditional branches (conditional jumps, calls and returns)

are both taken and crossed. The simulator just remembers which paths have

already been paced and which not (backtracking principle). Through this pro-

cedure the simulator can identify most of the legal paths of the program and

can mark the corresponding storage locations with a legal-path-attribute. This

attribute can serve in later mutant-injection experiments to identify control-

flow errors immediately.

Although most of the legal program paths can be found through this analy-

sis, the simulator might need some human assistance. Interrupt routines, for

example, are usually located off the main code separately. The simulator can

try all interrupts but it cannot always decide whether the code found is to be
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considered legal or not. When uploading the program PM into the simulator,

the simulator can mark all storage locations that is being written into, and

thus can decide which locations are to be considered empty and which not.

From there it may be more obvious for the simulator whether certain locations

do contain code or not (depending on the address in the memory space, may

be data as well). Another problem in the path analysis are implicit conditional

branches, such as jmp[index ]. The conditions lie in the index data, that is,

the data decides where to proceed. Without assistance the simulator must

check all possible destinations. Generally these instructions should be avoided

as they give too much control-power to data. The only exception is when all

destinations possible are indeed legal destinations. The simulator may produce

warnings on such suspect machine instructions.

6.9.4.2 Shadow Program Investigation

Another semi-dynamic analysis is the shadow program investigation. A shadow

program is the unintended and not necessarily consecutive program ‘behind’

the original program PM. The shadow program is revealed when the PC is

misaligned and the misalignment is not detected by a service (no functional

error of the microprocessor). Some microcontrollers allow, for example, both

2-byte machine instructions and 4-byte machine instructions to be mixed in

the program PM (so does the Infineon 80C167). A misaligned PC pointing into

the middle of a 4-byte instruction will not be detected by the microprocessor

hardware. The remaining two bytes, and perhaps also the following two bytes,

will be interpreted as one instruction code. Execution may cause an immediate

error (e.g. illegal instruction), but may also be performed without complaints.

The execution may then be continued for several shadow instructions until

either an error occurs or the shadow sequence evolves back into the regular

program PM. The major thing that may not happen during a shadow path

is that the sequence contains instructions that send data into the output area

LO of the storage space. In the shadow program investigation, the simulator

therefore purposely jumps into all ‘long’ machine instructions of the program

(these are known from the previous program path analysis) and executes the

facing shadow sequence. Spurious machine instructions are then reported.

For this analysis no input is required. The only problem will be indirect

addressing where the final destinations depend on some input data. A warning

may be given on these services in order to have this situation repeated in a
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Figure 6.26: Shadow program through misalignment

regular simulation. The example shown in Figure 6.26 is taken from a 80C167

program. The shadow program is sending data to port2 in the output area,

which is considered dangerous.

6.9.5 Feasibility and Availability

Such a simulator certainly is technologically feasible. There are no conceptual

problems that are not yet known and solved. The simulator certainly will not

fit into a pocket, but is likely to occupy a rack. Technological feasibility is

not the problem, the problem is the practical availability to those concerned

about dependability evaluation of embedded software. For obvious reasons,

the purchasers of the microcontrollers cannot be asked to develop the simu-

lator on their own. Although the required hardware may be affordable, the

costs for the development are not negligible. Also would it make little sense to

have different customers constructing perhaps the same simulator – not only

for cost reasons, but also because of compatibility aspects. The results might

be customized solutions again. Furthermore, some of the information needed

for developing the simulator may not be available to the public, but remain

with the manufacturer of a microcontroller.

The ideal solution would be to have an independent consortium that con-

structs and releases these simulators. There would be a common and stan-

dardized scheme on the service specifications, on the error behavior model,

and on the evaluation method. Regarding the simulators, given that most

microcontrollers used in safety-critical embedded systems feature similar func-
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tionalities, it may even be possible to develop a universal simulator which is

then adjusted to emulate a particular microcontroller through the application

of corresponding configuration files provided the microprocessor manufacturer.

One file is dedicated to the service provider model (containing the services and

the naming of the storage space locations), the other file contains the timings

and features of the communications channels to the outside. This would, as

a further benefit, allow manufacturers to pre-release new microprocessors (or

variants of existing processors) for acceptance tests without having them pro-

duced yet. Depending on which parties are involved, the consortium might also

be authorized to finally certify the fault-tolerance or the safety of embedded

systems.

6.10 Summary

In Chapter 2, after outlining the limitations of the existing approaches, the

FARM sets presented in [Ar90] were recalled and discussed. Based on the

idea of characterizing fault-injection through a collection of sets, the collection

was then broadened and adjusted to the herein considered object and subject

of investigation, and the requirements for enabling more comparability in the

evaluation of the fault-tolerance of safety-critical embedded software through

fault-injection were set up. In this chapter, following these requirements, the

sets were given shape, resulting in the method of mutant-injection.

The F set consists of mutants which are deliberate service errors. Mutants

directly affect the controlling process and thus form an object-appropriate fault

input. The sets A and R were recalled to be given life through having the con-

trolling process operating in its destination environment. Then definitions on

common notions N were given. It was distinguished between cognitive fault-

tolerance mechanisms (detection and handling) and non-cognitive mechanisms

(masking, blanking). Also was stated that a detected error is not yet a safe

error, which especially is true for software being impacted by hardware faults.

Following [Cu99], the notions of a fault scenario and an error scenario were in-

troduced. In the predicate section, the major predicates P for the observation

and classification of the fault effects were presented and discussed. The section

was followed by a collection of valuation rules V. Major topics were the period

of grace and the problem of redundant experiments. It was alluded that re-

dundant experiments may water down the expressiveness of the fault-tolerance

measures. General issues, such as time-censored data and the golden run were
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addressed as well. The golden run was argued not to be the ultimate basis

for comparison, because it is not the task of the controlling process to align

with the golden run in the presence of problems, but to cope with the problem

its own way. In the section on the measures M , a recall on the coverage pro-

portion and on the time interval distributions was given. The fault-tolerance

coverage and the error detection coverage were discussed in particular. Finally

a proposal of a simulation-based fault-injection environment was presented.

Its benefits in general, but in particular the program-path analysis and the

shadow program investigation, were accentuated.

6.11 Discussion

6.11.1 Summary Mutant-Injection

The Purpose

Mutant-injection is a fault-injection method for the purpose of measuring the

interior hardware-fault fault-tolerance of safety-critical embedded software in

a – as far as possible – comparable manner. The goal is to achieve mean-

ingful and comparable measures through a standardized evaluation procedure.

Mutant-injection predominantly aims at real-time execution, injection, and

observation. This is because the only comparability requirement that can be

met regarding the input space of different software on different systems is to

have the software operating in their real environment. Mutant-injection en-

compasses the actual injection and observation process, as well as the process

of valuating and revising the results obtained from the experiments. The prin-

ciple of the method was summarized in the introduction of this chapter and

was depicted in Figure 6.1 (pg. 118).

The Basis

Mutant-injection is based on the idea of the FARM sets of [Ar90]. According

to the publication, fault-injection can be characterized by a collection of sets,

which had been exemplary shown for physical fault-injection experiments. In

this work these sets were taken up and were ported to the herein considered

subject and object of the evaluation: the interior hardware-fault fault-tolerance

of the controlling process. The most essential set characterizing the method is

the fault set F . Distinct from other fault-injection approaches in this field, the
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fault set consists neither of hardware faults nor of software faults, but consists

of process faults. The faults in F are mutants (deliberate service errors) which

form the representatives of the random faults at the level of the controlling

process. Because mutants are action errors and because mutants – respec-

tively the services – are the structural components of the controlling process,

mutants are the most object-appropriate fault input. Since all software share

similar services – at least to some extent – and since the meaning of a ser-

vice to the controlling process is invariant of the actual hardware — within

limits, mutants allow for a comparable fault input domain among different

experiments. Comparable output requires comparable input. Mutants are the

smallest common denominator that can be achieved among different software.

The faults traditionally used in this field are for the most part specific to the

target hardware, and therefore are hardly comparable. This is certainly true

for low-level faults, whether simulated or physical, or for the faults injected

into the memory locations (SWIFI technique). The meaning of a particular

corrupted memory location, for instance, cannot easily be transferred to an-

other software on another system, the meaning of a corrupted service however

is transferable — with certain limitations, as a matter of fact. Mutant-injection

allows for comparable measures of the fault-tolerance, based on a comparable

fault input and a collection of sets for a common evaluation procedure (notions

N , predicates P , valuation rules V , and the coverage proportion as the mea-

sure M). With mutant-injection it is possible to design fault-injection based

dependability benchmarks for software.

The Software

Mutant-injection is predominantly dedicated to safety-critical embedded soft-

ware, but may on principle be applied to any software. However, only safety-

critical embedded software has the chance to be executed real-time in a sim-

ulator, this is hardly possible for customary computer software, such as the

conventional operating systems or software applications used on home com-

puters or workstations. Moreover, the microcontrollers used in safety-critical

embedded systems are much closer to each other qua instruction sets (and thus

services) than are the high performance processors of computer systems. It

will be more intricate to build service-provider models for the latter type of

processors. Finally, the notion of fault-tolerance has another significance for

safety-critical embedded systems – it is just vital – than it has for ordinary

computer systems. This also holds for safety-critical systems used in indus-
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tries (e.g. power plants) or in aerospace as there usually is a high amount of

hardware redundancy present, such that the responsibility of the software, at

least regarding its interior hardware-fault fault-tolerance, is much lower than

it is with safety-critical embedded systems.

The Hardware Faults

Mutant-injection focuses on random faults in the processing hardware. These

faults cause mutations of services. Retention errors which have been intro-

duced in Chapter 4 for the reason of completeness do not cause process faults.

Similar to the exterior fault-tolerance of the controlling process, the investi-

gation of the effects of retention errors onto the controlling process does not

require the injection of mutants. Nevertheless, since retention errors are only

relevant when being read-assessed by a service, services can be used to simulate

the occurrence of retention errors in the storage space. In any case, the pro-

cedure following the occurrence of a retention error may follow the guidelines

that were proposed in this chapter (predicates, valuation rules, final measures).

Similar applies to faults entering the controlling process through the interface

area.

Applicability

Although the mutants, which are action errors, can only be injected by means

of simulation-based fault-injection, the philosophy behind the method may

principally be applied to other fault-injection approaches — however with

the limitations imposed by the corresponding injection technique. Mutant-

injection then is a methodology, requesting the other approaches to observe

and register the effects of the injected low-level faults at the service level (mu-

tants) in order to obtain a comparable input, and to follow a common proce-

dure in the derivation of the final measures. Mutant-injection therefore does

not make other injection techniques obsolete, on the contrary, physical fault-

injection and low-level simulation-based fault-injection experiments are the

most important means to obtain a notion of realistic service errors.

6.11.2 Existing Approaches

The existing approaches for dependability evaluation of software through fault-

injection, as discussed in Chapter 2, are customized solutions. None of the
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publications however claimed to have presented unbiased and comparable mea-

sures. On the contrary, some authors annotated the lack of portability and

comparability of their approach. Without any judgement, the major differ-

ences between mutant-injection and the existing approaches are as follows.

• Mutant-injection emphasizes the software point of view on an executing

device. A microprocessor is regarded as a provider of enclosed individual

services (service-provider model). Services are the dynamic responses

to the static machine instructions. Data exchange among services, and

between services and the environment, takes place only via the storage

space. The hardware constituting the services upon request of the ma-

chine instructions is the processing hardware.

• In mutant-injection the object of investigation (the software) is defined

as a process, termed the controlling process. The controlling process is a

sequence of services. Services are the basic components of the controlling

process. The process communicates with its environment through well-

identified input and output locations in the storage space (the interface

area). There is a clear boundary between the object and its environment,

which allows for a precise determination of when, where and how the

hardware faults enter the controlling process.

• Mutant-injection uses purposive faults that are common to most safety-

critical embedded software, and that form a junction among the differ-

ent fault-injection techniques. The injected faults are neither hardware

faults nor software faults, but are object-adequate action-errors (process

faults). The fault input domain is not specific to the hardware and thus

allows for comparability and portability of the injected faults.

• Mutant-injection encompasses a procedure for the evaluation of the inte-

rior hardware-fault fault-tolerance — from the initial fault scenarios to

the final measures.

• Masking and blanking are acknowledged as fault-tolerance mechanisms

of software. Both masking and blanking are non-negligible software qual-

ities to be considered in a fair evaluation process.

• Because the only comparability requirement that can be satisfied re-

garding the input space of different software is to have the software op-

erating in their destination environments, mutant-injection proposes the
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simulation-based fault-injection technique in order to allow for real-time

execution, injection and observation. Both physical fault-injection and

SWIFI do not allow for real-time injection and monitoring.

6.11.3 Remaining Problems

The creation of a service-provider model of a microcontroller surely poses

some difficulties if the manufacturer withholds information. However, from

the conventional microcontroller documentation and from engineer’s intuition,

a service provider model can be constructed to a certain extent (respectively

accuracy). In any case, mutant-injection can also be used on a traditional

register-model simulator (if it allows service manipulation), but with the re-

strictions outlined in Chapter 4. A real-time fault-injection environment, such

as the one proposed in this chapter, certainly poses a financial problem, but

no technical one. Obtaining realistic mutants may be intricate, but is feasible

(Chapter 5 — related work in fault-mapping). Anyway, following the recom-

mendation of [Vo98 p.25] to “. . . avoid the trap of spending all of our time

worrying about how realistic certain anomalies may be, and simply observe

how those anomalies impact the software”, one may start with artificial mu-

tants anyway.

One of the major problems to be solved, not only for mutant-injection but

for all methods aiming at evaluating the dependability properties of software,

lies in the categorization and standardization of equivalent error scenarios (the

behavior of the controlling process after fault-injection). Clearly, if two scenar-

ios are physically identical (same sequence of services, same errors and same

propagation in the storage space) then there is no doubt. But the controlling

process may, as an example, accidentally branch to another path and may

then be delivering the same sequence of services as on the original path. Both

paths shall be assumed to merge again at some later point. From the core

implementation perspective the scenarios are different (wrong program path),

from the application point of view the scenarios are equal since the process suc-

cessfully renders the requested series of services. The fundamental question

behind the equivalence problem is: Must the controlling process exactly do as

programmed, or must it finally do as required from some higher perspective?

It is to remind – also following from the service-provider point of view onto any

kind of processor – that mutant-injection is not necessarily limited to software,

but to any kind of process. Regarding software, research must be carried out
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for classifying distinguishable abstraction levels within the controlling process

as well as for identifying the corresponding ‘errors’ of the process. The low-

est process level is the level of the individual services, the highest level is the

application level, but there are intermediate levels within. These levels need

to be identified and standardized, such that conformity can be achieved about

the (mis)behavior of the object of investigation. In any case, the equivalence

of error scenarios must be taken into account because otherwise the measures

may not be credible, as was pointed out in this chapter.

Strongly connected to the latter problem certainly is to generally achieve

a common agreement about the complete evaluation procedure. This problem

can only be solved by a joint community of the concerned, that is, the software

developers, the microprocessor manufacturers and the researchers from the

field of dependability evaluation and validation. This work intends to point

onto the problems as well as to indicate a solution. In any case, there must be

some standardized and commonly accepted evaluation method, otherwise the

obtained measures are more or less elusive. This can be dangerous, especially

for safety-critical embedded systems, as several accidents have shown in the

past.
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Chapter 7

Summary

7.1 Problem Recall

Safety-critical embedded software can be affected during operation by random

faults in the processing hardware. These faults influence the execution process

of the machine instructions. The fault-tolerance of the software with respect

to these faults is significant for maintaining system safety.

Software must not only be fault-tolerant, it must also prove to be fault-tolerant.

Therefore the fault-tolerance is to be evaluated and put into expressive mea-

sures. Fault-injection is an accepted method for dependability evaluation.

Several approaches for evaluating the dependability of software through fault-

injection were presented in the past. Most of the approaches are however

customized solutions. The measures obtained from one approach often cannot

be compared against those of the other approaches. A mutual basis allowing

for conformance among the experiments and thus for comparability of the re-

sults is missing. The approaches also do not address safety-critical embedded

software, in particular the evaluation of its fault-tolerance in the presence of

random faults in the processing hardware.

This thesis tried to proceed towards comparability in fault-injection for

software dependability evaluation, however specifically dedicated to safety-

critical embedded software and its dependability property ‘fault-tolerance’ in

the presence of random faults affecting the machine instruction execution. For

that, a fault-injection method was derived and presented in this work.

163



7.2 Review of Chapters

Before summarizing the work, the major steps taken throughout the chapters

towards the presented fault-injection method are itemized.

Chapter 1 — Introduction

• Introduction into the type of safety-critical embedded system considered,

and specification of fault-tolerance as the property of an object to prevent

fault effects from leaving that object unnoticed.

Chapter 2 — Fault-Injection for Software Dependability Evaluation

• Comparison of the three hardware fault-injection techniques, concluding

that only the simulation-based technique on principle allows real-time

execution, injection and observation — given that a suitable model of

the microprocessor exists.

• Discussion of related work in software dependability evaluation through

fault-injection and derivation of comparability requirements, starting

from the FARM sets originally introduced by [Ar90] for pin level fault-

injection.

Chapter 3 — The Controlling Process

• Definition of the ‘software in execution’ as controlling process, thereby

avoiding terminological confusion and realizing the nature of the object

as well as its boundary.

• Specification of the processing hardware as the hardware areas relevant

for the execution of the machine instructions.

• Identification of the interior hardware-fault fault-tolerance of the con-

trolling process as the fault-tolerance category of concern.

• Deduction of process fault-injection as the injection method following the

nature of both the object and the effects of the faults.

Chapter 4 — Microprocessor Modeling

• Introduction of the notion service as well-specified behavioral answer

upon a machine instruction, thereby also filling a gap in terminology.
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• Presentation of the service-provider model, a generalized model of a pro-

cessor from a strict software point of view, consisting of a storage space

and a set of enclosed services.

• Presentation of the error model outlining the principal effects of random

faults on the model components, and identification of services as natural

link between hardware and software on the path of impact.

• Determination of service errors as the representatives of the considered

random faults, forming the fault input domain in the method.

Chapter 5 — Service Errors

• Discussion of publications related to fault mapping and error behavior

modeling, concluding that the approaches are still implementation ori-

ented and that the service level has not yet been considered.

• Presentation of the error behavior of customary combinational circuits,

based on almost 300 million fault-simulations at gate level, for the ap-

plication of creating realistic service errors, thereby also showing the

advantage of the arithmetic error over the traditional bit-flip.

• Exemplary derivation of realistic and representative service errors, but

also noting that the power-of-two errors cannot model all service errors

principally possible.

Chapter 6 — Mutant-Injection

• Definition of deliberately caused service errors as mutants, serving as

comparable fault input domain F at the process level.

• Definition of notions N, and distinction between cognitive and non-

cognitive fault-tolerance mechanisms.

• Determination of fault scenarios as input in the injection experiments,

resulting in error scenarios as the output — following the ideas of [Cu99].

• Presentation of predicates P for a consistent classification of the fault

effects, and presentation of valuation rules V for the revision of the

obtained error scenarios.

• Proposal of a simulation-based fault-injection environment for real-time

execution, injection and observation of the controlling process.
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7.3 Summary of the Work

In this work a fault-injection method, called mutant-injection, was presented.

The method focuses on the evaluation of the interior hardware-fault fault-

tolerance of safety-critical embedded software. This fault-tolerance category is

concerned with the effects arising from random faults in the processing hard-

ware. Mutant-injection allows for comparable measures of the fault-tolerance

of different software on different hardware. Figure 7.1 summarizes the method

in brief.

The presented method is built upon the so-called FARM sets which had

initially been introduced by [Ar90] for physical fault-injection experiments.

These sets form the basic entities present in any fault-injection experiment.

The collection of sets was expanded and adjusted in this work to the herein

considered object and subject of investigation, resulting in a collection of re-

quirements for more comparability of the final measures. The pivotal point

identified is a common and object-appropriate fault set F . Preferably, the

faults directly affect the structural elements of the software.

The object of investigation – the software in execution – was specified as

controlling process. This reveals the nature of the object, its structural ele-

ments, and its boundary, and also avoids terminological ambiguities. The two

components establishing the controlling process were determined as the pro-

cessing hardware and the binary program. The controlling process represents

the amalgamation of hardware of software, and allows the embedded system

to be conceptually partitioned into two tangible entities: The controlling pro-

cess as the organizing and supervising entity (the intellectual part), and the

remaining hardware as the expedient entity (the servant part). It is the control-

ling process that is predominantly responsible for maintaining safety through

fault-tolerant reactions upon faults. Its fault-tolerance is decisive.

According to the locations of occurrence of faults, three fault-tolerance cate-

gories of the controlling process were distinguished. The interior hardware-

fault fault-tolerance was identified as the category of concern (the subject of

investigation). It denotes the ability of the controlling process to tolerate in-

ternal fault-events arising from random faults in the processing hardware. The

other two categories are not concerned with any hardware defects impacting

the execution of the machine instructions. Corresponding to the nature of

the object and to the first-order effects of the random faults on the object,

166



public

Storage space LControlling process Z

private

L
O

L
I

L
W

S

S

S

S
Input

Substrate

&
&

R0

R1

Flags

PC

IR

...

Random faults in the
processing hardware

Readouts R

Derivation of
measures

Fault input domain :F
Mutants (service errors) = process faults

Output

Predicates P

Valuation Rules V

Environment

Gatel level

RT level

Register level

Fault scenarios

Measures M

Error scenarios

Service level

Revised scenarios

In
je

ct
io

n M
onitoring

Device level

FAULT MAPPING

MUTANT-INJECTION

Notions N

Figure 7.1: Summary Mutant-injection

167



the conceptual injection method was determined as process fault-injection. In

contrast to other approaches, the fault input domain consists neither of hard-

ware faults nor of software faults, but of process faults. Any considerations

on the fault-tolerance capabilities of the controlling process start with the oc-

currence of a process fault. Therewith a clear boundary exists as to when and

where the random faults become relevant for the controlling process. This,

the conceptual isolation of the object of investigation from the surrounding

system, and also the clear specification of the location of the communication

interface is one shortcoming noticed in other software dependability evaluation

approaches.

Within the scope of the presented service-provider model which is a gener-

alized model of a microprocessor from a strict software perspective, the control-

ling process was defined as a sequence of independent services. The introduced

notion of a service not only fills a terminological gap, but also conceptualizes

the link between hardware and software. A service is the dynamic response to

a static machine instruction. For any hardware fault propagating into the con-

trolling process, services form the inlets into the controlling process. Service

errors in particular are the representatives of random faults in the processing

hardware.

As a review on publications related to fault mapping and microprocessor

error behavior modeling has shown, none of the investigations had considered

the service level, although in many experiments the faults have traversed the

service level while propagating into the software. In order to obtain some

insight into realistic service errors, the results of gate level fault-simulations

carried out on customary combinational circuits used in microprocessors were

presented. It was demonstrated by means of the arithmetic error distribution,

that the power-of-two errors are the most likely in the presence of single and

double faults. It was also shown that the arithmetic error is more expressive

than the traditional bit-flip. The findings were then used for the exemplary

creation of realistic service errors, however also noting, that the power-of-two

errors cannot model all service errors possible.

Following the requirements identified, the fault-injection method was then

assembled. The hub of the method is the fault set F . The set consists of

mutants which are deliberate service errors. Mutants are process faults and

thus form an object-appropriate fault input. Because all safety-critical em-
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bedded software share a certain set of equivalent services (e.g. ADD, SUB, MUL,

MOV, CMP), and because the meaning of a service to the software is indepen-

dent of the actual microprocessor architecture (Harvard, von Neumann), of

the data formats (little endian, big endian), and also independent of the size

of the machine instructions and their location in memory, mutants form the

smallest common denominator that can be attained among different software

on different hardware. Mutants are predestined to form a – as far as possible –

comparable fault set among different software. Low level faults (e.g. pin level

faults, stuck-faults) or state mutations applied to the memory, as used in other

approaches, are far less comparable since they are specific to the hardware that

the software is executed on.

Another problem hampering comparability is the sometimes varying inter-

pretations of common terms. Therefore relevant notions N were defined, in

particular it was distinguished between cognitive (detection and handling) and

non-cognitive fault-tolerance mechanisms (masking, blanking). Following the

ideas of [Ar90], a collection of predicates P for a consistent classification of

the monitored fault effects was presented. Predicates are Boolean assertions

that strip the required information from the experiment readouts. Also some

valuations rules V , to be taken into account when revising and purging the

experiment results, were given. General issues, in particular the golden run,

were addressed as well. The golden run was argued not to be the reference

criterion because the controlling process usually follows other program paths

in the fault-case (e.g. detection and handling) than in the good-case. It is not

the task of the controlling process to align with the golden run, but to hin-

der the fault effects from propagating into the output stream. For rating the

fault-tolerance, the coverage proportion was proposed as a suitable measure M .

Since the only comparability requirement that can be met regarding the

input space of different software on different hardware is to have the software

operating in their real world, the concept of a simulation-based fault-injection

environment was presented. Its benefits in general, and in particular its use-

fulness for an automatic program path analysis and a shadow program in-

vestigation were discussed. Finally, remaining problems were addressed. The

major problem to be solved is a standardized categorization of process errors

in order to recognize the occurence of equivalent error scenarios. Equivalent

error scenarios result in redundant experiments. Redundant experiments may

lead to bogus fault-tolerance measures.
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Mutant-injection predominantly aims at real-time execution, injection and

observation of the controlling process. However, mutant-injection is not per se

a real-time injection method and moreover, mutant-injection does not make

other fault-injection techniques obsolete, as was discussed. Mutant-injection

is also considered a methodology, requesting other approaches in this field to

observe and name the effects of the injected low-level faults at the service level

(mutants) in order to obtain a comparable input, and to follow a common

procedure in deriving the final measures.

Therewith a methodical fundament is built that allows for comparability of

the obtained measures — as far as this is even possible in fault-injection.

7.4 Prospects

The herein presented fault-injection method is not a ready-to-go manual for

achieving unbiased and comparable fault-tolerance measures. There are still

problems to be dealt with, most of them are solvable only by a joint com-

munity of the concerned (software developers, microprocessor manufacturers,

dependability researchers). One step to be taken is to have the manufacturers

providing service provider models of their products. Another step is to create

a standardized and comprehensible description for qualifying service errors.

Then a centralized library of realistic service errors and fault scenarios should

be called into being. The contributions to the library may result from field ex-

perience, from low-level fault-injections or from model simulations. As shown

in this work, many of the past researches on microprocessor error behavior

modeling could have contributed to such a library. The major step certainly

is to establish a standard for the evaluation of the fault-tolerance of safety-

critical embedded software, that is, to proceed forward to commonly accepted

dependability benchmarks and certifications in this particular field. This is es-

pecially important for safety-critical embedded software. This thesis intended

to take a step towards this direction.
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Appendix A

Error Distribution Figures

Following are shown the error distribution functions obtained from the gate

level fault-simulations presented in Chapter 5 (page 80). For space reasons

these figures have been moved to this appendix. The figures show the distri-

butions of the arithmetic error in the output of the circuit,

a) while a single fault is present in the circuit (this page),

b) and while a double fault is present in the circuit (page 188).

A.1 Single-Fault Error Distributions
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Figure A.6: Single-fault error distribution ALU4 (R := A ∧ B)

0
5

10
15
20
25
30
35
40
45
50
55

%

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

� e

Bit-flips %

0 54.20

1 43.43

2 1.69

3 0.58

4 0.10

N ≡ 100%

noerr err

54.20% 45.80%=EE

pow2 ¬pow2

43.95% 1.85%

EE ≡ 100%
pow2 ¬pow2

95.97% 4.3%

Error Distribution pE(e)
ALU4 — OR

Circuit function: R := A ∨ B Simulations: N = 61696

Figure A.7: Single-fault error distribution ALU4 (R := A ∨ B)

174



0
5

10
15
20
25
30
35
40
45
50
55
%

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

� e

Bit-flips %

0 50.99

1 45.23

2 1.35

3 1.45

4 0.99

N ≡ 100%

noerr err

50.99% 49.1%=EE

pow2 ¬pow2

46.73% 2.28%

EE ≡ 100%
pow2 ¬pow2

95.34% 4.66%

Error Distribution pE(e)
ALU4 — NOT

Circuit function: R := ¬A Simulations: N = 3856

Figure A.8: Single-fault error distribution ALU4 (R := ¬A)
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Figure A.12: Single-fault error distribution ALU8 (R := A - B - 1)
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Circuit function: R := A + 1 Simulations: N = 121088

Figure A.13: Single-fault error distribution ALU8 (R:= A + 1)
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Figure A.14: Single-fault error distribution ALU8 (R:= A - 1)
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Circuit function: R := A ∧ B Simulations: N = 30998528

Figure A.15: Single-fault error distribution ALU8 (R : = A ∧ B)
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Figure A.16: Single-fault error distribution ALU8 (R := A ∨ B)
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Circuit function: R := ¬A Simulations: N = 121088

Figure A.17: Single-fault error distribution ALU8 (R:= ¬A)
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Circuit function: R := A Simulations: N = 121088

Figure A.18: Single-fault error distribution ALU8 (R := A)
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Circuit function: R := A + A Simulations: N = 3328

Figure A.19: Single-fault error distribution ALU74181 (R := A + A)

180



0
5

10
15
20
25
30
35
40
45
50

%

-16 -12 -8 -4 0 4 8 12 15

� e

Bit-flips %

0 47.33

1 40.05

2 12.50

3 0.12

4 0.00

5 0.00

N ≡ 100%

noerr err

47.33% 52.67%=EE

pow2 ¬pow2

50.27% 2.40%

EE ≡ 100%
pow2 ¬pow2

95.44% 4.56%

Error Distribution pE(e)
ALU74181 — ADDINC

Circuit function: R := A + A + 1 Simulations: N = 3328

Figure A.20: Single-fault error distribution ALU74181 (R := A + A + 1)
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Circuit function: R := A + B + 1 Simulations: N = 53248

Figure A.21: Single-fault error distribution ALU74181 (R := A + B + 1)
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Circuit function: R := A - B Simulations: N = 53248

Figure A.22: Single-fault error distribution ALU74181 (R := A - B)
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Circuit function: R := A - B - 1 Simulations: N = 53248

Figure A.23: Single-fault error distribution ALU74181 (R := A - B - 1)
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Circuit function: R := A + 1 Simulations: N = 2896

Figure A.24: Single-fault error distribution ALU74181 (R := A + 1)
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Circuit function: R := A - 1 Simulations: N = 2896

Figure A.25: Single-fault error distribution ALU74181 (R := A - 1)
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Figure A.26: Single-fault error distribution ALU74181 (R := A ∧ B)
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Circuit function: R := ¬(A ∧ B) Simulations: N = 46336

Figure A.27: Single-fault error distribution ALU74181 (R := ¬(A ∧ B))
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Figure A.28: Single-fault error distribution ALU74181 (R := A ∨ B)
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Circuit function: R := ¬(A ∨ B) Simulations: N = 46336

Figure A.29: Single-fault error distribution ALU74181 (R := ¬(A ∨ B))
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Figure A.30: Single-fault error distribution ALU74181 (R := A ⊕ B)
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Circuit function: R := ¬A Simulations: N = 2896

Figure A.31: Single-fault error distribution ALU74181 (R := ¬A)
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Figure A.32: Single-fault error distribution ALU74181 (R := A)
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Figure A.33: Single-fault error distribution BS4 (R := A � B)
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A.2 Double-Fault Error Distributions
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Figure A.34: Double-fault error distribution ALU4 (R: = A + B + 1)
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Figure A.35: Double-fault error distribution ALU4 (R := A - B)
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Figure A.36: Double-fault error distribution ALU4 (R := A - B - 1)
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Circuit function: R := A + 1 Simulations: N = 462720

Figure A.37: Double-fault error distribution ALU4 (R := A + 1)
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Figure A.38: Double-fault error distribution ALU4 (R := A - 1)
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Figure A.39: Double-fault error distribution ALU4 (R := A ∧ B)
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Figure A.40: Double-fault error distribution ALU4 (R := A ∨ B)
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Circuit function: R := ¬A Simulations: N = 462720

Figure A.41: Double-fault error distribution ALU4 (R := ¬A)
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Figure A.42: Double-fault error distribution ALU4 (R := A ⊕ B)
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Figure A.43: Double-fault error distribution ALU4 (R := A)
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Figure A.44: Double-fault error distribution ALU74181 (R := A + A)
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Circuit function: R := A + A + 1 Simulations: N = 344448

Figure A.45: Double-fault error distribution ALU74181 (R := A + A + 1)
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Figure A.46: Double-fault error distribution ALU74181 (R := A + B)
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Figure A.47: Double-fault error distribution ALU74181 (R := A - B)
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Figure A.48: Double-fault error distribution ALU74181 (R := A - B - 1)
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Figure A.49: Double-fault error distribution ALU74181 (R := A + 1)
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Figure A.50: Double-fault error distribution ALU74181 (R := A - 1)
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Figure A.51: Double-fault error distribution ALU74181 (R := A ∧ B)
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Figure A.52: Double-fault error distribution ALU74181 (R := ¬(A ∧ B))
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Figure A.53: Double-fault error distribution ALU74181 (R := A ∨ B)
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Figure A.54: Double-fault error distribution ALU74181 (R := ¬(A ∨ B))
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Figure A.55: Double-fault error distribution ALU74181 (R := A ⊕ B)
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Figure A.56: Double-fault error distribution ALU74181 (R := ¬A)
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Figure A.57: Double-fault error distribution ALU74181 (R := A)
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