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Abstract: The authors propose a simple and efficient mathematical model for designers to estimate 
fault coverage for partially testable multichip modules (MCMs). This model shows a relation between 
fault coverage, test methodology, and the fraction and distribution of design for testability (DFT) dies 
in MCMs. Experimental results show that the proposed model can efficiently predict the fault 
coverage of a partially testable MCM with less than 5% deviation. An automatic DFT dies 
deployment algorithm, based on the genetic algorithm and the model is proposed to help designers to 
obtain a fault coverage as close to the upper bound of fault coverage as possible. Two defect level 
estimation models, which relate fault coverage and manufacturing yield for measuring the test quality 
of MCMs under equiprobable and non-equiprobable faults, respectively, are also formulated and 
analysed to support the effectiveness of the model. 

1 Introduction 

The increasing demand in circuit speed has motivated high- 
performance system development. A multichip module 
(MCM) which interconnects multiple bare dies onto a sub- 
strate provides potential advantages of high chp  densities, 
small interconnection delays and high system performance. 
The merits of MCMs are gained from the elimination of a 
level of package (IC package). However, it is the same rea- 
son that dense packaging complicates the manufacturing 
and testing processes. General MCM testing strategies 
involve testing dies individually before they are assembled 
and testing the assembled module to avoid faults intro- 
duced during packaging [l]. However, it is difficult to test 
the bare die completely due not only to the increasing 
growth of pin count but also to the shrinking size of U 0  
pads. Traditional IC test equipment that is used to test the 
cased IC is not feasible for bare die testing, because there 
are no commercially available sockets that can hold a single 
die [2]. Ths gives rise to a need to add a design for testabil- 
ity (DFT) feature to each die, if possible, to provide neces- 
sary MCM testing capability. 

Although design for testability techniques can enhance 
controllability and observability to solve many chip level 
testing problems in MCMs, the obvious penalty is the over- 
head. They not only increase design cost and chip area but 
also degrade circuit performance. As a result, not all chips 
in an MCM have design for testability features [3]. For 
instance, memory chips such as Cache-SRAMs and TAG- 
SRAMs, which have been used in Pentium MCM systems, 
are typical examples of not supporting design for testability 
for the reasons mentioned [4]. In addition, the very hybrid 
nature of MCMs allows different sources of dies to be 
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incorporated into a single module. This implies that, except 
for vertically integrated companies, the quality of dies 
within the module cannot be assured and so the authors 
cannot be sure that each die is designed to have DFT fea- 
tures with it [5]. This means that, although the quality of 
bare dies is critical to the economy of high-yield assembly 
of MCMs [6], the MCM market cannot afford 100Y0 prod- 
uct testability [SI and partially testable MCMs (PT-MCMs) 
still exist currently. This results in fault detection and diag- 
nosis of MCMs being intractable. 

Fault coverage (FC), defined as the fraction of defective 
dies detected in an MCM, is an important parameter in 
measuring test quality. However, in PT-MCMs, the fault 
coverage not only depends on the ingenuity of test method- 
ologies but also depends on the fraction and the distribu- 
tion of DFT dies. This is because the controllability and 
observability of NDFT dies (dies with no design for testa- 
bility feature) can be enhanced by the DFT dies (dies with 
design for testability feature) around them. Until now, 
MCM designers rarely considered fault coverage issues 
when they are given a fixed fraction of DFT dies for PT- 
MCMs. This paper develops a fault coverage estimation 
model for facilitating designers to deploy the DFT dies in 
PT-MCMs in an eficient way, in order to increase the fault 
coverage of PT-MCMs. In addition, two defect level esti- 
mation models for MCMs under equiprobable and non- 
equiprobable faults, respectively, are also proposed. The 
defect level, defined as the fraction of MCMs that are 
defective and are shipped for use after testing is completed, 
is a function of fault coverage and manufacturing yield for 
measuring the test quality of MCMs. 

2 Preliminaries 

2.1 Background 
Based on the testability feature, the dies used in a PT- 
MCM can be divided into two categories: dies with DFT 
feature and dies without any testability feature. Owing to 
the nature of high circuit density and small pad size of 
MCMs, the DFT techniques, such as boundary scan (BS) 
and built-in self test (BIST), are increasingly more accepta- 
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ble [I, 5, 71. In ths  paper, the authors follow the assump- 
tions in [I, 51 where MCMs are populated by dies 
belonging to two categories: (i) dies designed with chip level 
BS where some of them possibly including BIST feature 
(DFT dies) and (ii) dies with no DFT feature (NDFT dies) 

DFT dies can test themselves and can also increase the 
controllability and observability of NDFT dies around 
them. Therefore, if the the fraction of DFT dies is 
increased, the controllability and observability of NDFT 
dies are increased. As a result, the testability and fault cov- 
erage for PT-MCMs are enhanced. In addition, the con- 
trollability and observability of NDFT dies can be 
increased by distributing the DFT dies more uniformly, 
due to the fact that the scattering of DFT dies will increase 
the contact pads between DFT dies and NDFT dies. Fig. 1 
illustrates two ET-MCM designs with the same number of 
DFT dies. Interconnections are assumed to exist between 
neighbouring dies. The functions of these two designs are 
the same except for the testability feature in each die. The 
shaded squares represent NDFT dies and the others are 
DFT dies. It is clear that the testability of the design in 
Fig. 16 is higher than that in Fig. la. This is because the 
distribution of DFT dies in Fig. lb is more uniform than 
that in Fig. la. 

PI. 

a b 
Fig. 1 Two PT-MCM &sigm with dlffevererit testdiliiyfeatupes 

2,2 Basic definitions and assumptions 
The fault model for PT-MCMs is assumed at die level. The 
interconnection faults between dies are ignored and the dies 
in PT-MCMs are assumed to have equal probability of 
faults. Consider a sample MCM with n dies, among which 
nl is the number of DFT dies and n2 is the number of 
NDFT dies. DFTh is defined as the fraction of DFT dies 
in an MCM and NDFT?!o as the fraction of NDFT dies in 
an MCM. A logic cluster is a cluster of NDFT dies which 
are enclosed by DFT dies and/or YO pins only. For exam- 
ple, Figs. In and b show two PT-MCM designs with two 
and twelve logic clusters, respectively, as indicated by 
enclosed regions. The number and size of logic clusters are 
very important to represent the fraction and distribution of 
DFT dies in a PT-MCM. TINS is enlightened by the obser- 
vation that the size of a logic cluster wdl shrink by scatter- 
ing the DFT dies uniformly. In addition, the size as well as 
the number of logic clusters will both decrease by increas- 
ing the fraction of DFT dies. Owing to low controllability 
and observability of the logic clusters’ internal logic, exist- 
ing test methodologies [5, 81 for PT-MCMs can only iden- 
tify faulty logic clusters. Faulty dies in a logic cluster 
cannot be identified, and this means that, if a logic cluster 
is identified as faulty, it is only certain that there is at least 
one faulty die in the logic cluster. 

The undetectable degree (u-degree) of the ith logic cluster 
Ci is defined as the number of NDFT dies (ICd) in the logic 
cluster minus one, which can be expressed as u-degree (Ci) 
= lCil - 1 for i = 1, 2, ..., t, where t is the total number of 
logic clusters. The reason to minus one from the size of a 
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logic cluster for u-degree is to reflect the fact that the faulty 
die of a logic cluster with size of 1 can be identified, and a 
faulty logic cluster with size greater than 1 can be identified 
if there is at least one faulty die in the logic cluster. u-degree 
is a very important parameter for indicating the distribu- 
tion of DFT dies. Now, the distribution of the two PT- 
MCM designs in Fig. 1 will be quantitatively evaluated. 
The summation of u-degrees for all logic clusters in these 
two designs are .ZgI (14 - 1) = 16 (Fig. la) and ZiL;(lCil - 
1) = 6 (Fig. lb), respectively. 

3 Fault coverage estimation model 

3.1 Fault coverage derivation 
Let 6 be a real number ranging from 0 to 1, whch repre- 
sents how smart a test methodology is. And Nf represents 
the number of defective dies in a PT-MCM. The mathe- 
matical expression to estimate the fault coverage (FC) for a 
ET-MCM is derived as follows: 

number of defective dies detected 
number of defective dies in an MCM 

number of defective dies ( which are detectable ) 
FC E 

- - 
Nf 

) 6 N~ ( the fraction of detectable dies 
in an MCM 

= 6 x (1 - (the fraction of undetectable dies 
in an MCM)) 

) 
undetectable dies in an MCM 

= s x  1- ( n 
Note that due to less controllability and observability of 
NDFT dies, the faulty dies in a logic cluster cannot be 
identified; which means that if a logic cluster is identified to 
be faulty, this only ensures that there is at least one faulty 
die in the logic cluster. Therefore, the number of undetect- 
able dies in a logic cluster is ICi] - 1. Thus, the total number 
of undetectable dies in an MCM is (/CA - 1) (i.e. sum- 
mation of u-degree). The above expression can then be 
approximated as 

summation of u-degree 

n 
( in an MCM 

This model shows that the fault coverage is in proportion 
to the fraction of DFT dies and is also in proportion to the 
number of logic clusters in a PT-MCM. 

3.2 Upper bound of fault coverage 
A iven futed fraction of DFT dies to estimate the upper 
bound of fault coverage is very important for designers to 
know when to stop the effort in deploying the DFT dies. It 
is trivial that the worst case of fault coverage for a PT- 
MCM is when all the DFT (NDFT) dies are clustered 
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together. This means that the number of logic clusters is 
exactly one (t = 1) and the worst case of fault coverage 
under a fved DFPA for a PT-MCM can then be written as 
FC, = 6 x ( D F P !  + lln). When n >> 1, the equation can 
be simplified as FC,, = 6 x DFPh,  Note that FC, = 0 if 
there is no DFT die in an MCM, which is an extreme case 
with D F P h  = 0 and t = 0. On the other hand, if the size of 
each logic cluster is one (i.e. there are n2 logic clusters with 
Size of I), then the best case of fault coverage under a fixed 
D P / n  can be expressed as FC, = 6 x (DFPA + n2In) = 6. 
This equation shows the best case of fault coverage when 
each NDFT die is enclosed by DFT dies and/or VO pins. 
Note that FC, = 6 is also applicable for the other extreme 
case with DFPh = 1 and n2 = 0. 

In the following, two parameters are introduced to help 
the derivation of the upper bound of fault coverage. Sup- 
pose that k is the average number of DFT dies that 
encloses a logic cluster, and s is the maximum number of 
logic clusters that share a DFT die. Then we have t x k I 
nl x s. This inequality means that the total number of DFT 
dies that enclose all logic clusters is less than or equal to the 
total number of DFT dies multiplied by s. The upper 
bound of fault coverage (FC,) can be derived as follows: 

t x k s n l x s  
S t s n l x -  IC 

t D F T % x s  - <  
n k - 
t 
n 

DFT%+ - 5 DFT% x ( 1  + 5) 
S x  D F T % + -  < S x D F T % x  ( 1 + : )  ( 3 

F C < S x D F T % x  (1+:) 

( 2 )  
Note that the value of FC, = 6 x DFP/n x (1 + slk) should 
not be greater than 1, i.e. the quotient of slk should be 
limited to satisfy the following inequalities: 

S X D F T % X  1 + -  5 1  ( $1 

Therefore, 

(3 1 
s l - S x D F T %  - <  
k - 6 x DFT% 

If 6 is set to 1, the right-hand side of this inequality can be 
simplified to n2/nl. 

4 
automation 

In ths  Section, an automation algorithm is presented, 
which is based on the genetic approach and the proposed 
models, to help designers to deploy the DFT dies in 
MCMs and to obtain a near optimal fault coverage. The 
application of the genetic algorithm (GA) to the DFT dies 
deployment problem requires an encoding scheme, an eval- 
uation function and a set of genetic operators, namely 
selection, crossover and mutation [9]. Fig. 2 shows a GA- 
based automatic DFT dies deployment algorithm. Key 
operations in the algorithm are explained in the following. 

Genetic algorithm-based DFT dies deployment 
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Automatic-DFT-dies-deployment algorithm(); 
Begin 

initialise parameters; 
initialise population; 
evaluate population based on FC; 
while ( ‘M > E and generation < N )  
begin 

select solutions for next population; 
perform crossover and mutation; 
evaluate population; 

FCU 

end(whi1e); 
end (algori thm). 

Fig.2 An automt i~  D F T d w  deployment algorithmfor MCMs 

Encoding scheme: In order to proceed encoding in each 
deployment generation, position matrix (PM) is defined to 
represent the original position of each die in an MCM. 
Each element (my) of the PM is defined as: (i) my = 0, if the 
die corresponding to my is a DFT die, and (ii) my = 1, if the 
die corresponding to my is an NDFT die. Talung Fig. l a  
as an example, the corresponding PM can be obtained by 
listing each die according to its position as follows: 

1 0 1 0 0 0 0  
0 1 1 1 1 0  
1 1 0 0 1 1  
0 0 1 0 0 0  
0 1 1 1 1 1  
1 1 0 1 0 0  

The chromosome can be constructed by listing the elements 
of the PM according to its horizontal ordering. 
Evaluation function: The evaluation function (fJ is used to 
evaluate the fitness value (fault coverage) of a deployment 
generation in the GA, which is from eqn. 1, and is rewnt- 
ten as follows: 

Selection: The selection operator selects the fittest chromo- 
somes for survival into the next generation. Chromosomes 
with higher fitness values (Kl) are chosen for the next gen- 
eration. 
Crossover: Order crossover (OX) [9] is used to build off- 
spring by choosing a subsequence from one parent and pre- 
serving the relative sequence from the other parent. 
Mutation: The mutation is done by randomly altering one 
symbol from 1 to 0 and another symbol from 0 to 1 in the 
chromosomes. 
Table 1 shows a DFT dies deployment example based on 
the GA, whch has a population of four chromosomes with 
36 genes each, i.e. there are 36 dies in an MCM. The 
DFP/o is 0.5 and slk is assumed not greater than 0.75. This 
algorithm will terminate when the fault coverage deviation 
(IFC, - Fq)/FC, is within E (= 10%) or the generation is 
greater than N (= 200). In this example, FC, = 0.875 for 6 
= 1. Population 1 represents the initial population with 
four chromosomes which are generated randomly. Note 
that the first chromosome of population 1 represents the 
PT-MCM design shown in Fig. la. The algorithm tenni- 
nates when the fault coverage derivation (= 5.1%), which is 
based on the first chromosome of the final population, is 
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within E (= 10%)). Note that the first chromosome of the 
final population represents the PT-MCM design shown in 
Fig. Ib. 

Table 1: DFT dies deployment example based on the GA 

Fitness value 

Population 1: (initial population) 

Chromosome 
010000011110110011001000011111110100 0.56 

010000011010110111001000011101110101 0.61 

010001011010110111000000110101110101 0.67 

001011101100101110001000110110110010 0.64 

Population 2: (after crossover and selection) 

Chromosome 

i o i i i o i o i i i o o  I 1ooi1oo1oooo1i I 001101010 0.69 

~ i O i i O O 1 O O O i O  I 100~i001000011 I 110101101 0.67 

o1oooio1ioio1 I 10111000000110 I 101110101 0.67 

o0101i10i1001 l01110001000110 I 110110010 0.64 

Population 3: (after mutation and selection) 

Chromosome 

101110101110010011000100011001101010 0.75 

110110010001010011001000011110101101 0.67 

010001011010110111100000010101110101 0.69 

001011101100101110001000110110110010 0.64 

Final population: (within E )  

Chromosome 

100110011001100110011001100110011001 0.83 

101001101010010100010011101100110011 0.78 

101101010101001010110010001101110010 0.81 

010101101010101010010101010101101010 0.83 

5 Defect level estimation models 

The testing of complex VLSI circuits to ensure acceptable 
defect levels in products shipped to customers has become 
very challenging [12]. One way of minimising the number 
of faulty chips that escape the test procedures is to exten- 
sively test those circuits that have a hgh probability of 
being faulty [12]. This requires a model for predicting the 
defect level of chips. Ths Section presents two defect level 
estimation models for MCMs under equiprobable and 
non-equiprobable faults, respectively. 

Williams and Brown [13] have derived a well known for- 
mula for computing the defect level of an integrated circuit 
as a function of yield and fault coverage. The following 
shows the Williams formula: 

D L  = 1 - Y ( 1 - F C )  

where Y and FC represent the yield and fault coverage of 
an integrated circuit, respectively. In this model, fault cov- 
erage is evaluated by a fault model for whch equiprobable 
faults are assumed. The Williams formula can be extended 
to MCMs if it is assumed that the dies in an MCM are 
equally likely to have a fault and are independent with no 
manufacturing defects induced. Hence, the defect level of 
an MCM can be expressed by the following formula [6]: 

D L M C M  = 1 - Y M c M  

Note that eqn. 5 is applicable for general MCMs. This 

(4) 

(5 1 (1-FC) 
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result is also applicable to PT-MCMs with the same fault 
assumptions of eqn. 5. Substituting eqn. 1 into eqn. 5, the 
defect level for IT-MCMs is as follows: 

Both eqns. 5 and 6 are based on the equiprobable fault 
assumption of MCMs. However, much work has been ded- 
icated to the defect level analysis for non-equiprobable 
faults in digital ICs [ll, 14, 151. In the following, this con- 
cept is extended to MCMs by considering non-equiproba- 
ble faults. 

First assume that the conditions for dies in an MCM to 
have a fault depends on their respective area and defect 
density and are independent with no manufacturing defects 
induced. Without loss of generality, then assume that there 
are n dies in an MCM and each die i with area A,, defect 
density D,, and yield q, and there are m faulty dies in the 
MCM. Based on these assumptions, the results in [I 11 can 
directly be applied to the MCM defect level estimation. 
The result can be written as follows: 

D L  = 1 - Y(l-") 

where Q is a generalised weighted fault coverage figured for 
non-equiprobable faults. The weighted fault coverage is 
given as 

(7) 

m 
In n U, 

( 8 )  
j=1 Qr- 

In fi Y, 
a= 1 

For equiprobable faults, SZ reduces to FC and eqn. 7 is the 
same as the Williams formula in eqn. 4. To apply this 
result to MCMs, is interpreted as the yield of die i. For a 
definition of the original meaning of refer to [ll]. Two 
different yield models to predict die yields are considered. 
The first model used to predict die yields is the Poisson 
yield model [16]. In this model, the die yield is modelled as 

y r e-AD (9) 
where A and D represent the die area and defect density, 
respectively. The Poisson model assumes that defects are 
uniformly and randomly distributed, a model which tends 
to predict low yields for large die sizes [lq. The second 
yield model which is usually employed to account for clus- 
tered defects is termed as the negative binomial model [16] 

Y =  ( 1+-  AaD>-" 

where a is the clustering parameter. The elegance of the 
negative binomial model is that, through a statistical analy- 
sis of defect distribution data, a more accurate yield can be 
obtained. By applying these two yield models, two defect 
levels for MCMs under non-equiprobable faults are 
derived. Eqn. 11 shows the defect level for MCMs with 
random defects assumption of dies: 

where 

and YMCM represents the yield of an MCM with random 
defects. The defect level for MCMs with clustered defects 
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of dies is expressed as: 

D L C M C M  = 1 
where YCM, represents the yield of an MCM with clus- 
tered defects and a, is the clustering parameter of the ith 
die in an MCM. Since the yield of an MCM with clustered 
defects can be expressed by the product of each die yield, 
which is based on the negative binomial model in an 
MCM, as shown in eqn. 14, 

eqn. 13 can be reduced as follows: 

Although the authors only consider two typical yield mod- 
els, Poisson and negative binomial, the defect level models 
used by the authors under non-equiprobable faults are 
equally applicable to general MCMs and PT-MCMs by 
using other yield models. 

6 Experiments 

In order to validate their fault coverage estimation model, 
the authors have compared their approach with a prag- 
matic approach. Experimental results for the fault cover- 
age, upper bound of fault coverage and defect level of PT- 
MCMs based on the proposed approach are also illustrated 
in this Section. 

6. I Comparison with other approach 
A pragmatic test and diagnosis methodology for derivation 
of fault coverage for PT-MCMs, which was proposed by 
Lubaszewslu et al. [5],  is used to evaluate the fault coverage 
estimation model used in this paper. A sample MCM 
whch contains 50 dies is the circuit to be tested. The ACMI 
SIGDA combinational benchmarks [ 101 are used as the 
construction dies for the sample MCM. Part of the bench- 
mark circuits are duplicated several times to match the 
number of dies in the MCM. The parameter 6 and DFPh 
are set to 1 and 0.6, respectively. The size and the number 
of logic clusters are varied to represent different distribu- 
tions of DFT dies. Random faults are generated and the 
number of faulty dies is 10. For each distribution of DFT 
dies, random fault patterns are generated 100 times. The 
average value is taken as the final fault coverage of 
Lubaszewslu's method for each distribution. Table 2 shows 
that the fault coverage estimation results are very close (5% 
deviation) to the actual fault coverages based on Lubasze- 
wski's method. 

6.2 Analysis 
Fig. 3 shows the fault coverage of MCMs as a function of 
D F P !  and the number of logic clusters (LCs). It is 
assumed that there are 60 dies in an MCM and the param- 
eter 6 is set to 1. First consider the relationship between the 
distribution of DFT dies and the fault coverage. When the 
fraction of DFT dies is fmed, an increase in the number of 
logic clusters results in an increase in the fault coverage. 
For example, if DFPh is 0.7 and the number of LCs is 6, 
12 and 18, the fault coverage will be 0.8, 0.9 and 1.0, 
respectively. This is because an increase in the number of 
logic clusters will shrink the average size of logic clusters 
and reduce the number of undetectable dies. Fig. 3 also 
shows that DFPh is in proportion to fault coverage. Ths  
is because the size and number of logic clusters both 
decrease by increasing the fraction of DFT dies. Fig. 4 
shows the upper bound of fault coverage as a function of 
DFPh and the quotient of slk. This Figure shows that the 
upper bound of fault coverage increases as the quotient of 
slk increases. Ths is because a small value of k implies a 
small size of logic clusters, and a large value of s implies a 
small number of logic clusters. Obviously, the upper bound 
of fault coverage is in proportion to the DFPh, and an 
increase in the D F P h  will result in an increase in the upper 
bound of fault coverage. 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 
DFT, % 

Fig. 3 
des -*- number of LCs = 6 -E- number of LCs = 30 
-W- number of LCs = 12 -0- number of LCs = 36 
-A- number of LCs = 18 -1- number of LCs = 42 
-X- 

Fault coverage us a f i c t ion  of the fraction mu/ distrdmtion of DFT 

number of LCs = 24 

DFT, % 

The upper b o d  of fault coverage as a fwzction of D W A  rmd s/k Fig. 4 
-A- s/k = 0.10 -A- slk = 0.40 
-0- s/k = 0.20 -0- slk = 0.50 
-0- s/k= 0.30 

Table 2: Fault coverage based on our estimation model and Lubaszewski's 
method 

FCof proposed FC of Lubaszewski's 
model, % method, % 

Number Of 

logic clusters 
Size of each cluster 

Distribution 1 1 20 62 59.13 

Distribution 2 2 IO, 10 64 61.80 

Distribution 3 4 1,3, 6, 10 68 64.92 
Distribution 4 8 1,1,1,2,2,3,4,6 76 74.62 
Distribution 5 20 IC)= l , i=1 ,2  ,..., 20 100 98.81 

~~~ ~ ~ ~ ~ ~ ~ 
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The same data from Table 2 is used to illustrate the 
defect levels of E-MCMs based on eqn. 6. Fig. 5 shows 
the defect levels of PT-MCMs, which is a function of fault 
coverage and number of LCs for 6 = 1, D F P h  = 0.6 and n 
= 50. It is evident that the defect level decreases as the man- 
ufacturing yield or the number of LCs increases for a fmed 
DFPh. For example, if the manufacturing yield of the 
MCM is fmed at 0.6 and the number of LCs increases from 
I to 20, the defect level will decrease from 0.18 to 0. There- 
fore, given fixed values of MCM manufacturing yield and 
DFT’/o, the MCM test quality (defect level) is highiy 
dependent upon the fault coverage (number of LCs). 

0.4 r 

0.3 - - 
F ! -  
5 0.2- 
.E 

- 

-a 

0.1 - 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 
yield of MCM 

Fig.5 
for 6 = I ,  D F T !  = 0.6 and n = 50 
-e- number of LCs = 1 -0- number of LCs = 8 
4- number of LCs = 2 -A- number of LCs = 20 
-A- 

Defect level as a function of mufactwing yield and ricunber of LCs 

number of LCs = 4 

7 Conclusions 

The authors have presented efficient mathematical models 
to predict fault coverage and defect level of PT-MCMs, 
respectively. The fault coverage model can facilitate design- 
ers to deploy the DFT dies in MCMs in an easy and effi- 
cient way. By comparing the authors’ model with the 
Lubaszewski’s pragmatic test and diagnosis methodology, 
it has shown that this model can efficiently predict the fault 
coverage of a ET-MCM with less than 5% deviation. An 
automatic DFT dies deployment algorithm based on the 
GA and the authors’ models is also developed to automate 
the deployment process. Two defect level estimation mod- 
els, which are based on equiprobable and non-equiprobable 
fault distributions of MCMs, respectively, have also been 
presented. Both fault coverage and defect level at MCM 

level are two very important parameters in determining test 
quality of MCMs, and they are rarely discussed in the liter- 
ature. The estimation models developed by the authors for 
these two parameters in MCMs can help to make up for 
such shortcomings. 
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