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Abstract 
An early-life reliability model is presented that allows 
wafer test information to be used to predict not only 
the total number of burn-in failures that occur for a 
given product, but also the time a t  which they oc- 
cur during burn-in testing. The model is a novel ex- 
tension of an experimentally verified yield-reliability 
model based on the fact that defects that cause early- 
life reliability (burn-in) failures are “smaller”, more 
subtle versions of the defects that cause failures a t  
wafer test. Consequently, knowledge of defect densities 
following wafer test (inferred from wafer probe failures) 
provides knowledge of the relative magnitude of early- 
life reliability defect densities. It is shown that this fact 
can be exploited to produce die with varying burn-in 
duration requirements. This is accomplished by sort- 
ing die into “bins” based on known reliability indica- 
tors. Presently, two such indicators are known: the 
local region yield of the die in question, and the num- 
ber of repairs performed on the die in question. The 
early-life reliability model presented in this work will 
demonstrate that chips sorted based on these criterion 
have different fall-out or failure rate curves in burn-in. 
This information can be used to select optimal burn-in 
durations while maintaining outgoing product reliabil- 
i ty. 

1 Introduction 
The significant cost associated with burn-in testing has 
forced researches in industry as well as in academia to 
seek reliability solutions that minimize the number of 
electronic components that must be subjected to burn- 
in testing. Significant cost reductions generally require 
limiting the number of burn-in tools a semiconductor 
manufacturer must purchase. Indeed, a set of burn- 
in boards (BIB), which hold the die in place during 
burn-in, can run into the $200,000 range, and high-end 
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burn-in ovens, which regulate temperature and voltage 
during burn-in, can approach $1,000,000. Eliminating 
the need for even a single BIB set or oven can there- 
fore result in significant financial savings. Of course, 
such reductions must address the implications with re- 
gard to product reliability. Intelligent burn-in strate- 
gies therefore seek to minimize the number of burn-in 
tools required while simultaneously maintaining outgo- 
ing reliability objectives. 

The key to optimizing burn-in lies in identifying 
those die most likely to fail burn-in before burn-in is 
actually performed. Once identified, die of higher reli- 

. ability risk may be subjected to more stringent stress 
testing, (e.g. longer burn-in durations), while those 
die deemed more reliable may see a reduced stress, or 
no stress at all. The chief difficulty in this procedure 
is, of course, in assigning a reliability or quality level 
to a die before burn-in. Fortunately, failures that oc- 
cur at wafer test also give information about reliabil- 
ity. Indeed, it has been experimentally verified that de- 
fects that cause early-life reliability failures (i.e. burn- 
in failures) are fundamentally the same in nature as 
those defects that cause wafer probe failures, with de- 
fect size and placement distinguishing between the two 
[l, 2, 3, 4, 51. Thus, indicators of high defect densities 
at wafer test also indicate relatively high reliability de- 
fect densities. Consequently, die that pass wafer probe 
testing, yet come from regions of relatively high defect 
density, are more likely to contain subtle early-life reli- 
ability defects than die from regions with lower defect 
densities. 

Presently, two key reliability indicators have been 
identified: local region yield and, for chips containing 
redundancy, the number of defects that have been re- 
paired. Local region yield is simply the yield of those 
chips in the vicinity of the die under question. One way 
to define local region yield is by examining the yield of a 
die’s adjacent neighbors. Die can then be binned based 
on the number of faulty neighbors present. Die with 0 
faulty neighbors go in bin 0, die with 1 faulty neighbor 
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go in bin 1, and so on, up to bin 8, where all neigh- 
bors are faulty. Extensions of this binning approach 
to include the 24 surrounding neighbors is, of course, 
possible as well. Because die in the higher numbered 
bins come from regions with a relatively large number 
of killer defects (i.e. defects that cause wafer probe fail- 
ures), they should also be more likely to contain latent 
defects (i.e. defects causing early-life reliability fail- 
ures). Indeed, this supposition has been experimentally 
verified through large independent studies conducted 
at Intel [a, 31 and IBM [4]. In both of these works it 
has been shown that die with many faulty neighbors 
can pose a significantly greater early-life reliability risk 
than chips with few faulty neighbors. Local region yield 
is therefore a strong indicator of die reliability. 

In addition to local region yield, the number of re- 
paired defects has also been shown to be an indicator of 
die reliability. This follows from the fact that the num- 
ber of repairs performed is essentially a direct count of 
defects appearing at wafer test. Since latent defects are 
generally found near killer defects, chips that have been 
repaired are more likely to contain additional latent de- 
fects than chips with no repairs. Indeed, the more re- 
pairs performed on a chip, the more likely the chip is 
to contain a latent defect. This fact has been experi- 
mentally verified for SRAM as well as DRAM products 
manufactured by IBM Microelectronics in Burlington, 
Vermont [ 51. 

The integrated yield-reliability model presented in 
[4, 51 allows one to extend current defect-based yield 
models to predict die reliability following burn-in (i.e. 
the number of burn-in failures). These models, how- 
ever, have not addressed the issue of failures occuring 
during burn-in. It is the purpose of this work to pro- 
vide such an extension. In particular, it will be shown 
that the yield-reliability model can predict not only the 
number of burn-in failures that occur, but also the time 
at which they occur during burn-in. It will be shown 
that chip populations with different reliability indica- 
tors, (i.e. local region yield or repair count), have dif- 
ferent failure rates during burn-in. For example, die 
with 10 repairs have a different failure rate than die 
with 0 repairs. Similarly, die with 8 faulty neighbors 
have a different failure rate than die with 0 bad neigh-’ 
bors. The significance of the present work lies in the 
fact that the yield-reliability model allows one to quan- 
tify the difference between these failure rates using in- 
formation obtained from wafer probe testing. This in- 
formation then allows semiconductor manufacturers to 
optimize burn-in durations for a given reliability re- 
quirement. Such an optimization procedure can often 
result in a significant reduction in capital expenditures 
(i.e. BIBS and/or burn-in ovens). 

Bathtub Curve 

TJM Time T-WO 

Figure 1: Ideal Bathtub curve. The infant mortality 
or early-life period goes up to time TIM.  Times 
where TIM < T < TWO fall into the useful life 
region. Times greater than TWO correspond to the 
wear out period. 

2 Reliability Metrics and the 
Bathtub Curve 

The reliability function, R(t) , denotes the probability 
that a chip survives on the time interval [O,t). Con- 
versely, the cumulative failure probability, F(t ) ,  is de- 
fined as the probability that a chip fails on the interval 
[0, t] .  Since a chip must either survive or fail on a given 
interval, it  must be that R(t )  + F( t )  = 1 for all val- 
ues of t .  Thus, knowledge of R(t) implies knowledge 
of F ( t )  and vice versa. .Both of these functions will be 
used in the following sections; the choice is simply one 
of convenience. 

Closely related to reliability is the failure rate or 
hazard function. This is denoted by h(t) and is defined 
such that h(t)At is the probability a chip fails on [t, t + 
At] ,  given that it has survived until t .  Mathematically, 
this can be written as 

(1) 
-1 dR(t) dInR(t) h(t) = -- -____ 

R(t) dt dt 

The failure rate for many systems follows what is 
known as the bathtub curve. This curve is shown in 
Figure 1. The bathtub curve is characterized by three 
distinct regions. The first region is known as the early- 
life or infant mortality period. In this region the failure 
rate is high, corresponding to the failure of the “weak” 
members of the overall population. For integrated cir- 
cuits this region is associated with the vast majority 
of reliability failures. Integrated circuit failures occur- 
ing at this stage are the result of flaws acquired during 
manufacturing. It is the purpose of stress tests such as 
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burn-in to precipitate these early-life failures before the 
product is shipped, and thereby maximize reliability in 
the field. 

At the end of the infant mortality period, when most 
of the defective parts have failed, the failure rate de- 
creases slowly, reaching a fairly constant value. This re- 
gion corresponds to the operational life of the product. 
Integrated circuits appearing in applications should be 
operating in this portion of the failure rate curve. Fi- 
nally, following the constant portion of the bathtub 
curve, the product enters the wearout stage. For in- 
tegrated circuits, where the operational life is expected 
to be approximately 40 years [6], few products will be 
in use at the beginning of the wearout phase. In what 
follows, the early-life portion of the bathtub curve will 
be under consideration; no attempt is made to address 
the other portions of the bathtub curve. 

3 Application to the Reliability 
of Integrated Circuits 

The yield-reliability model uses wafer test information 
to estimate the number of latent manufacturing defects 
in a given population of die. These defects are precisely 
the ones causing early-life or infant mortality failures. 
This suggests that the yield-reliability model can be 
further extended to predict not only the number of la- 
tent defects, but also the time at which these failures 
occur. The following subsections, in conjunction with 
the appendix, will show how this can be done. 

3.1 The Negative Binomial Distribu- 
tion 

The negative binomial distribution is a two-parameter 
distribution that is often used in projecting the wafer 
probe yield of integrated circuits. Its significance lies 
in its ability to describe the clustering of defects over 
the semiconductor wafer. The fact that defects clus- 
ter has been observed in the semiconductor industry 
for decades, and simply implies that defects are more 
likely to be found in groups than by themselves. The 
negative binomial distribution is characterized by the 
average number of defects per chip, denoted by A, and 
the clustering parameter a. As the name implies, Q 

describes the degree to which defects cluster over the 
wafer. The value of 01 typically ranges from 0.5 to 5 
for different fabrication processes; the smaller values 
indicate increased clustering. As Q + 00 the negative 
binomial distribution becomes a Poisson distribution, 
which is characterized by no clustering [7]. 

For integrating yield-reliability modeling X = XK + 
XL, where XK is the average number of killer defects 
per chip and XL is the average number of latent defects 
per chip. XK and XL are related through the para- 
meter y. That is, XL = YAK, with y = 0.01 - 0.02. 
Thus, for every 100 killer defects present, one expects, 
on average, 1 - 2 latent defects. 

Once wafer test has been performed, the parameters 
a! and XK can be determined with standard statistical 
techniques [5, 81. The value of XL (observed in burn- 
in), however, will depend on the burn-in duration. In 
particular, before burn-in, XL = 0, as these defects 
are not yet significant enough to reveal themselves. 
However, when burn-in is performed, these defects be- 
gin to “grow”. Moreover, as the burn-in duration in- 
creases, more latent defects become severe enough to 
cause a failure. Thus, unlike killer defects, that will, 
with proper testing, reveal themselves immediately, la- 
tent defects are time-dependent. This suggests that XL 
should be replaced by XL(t). 

As shown in the appendix, when defects follow a 
negative binomial distribution, the reliability function 
R(t)  can be written as 

R(t )  = 1 + - [ X3a 
with the limiting values 

R(t = 0 )  = 1 

XLY I R(t = T )  = [1+ 
(3) 

The time t = 0 corresponds to the beginning of burn-in 
testing, where latent defects have yet to reveal them- 
selves. t = r ,  on the other hand, corresponds to the end 
of the infant mortality period. Thus, at t = T ,  all la- 
tent defects have grown to failure, and XL ( t )  reaches its 
maximum value, denoted above as X L , ~ ~ ~ .  Of course, 
complete specification of R(t)  requires knowledge of the 
amplitude and time components of XL(t). This will be 
discussed in the next section. 

3.2 The Function X L ( ~ )  
Taking the logarithm of equation (2) gives 

(4) 

Note that, the average number of latent defects per 
chip, X,(t), will generally be a small number, even at 
its maximum value. Moreover, since the value of a! 

typically ranges from 1 to 5, the ratio << 1. 
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Thus, with ln(1 + x) = x, for z << 1, equation (4) 
may be approximated as 

Thus, 

(5) 

which is only strictly true in the limit as a ---f 00. How- 
ever, since A t ( t )  << l, this serves as a useful approxi- 
mation. 

In the semiconductor industry today it is often as- 
sumed that R(t) follows a Weibull distribution. This 
is a two-parameter distribution with one parameter 
known as the shape parameter and the other known 
as the scale parameter. In this work the shape para- 
meter will be denoted by ,b’ and the scale parameter 
will be denoted by 5. The Weibull distribution then 
gives R(t) = exp [-(<tP)]. Note that this is equivalent 
to equation (6), as long as X,(t)  = (to.  The bound- 
ary conditions at t = 0, where AL(t  = 0) = 0, and at 
some time t = T ,  where X t ( t  = T )  = X L , ~ ~ ~  reaches 
its maximum value, then imply that 5 = *. Thus, 

Xh(t)  = X L , ~ ~ ~  ( $ ) p  and equation (5) becomes 

4 Applications 

4.1 Repaired Memory 
The ability to repair integrated circuits can signif- 
icantly increase chip yields. However, it has been 
demonstrated that the early-life reliability of repaired 
chips is degraded in the process [5]. This is a direct 
result of defect clustering; the more defects that are 
present on a chip (repaired or otherwise), the more 
likely it is to contain an additional early-life reliabil- 
ity defect. 

To quantify the reliability impact of repairs, sup- 
pose the functional chips are separated into sub-groups 
based on the number of repairs performed following 
wafer test. The reliability function for functional chips 
with i repairs is then 

-(ff+i) 
&(t) = [1+ *] (9) 

with X t ( t )  given in the previous section. 
In practice, one is often more interested in calculat- 

ing the hazard function (i.e. failure rate) rather than 
the reliability function. This can be obtained directly 
from R,(t). In particular, it can be shown that the haz- 
ard function for chips with i repairs is simply related 
to the hazard function for chips with j repairs. That 
is, 

h3(4 = (,+J h,(t) (10) 

Equation (10) show that knowledge of any h,(t) allows 
one to obtain the remaining h3(t)  for i # j .  In partic- 
ular, for z = 0 

Taking the logarithm of both sides gives 

h,(t) = - + 1 ho(t) [a 1 
Thus, plotting the left hand side of equation (8) (ob- 
tained from stress data) versus In t allows one to obtain 
the parameters and r .  

One might argue that nothing new has been pre- 
sented here since the plotting procedure described 
above has long been used in industry. Indeed, equation 
(8) amounts to assuming R(t) follows a Weibull distri- 
bution and obtaining the associated shape and scale 
parameters from data. Note, however, that the formu- 
lation presented here has a very significant advantage 
in that it contains wafer probe information through 
the term Indeed, as shown in the appendix, 
X L , ~ ~ ~  = ay(1 - Y$’ff), where YK denotes the wafer 
test yield, a is the clustering parameter, and y relates 
latent defects to killer defects. The fact that X L , ~ ~ ~  
depends on wafer test parameters provides the key to 
burn-in reduction strategies. This is addressed in the 
remaining sections of this paper. 

Thus, the ratio of h3(t) and ho(t) is a line with slope 
l /c i  and intercept 1. Moreover, this ratio is indepen- 
dent of time and can‘ be obtained once the clustering 
parameter is known; that is, following wafer test. 

4.2 Numerical Results: Memory 
The implications of equation (10) can now be consid- 
ered. Suppose that a product containing repairable 
memory is to be subjected to burn-in. It is desired 
to determine the hazard function as a function of the 
number of repairs. Assume that the perfect yield is 
YK = 0.20 and the clustering parameter is a = 2. 
Further, suppose y = 0.01. Thus, for every 100 killer 
defects, one expects, on average, 1 latent defect. More- 
over, latent defects are assumed to have the time de- 

l l a  t P pendence XL ( t )  = XL,maa: ($)@ = ay(1 - YK ) (7) , 
with ,b’ = 0.3 and r = 50 burn-in hours. 
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Figure 2: Hazard function versus normalized time 
for chips with various number of repairs. The rel- 
evant yield parameters are a = 2, y = 0.01 and 
Y k  = 0.20. The Weibull shape parameter is /3 = 0.3 
and T = 50 burn-in hours. 

Figure 2 shows the resulting hazard function in FITs 
versus ($) for chips with 0, 2, 4 and 6 repairs. 1 FIT is 
equal to 1 failure per million per 1000 hours of use. Fur- 
ther, the acceleration factor in burn-in is assumed to 
be 20,000. Thus, each burn-in hour is equal to 20,000 
hours of use. Note that the failure rate at a given time 
can be significantly different depending on the number 
of repairs performed. For example, at (5)  = 0.6, the 
failure rates are 73,147,220, and 293 FITs for chips 
with 0,2,4,  and 6 repairs, respectively. 

Moreover, as can be seen from equation (ll), the 
clustering parameter a plays the key role in determin- 
ing the relative failure rate for chips with a different 
number of repairs. As this equation shows, the greater 
the clustering (smaller a) ,  the greater the relative haz- 
ard rate for chips with a different number of repairs. 
As a -+ 00, the hazard curves are the same, regardless 
of the number of repairs. 

4.3 Local Region Yield 

based on the number of faulty neighbors: die in bin 0 
have 0 faulty neighbors, die in bin 1 have one faulty, 
and so on up to bin 8, where all neighbors are faulty. It 
has been demonstrated in [4] that the yield-reliability 
model based on defect clustering can then accurately 
predict the number of burn-in failures in each of the 
bins. The development in this subsection extends the 
model to predict the time at which these burn-in fail- 
ures occur. As in the case of repaired memory, chips 
in different bins will be shown to have different failure 
rates. i 

Modeling the burn-in fall-out in time must incorpo- 
rate the fact that the average number of latent defects 
is a time dependent quantity. As the mathematical de- 
velopment has shown, this means XL -+ A,(t), with 
X,(t) chosen so as to satisfy the proper boundary con- 
ditions on the reliability function R(t). Thus, all the 
equations derived in [4] pertaining to local region yield 
remain valid; one need only replace X1; with the proper 
XL (t).  

4.4 Numerical Results: Local Region 
Yield 

Figure 3 shows the hazard function in FITs for chips in 
different neighborhood bins. Again, 1 FIT is equivalent 
to 1 fail per million per 1000 hours of use. The wafer 
probe yield YK = 0.50, y = 0.01, and the clustering 
parameter is Q = 2. The Weibull parameters are /3 = 
0.3 and r = 50 burn-in hours. Moreover, it is assumed 
that the acceleration factor in burn-in is 20,000, so that 
each hour of burn-in corresponds to 20,000 hours of 
use. Note that, as with the case of chips with different 
repair counts, the hazard function can be quite different 
for die in different bins. In particular, die in bin 0 show 
very little fall-out in time, while bin 8 shows the largest 
fall-out for all times. For example, at ($) = 0.4 the 
hazard function in bin 8 is 140 FITs, while that in bin 
0 is 15 FITs; a ratio of 9.3. 

The hazard function for different values of Q gives 
results similar to that for memory. In particular, the 
greater the clustering (smaller value of a ) ,  the greater 
the burn-in fall-out for chips in the higher numbered 
bins (i.e. surrounded by many faulty neighbors) com- 
pared to chips in the lower-numbered bins. When 
a -+ 00, there will be no hazard difference between 
the bins. 

The yield-reliability model can also be used predict the . ,  
reliability of functional die from wafer regions with vari- 
ous local yields. A simple definition of local region yield 
corresponds to the wafer probe yield of a die's adjacent 
neighbors. One can then separate or bin functional die 

5 Conclusions 
This work has presented an early-life reliability model 
that allows one to relate wafer probe yield to burn-in 
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Figure 3: Hazard function versus (5) for chips from 
various neighborhood bins. The relevant yield para- 
meters are (I: = 2. y = 0.01 and Y k  = 0.50. The 
Weibull shape parameter is p = 0.3 and T = 50 
burn-in hours. 

fall-out in time. It was demonstrated that die that have 
been repaired following wafer test fall-out at a higher 
rate in burn-in when compared to chips with fewer re- 
pairs. Similarly, chips from regions of low local yield 
(i.e. many bad neighbors) were also shown to have 
higher failure rates than chips from local regions with 
higher yield (i.e. few bad neighbors). This information 
allows one to optimize stress tests such as burn-in by 
identifying failure rate curves for different populations 
and adjusting durations so as to meet outgoing reli- 
ability requirements; populations containing a larger 
number of latent defects will generally require longer 
burn-in durations to meet the same level of reliability. 
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Mat hemat ical Appendix 

This appendix provides the mathematical details re- 
quired to obtain the main results of the paper. 

The Reliability Function 
Let R[t, K(0)]  denote the probability that a chip sur- 
vives burn-in on the interval [0, t )  and contains 0 killer 
defects. These chips are to be subjected to burn-in. 
R[t, K(0)]  can be written as 

00 

K(0)1 = R[ilL(!), K(0)I P[L(!), K(0)1 (A.1) 
e=o 

where R[ tlL(!), K(0)] is the probability a chip sur- 
vives stress testing on [0, t ) ,  given that it contains ex- 
actly ! latent (i.e. early-life reliability) defects, and 
0 killer defects. Using Bayes’ Rule P[L(C),K(O)] = 
P[L(&)IK(O)]P[K(O)] = P[L(C)]K(O)]YK, this can be 
writ ten 

03 

R[t, Ic(0)] = Y K  R[tlL(!), K(0)]  PIL(C)lK(0)] 
e=o 

( A 4  
where P[L(!)JK(O)] is the probabilityof exactly t latent 
defects, given 0 killer defects, and YK = P[K(O)] is 
the wafer probe yield (i.e. the probability of 0 killer 
defects). 

To calculate R[tlL(!), K(0)]  note that, if the chip is 
to survive until time t ,  then all of the C latent defects 
must cause a failure after time t .  Thus, if rj denotes 
the time to failure due to the j t h  defect, where j = 
1,2 , .  . . ,!, then one can write 

R[ t\L(!), K(0) )  = P[TI 2 t ,  7 2  2 t ,  . . . , ~t 2 t] 
= P[T, 2 t] P[72 2 t]  . . . P[Tt 2 t ]  

(A.3) 
The last equality follows from the fact that the time 
to failure of the ith defect is independent of the time 
to failure of the j t h  defect, for all i and j .  Moreover, 
if each one of the C defects is described by the same 
reliability function, then P [ T ~  2 t]  = P[72 >_ t]  = . . . = 
P[Q 2 t] .  But P[T, 2 t] is just the reliability function 
for a chip with a single latent defect. Hence, P [ T ~  2 

t]  = P[T2 2 t ]  = . . .  = P[7[ 2 t] = R[tlL(l),K(O)], 
and equation (A.3) can now be written 

R[tlW), K(O)I = Re[tlL(l) ,  K(O)I (A.4) 

Substituting this into equation (A.2) gives 

R[t, K(0)1 = Y K  E,“=, Re[ tlL(1), K(0)1 p[L(c)IK(0)l 
= Y K  [ T ( Z ) I z = R [  t lL ( I ) ,K(O)]  

(A.5) 

T ( z )  = ze P\L(!)IK(O)l ( A 4  
03 

where 

e=o 
is the probability generating function for P[L(C)]K(O)]. 

It was shown in [5] that P[L(!)]K(O)] follows a neg- 
ative binomial distribution with an average number of 
latent defects per chip X L , ~ ~ ~  = y X ~ / ( l  + %) = 

ay(1 - Yi’”) and clustering parameter a. This has 
the generating function [9] 

The reliability function for chips with 0 killer defects is 
therefore 

I --01 

XL max 
1 + F[tlL(1),  K(O)lL R[t, K(O)] = Y K  

Q 

( A 4  
[ 

Here F [ t ( L ( l ) ,  K(0)]  = 1 - R[t(L(l) ,  K(0)] is the time 
to failure distribution for a chip with a single latent de- 
fect. Thus, F [ t ) L ( l ) ,  K(0)]  represents the probability 
that a chip with a single latent defect fails on [0, t ) .  

Note that the term F[ t (L( l ) ,  K ( O ) ] X J + ~ ~ ~  indicates 
that the average number of latent defects is a time de- 
pendent quantity. This simply means that, as an inte- 
grated circuit is operated or stressed in burn-in, more 
latent defects will manifest themselves. One can there- 
fore define X L ( ~ )  = F [ t ) L ( l ) ,  K ( O ) ] X L , ~ ~ ~ .  With this 
notation equation (A.8) may be rewritten as 

R[t, K(0)] = Y K  [ 1 + - X2t)]-a (A.9) 

If one is only interested in those chips that will 
subjected to burn-in, one can simply use Bayes’ 
rule to eliminate YK. That is, since R[tJK(O)] = 
R[t, K(O)]/P[K(O)] = R[t, K(O)]/YK, dividing equa- 
tion (A.9) by YK refers only to those chips subjected 
to burn-in. For simplicity of notation, it is convenient 
to define R(t) R[tlK(O)]. With this notation 

R(t) = 1 + - X2t)1-ff (A.lO) 
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Memory Calculations 
The development in the previous section will now 
be applied to integrated circuits containing repairable 
memory circuits. This means that P[L(e)(K(O)] must 
be replaced by P[L(C)IG(i)], where G(i) denotes the 
event that a chip is functional following wafer probe 
and has been repaired exactly i times. As shown in 
[5, lo], P[L(C)IG(i)] follows a negative binomial distri- 
bution with parameters [ X L ( ~ ) ,  a + 23, where, X L ( ~ )  = 

is the average number of latent defects 
given that there are i repairs, and X L , ~ ~ ~  = ay(1 - 
Y;'"). YK denotes the perfect wafer probe yield, 
that is, the fraction of functional chips with 0 repairs. 
Specifically, one can write 

(A . l l )  
Now assume that chips are separated into sub-groups 
based on the number of repairs performed following 
wafer test. Thus, the ith sub-group denotes all those 
chips with exactly i repairs. Then according to equa- 
tion (A.8), the reliability for chips with i repairs, 
R[t)G(i)],  will be different for chips with a different 
number of repairs. In particular, R[t, G(i)] is given by 

-(a+i) 
R[t, G(i)] = P[G(i)] [l + F [ t ( L ( l ) ,  K ( O ) ] s ]  

-(a+() 
= P[G(i)] [l + F[t lL( l ) ,  K(O)] AL,.,z] 

(A.12) 
= 

for all values of i. Defining &(t) = R[tJG(i)] = 

as the reliability function for functional chips 

The last equality follows from the fact that 
X L , m a =  

a 

with z repairs, one can write 
-(a+i) 

Ri(t) = [l + *] (A.13) 

The reliability of the chip population taken as a whole 
is obtained be calculating the sum 

00 

R(t) = &i(t) (A.14) 

where ci is the fraction of good die with exactly i re- 
pairs. The fraction ci may be written as 

i=O 

(A.15) 

where p~ is the fraction of chip area that is repairable, 
YKeff is the wafer yield with repair, and P[K(z)] is 

the probability of exactly i killer defects. The sum of 
equation (A.14) can be easily evaluated, resulting in 

Thus, repairability has the effect of increasing X L ( ~ )  by 

the factor (w) ' . Note also that, when there is 
no repair capability, YKeff = YK and equation (A.16) 
reduces to equation (A.lO). 

The hazard function, defined as h(t) = --w, 
can now be written individually for chips with i repairs. 

For the population taken as a whole, h(t) = --, 
with R(t) is given in equation (A.16). With X L ( ~ )  = 

XL,max ($)', and after some simplification, this gives 

h(t)  = F[l -RA@)] (A.18) 

Calculations for Local Region Yield 
Define Ri(t) as the probability that a chip with i faulty 
neighbors survives on the interval [0, t ) .  This chip has 
been determined functional following wafer probe test- 
ing and is to be subjected to burn-in. Ri(t) is then 
obtained by incorporating the proper time-dependence 
into the neighborhood equations derived in [4]. De- 
fine P [ x ~ ( l c ) ,  XL(!); t]  as the probability that exactly 
k chips are free of killer defects and l chips are free of 
latent defects. Then 

wherei = O , l ,  ..., N - 1 ,  and Nisthenumberofdiein 
the neighborhood. The sum over C may be evaluated. 
The result is 

Ri(t) = E;=, 4 N ,  i, 4;  t ) /  E& WN, i ,  4)  (A.20) 

with 

b(N,i,q) = (-l)q(i) [1+ ( N - i a f q ) A K ] - a  
(A.21) 

Here Al , ( t )  = (4)' = ya(YG1" - 1) ($)'. The 
failure rate or hazard function for die in each bin can 
be obtained through differentiation via the equation 

1 aR%( t ) .  hi(4 = - R i ( t ) a t  
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