
CHAPTER 9

PS2 MOUSE

9.1 INTRODUCTION

A computer mouse is designed mainly to detect two-dimensional motion on a surface. Its
internal circuit measures the relative distance of movement and checks the status of the
buttons. For a mouse with a PS2 interface, this information is packed in three packets and
sent to the host through the PS2 port. In the stream mode, a PS2 mouse sends the packets
continuously in a predesignated sampling rate.

Communication of the PS2 port is bidirectional and the host can send a command to
the keyboard or mouse to set certain parameters. For our purposes, this functionality is
hardly required for a keyboard, and thus the keyboard interface in Chapter 8 is limited to
one direction, from the keyboard to the FPGA host. However, unlike the keyboard, a mouse
is set to be in the non-steaming mode after power-up and does not send any data. The host
must first send a command to the mouse to initialize the mouse and enable the stream mode.
Thus, bidirectional communication of the PS2 port is needed for the PS2 mouse interface,
and we must design a transmitting subsystem (i.e., from FPGA board to mouse) for the PS2
interface.

In this chapter, we provide a short overview of the PS2 mouse protocol, design a bidi-
rectional PS interface, and derive a simple mouse interface.

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

199

200 PSZMOUSE

Table 9.1 Mouse data packet format

9.2 PS2 MOUSE PROTOCOL

9.2.1 Basic operation

A standard PS2 mouse reports the x-axis (right/left) and y-axis (up/down) movement and
the status of the left button, middle button, and right button. The amount of each movement
is recorded in a mouse’s internal counter. When the data is transmitted to the host, the
counter is cleared to zero and restarts the counting. The content of the counter represents a
9-bit signed integer in which a positive number indicates the right or up movement, and a
negative number indicates the left or down movement.

The relationship between the physical distances is defined by the mouse’s resolution
parameter. The default value of resolution is four counts per millimeter. When a mouse
moves continuously, the data is transmitted in a regular rate. The rate is defined by the
mouse’s sampling rate parameter. The default value of the sampling rate is 100 samples per
second. If a mouse moves too fast, the amount of the movement during the sampling period
may exceed the maximal range of the counter. The counter is set to the maximum magnitude
in the appropriate direction. Two overflow bits are used to indicate the conditions.

The mouse reports the movement and button activities in 3 bytes, which are embedded in
three PS2 packets. The detailed format of the 3-byte data is shown in Table 9.1. It contains
the following information:

0 2 8 , . . ., 20: x-axis movement in 2’s-complement format
0 2,: x-axis movement overflow
0 y8, . . ., yo: y-axis movement in 2’s-complement format
0 yu: y-axis movement overflow
0 1: left button status, which is ’1’ when the left button is pressed
0 T : right button status, which is ’ 1’ when the right button is pressed
0 m: optional middle button status, which is ’ 1 ’ when the middle button is pressed

During transmission, the byte 1 packet is sent first and the byte 3 packet is sent last.

9.2.2 Basic initialization procedure

The operation of a mouse is more complex than that of a keyboard. It has different operation
modes. The most commonly used one is the stream mode, in which a mouse sends the
movement data when it detects movement or button activity. If the movement is continuous,
the data is generated at the designated sample rate.

During the operation, a host can send commands to a mouse to modify the default values
of various parameters and set the operation mode, and a mouse may generate the status and
send an acknowledgment. For our purposes, the default values are adequate, and the only
task is to set the mouse to the stream mode.

The basic interaction sequence between a PS2 mouse and the FPGA host consists of the
following:

PS2 TRANSMITTING SUBSYSTEM 201

Figure 9.1 Host-to-device timing diagram of a PS2 port.

1. At power-on, a mouse performs a power-on test internally. The mouse sends l-byte
data AA, which indicates that the test is passed, and then l-byte data 00, which is the
id of a standard PS2 mouse.

2. The FPGA host sends the command, F4, to enable the stream mode. The mouse will
respond with FE to acknowledge acceptance of the command.

3. The mouse now enters the stream mode and sends normal data packets.
If a mouse is plugged into the FPGA prototyping board in advance, it performs the power-

on test when the power of the board is turned on and sends the AA 00 data immediately.
The FPGA chip is not configured at this point and will not receive this data. Thus, we can
usually ignore the power-on message in step 1. A minimal mouse interface circuit only
needs to send the F4 command, check the FE acknowledge, and enter the normal operation
mode to process the mouse’s regular data packet.

We can force the mouse to return to the initial state by sending the reset command:
1. The FPGA host sends the command, FF, to reset the mouse. The mouse will respond

2 . The mouse performs a power-on test internally and then sends AA 00. The stream

Newer mouses add more functionality, such as a scrolling wheel and additional buttons,
and thus send more information. Additional bytes are appended to the original 3-byte data
to accommodate these new features.

with FE to acknowledge acceptance of the command.

mode will be disabled during the process.

9.3 PS2 TRANSMITTING SUBSYSTEM

9.3.1 Host-to-PS2-device communication protocol

Host-to-PS2-device communication protocol involves bidirectional data exchange. The
mouse’s data and clock lines actually are open-collector circuits. For our design purposes,
we treat them as tri-state lines. The basic timing diagram of transmitting a packet from a
host to a PS2 device is shown in Figure 9.1, in which the data and clock signals are labeled
ps2d and ps2c. For clarity, the diagram is split into two parts to show which activities are
generated by the host (i.e., the FPGA chip) and which activities are generated by the device
(i.e., mouse). The basic operation sequence is as follows:

202 PSZMOUSE

PS2
transmitting

circuit

tri-d

Figure 9.2 Tri-state buffers of the PS2 transmission subsystem.

1. The host forces the ps2c line to be ’0’ for at least 100 ps to inhibit any mouse activity.
It can be considered that the host requests to send a packet.

2. The host forces the ps2d line to be ’0’ and disables the ps2c line (i.e., makes it high
impedance). This step can be interpreted as the host sending a start bit.

3. The PS2 device now takes over the ps2c line and is responsible for future PS2 clock
signal generation. After sensing the starting bit, the PS2 device generates a ’ 1 ’-to-’0’
transition.

4. Once detecting the transition, the host shifts out the least significant data bit over the
ps2d line. It holds this value until the PS2 device generates a ’1’-to-’0’ transition in
the ps2c line, which essentially acknowledges retrieval of the data bit.

5. Repeat step 4 for the remaining 7 data bits and 1 parity bit.
6. After sending the parity bit, the host disables the ps2d line (Lee, makes it high

impedance). The PS2 device now takes over the ps2d line and acknowledges com-
pletion of the transmission by asserting the ps2d line to ’0’. If desired, the host can
check this value at the last ’1’-to-’0’ transition in the ps2c line to verify that the
packet is transmitted successfully.

9.3.2 Design and code

Unlike the receiving subsystem, the ps2c and ps2d signals communicate in both directions.
A tri-state buffer is needed for each signal. The tri-state interface is shown in Figure 9.2.
The t r i - c and t r i - d signals are enable signals that control the tri-state buffers. When
they are asserted, the corresponding ps2c-out and ps2d-out signals will be routed to the
output ports.

To design the transmitting subsystem, we can follow the sequence of the preceding
protocol to create an ASMD chart, as shown in Figure 9.3. The FSMD is initially in the
i d l e state. To start the transmission, the host asserts the wr-ps2 signal and places the data
on the d in bus. The FSMD loads din, along with the parity bit, par to the sh i f t - r eg
register, loads the “1. . - 1” to c-reg, and moves to the r ts (for “request to send”) state. In
this state, the ps2c-out is set to ’0’ and the corresponding t r i - c is asserted to enable the
corresponding tri-state buffer. The c-reg is used as a 13-bit counter to generate a 164-ps
delay. The FSMD then moves to the s t a r t state, in which the PS2 clock line is disabled
and the data line is set to ’1’. The PS2 device (i.e., mouse) now takes over and generates

PSZ TRANSMITTING SUBSYSTEM 203

default: ps2c-out 1
ps2d-out 1
tri-c = 0
tri-d 0

...............

i
b t par & din (-) -

..........................

~ <Ti c t c-I

F -
T

.

ps2d-out <= 0

T

..........................,

Figure 9.3 ASMD chart of the PS2 transmitting subsystem.

204 PS2MOUSE

clock signal over the ps2c line. After detecting the falling edge of the ps2c signal through
the f all-edge signal, the FSMD goes to the data state and shifts 8 data bits and 1 parity
bit. The n register is used to keep track of the number of bits shifted. The FSMD then
moves to the s t o p state, in which the data line is disabled, It returns to the idle state after
sensing the last falling edge.

The FSMD also includes a t x - i d l e signal to indicate whether a transmission is in
progress. This signal can be used to coordinate operation between the receiving and trans-
mitting subsystems. The code follows the ASMD chart and is shown in Listing 9.1. A
filtering circuit similar to that of Section 8.2 is used to generate the f al l-edge signal.

Listing 9.1 PS2 port transmitter

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y ps2-tx i s

5 port (
clk, reset: in std-logic;
din: in std-logic-vector (7 downto 0) ;
wr-ps2: std-logic;
ps2d, ps2c : i n o u t std-logic ;

tx-done-tick: out std-logic
10 tx-idle: out std-logic;

) ;
end ps2-tx;

15 a r c h i t e c t u r e arch of ps2-tx i s
type statetype i s (idle, rts, start, data, stop);
s i g n a l state-reg , state-next: statetype;
s i g n a l f ilter-reg , f ilter-next : std-logic-vector (7 downto 0) ;
s i g n a l f_ps2c_reg, f _ps2c_next : std-logic;

s i g n a l b-reg , b-next : std-logic-vector (8 downto 0) ;
s i g n a l c-reg , c-next : unsigned (12 downto 0) ;
s i g n a l n-reg ,n-next : unsigned (3 downto 0) ;
s i g n a l par: std-logic;

s i g n a l tri-c , tri-d: std-logic ;

20 s i g n a l f all-edge : std-logic ;

25 s i g n a l ps2c-out , ps2d-out : std-logic;

begin
_____________---________________________--------- _ ~ ~ ~ ~ ~ _ ~ ~ ~ --

-- f i l t e r a n d f a l l i n g - e d g e t i c k g e n e r a t i o n f o r p s 2 c

p r o c e s s (clk , reset)
beg in

i f reset=’l’ then

30 .

f ilter-reg <= (o t h e r s = > ’ 0 ’) ;

e 1 s i f (clk ’ event and clk= ’ 1 ’) then
35 f -ps2c_reg <= ’ 0 ’ ;

filter-reg <= filter-next;
f-ps2c-reg <= f-ps2c-next;

end i f ;
40 end p r o c e s s ;

ps2 TRANSMITING SUBSYSTEM 205

45

f i l t e r - n e x t <= p s 2 c & f i l t e r - r e g (7 downto 1);
f - p s 2 c - n e x t <= ’1’ when f i l t e r ~ r e g = ” l l l l l l l l ” e l s e

’ 0 ’ when f i l t e r ~ r e g = “ 0 0 0 0 0 0 0 0 “ e l s e
f - p s 2 c - r e g ;

f a l l - e d g e <= f - p s a c - r e g and (n o t f - p s 2 c - n e x t) ;

-- f s m d
50 --

55

60

_- r e g i s t e r s
p r o c e s s (c l k , r e s e t
beg in

i f r e s e t = ’ l ’ then
s t a t e - r e g <= i d l e ;
c - r e g <= (o t h e r s = > ’ 0 ’ 1 ;
n - r e g <= (o t h e r s = > ’ O ’) ;
b - r e g <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
c - r e g <= c - n e x t ;
n - r e g <= n - n e x t ;
b - r e g <= b - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
65 end p r o c e s s ;

-- odd p a r i t y b i t
p a r <= not (d i n (7) xor d i n (6) xor d i n (5) xor d i n (4) xor

-- f s m d n e x t - s t a t e l o g i c and d a t a p a t h l o g i c
p r o c e s s (s t a t e - r e g , n - r e g , b - r e g , c - r e g , w r _ p s 2 ,

beg in

d i n (3) xor d i n (2) xor d i n (1) xor d i n (0)) ;

70

d i n , p a r , f a l l - e d g e)

s t a t e - n e x t <= s t a t e - r e g ;
c - n e x t <= c - r e g ;

75

80

85

90

n - n e x t <= n - r e g ;
b - n e x t <= b - r e g ;
t x - d o n e - t i c k < = ’ O ’ ;

p s 2 d - o u t <= ’ 1 ’ ;
t r i - c <= > O ’ ;

t r i - d <= ’ 0 ’ ;
t x - i d l e < = ’ O ’ ;
c a s e s t a t e - r e g i s

when i d l e =>

p s 2 c - o u t (= ’1’;

t x - i d l e <= ’1 ’ ;
i f w r _ p s 2 = ’ 1 ’ then

b - n e x t <= p a r & d i n ;
c - n e x t <= (o t h e r s = > ’ l ’) ; -- 2 * 1 3 - 1
s t a t e - n e x t <= r t s ;

when r t s = > -- r e q u e s t t o s e n d
end i f ;

p s 2 c - o u t <= ’ 0 ’ ;
t r i - c <= ’1’;
c - n e x t <= c - r e g - 1;

206 PS2MOUSE

95

I 15

i f (c - r e g = O) t h e n

end i f ;

p s 2 d - o u t <=) O) ;
t r i - d <= ’ 1 ’ ;
i f f a l l - e d g e = ’ 1 ’ t h e n

s t a t e - n e x t <= s t a r t ;

when s t a r t = > -- a s s e r t s t a r t bit

n - n e x t <= “ 1 0 0 0 ” ;
s t a t e - n e x t <= d a t a ;

end i f ;
when d a t a => -- 8 d a t a + I p a r i t y

p s 2 d - o u t <= b - r e g (0) ;
t r i - d <=) l ’ ;
i f f a l l - e d g e = ’ l ’ t h e n

b - n e x t <= ’ 0) & b - r e g (8 downto 1);
i f n - r e g = 0 t h e n

e l s e

end i f ;

s t a t e - n e x t <= s t o p ;

n - n e x t <= n - r e g - 1;

end i f ;

i f f a l l - e d g e = ’ l ’ t h e n
when s t o p = > -- a s s u m e f l o a t i n g h i g h f o r p s 2 d

s t a t e - n e x t <= i d l e ;
t x - d o n e - t i c k <=’1);

I20 end i f ;
end c a s e ;

end p r o c e s s ;
t r i - s t a t e b u f f e r s

p s 2 c <= p s 2 c - o u t when t r i - c = ’ I ’ e l s e) Z ;
125 p s 2 d <= p s 2 d - o u t when t r i - d =) l ’ e l s e)Z’;

--

end a r c h ;

There is no error detection circuit in this code. A more robust design should check the
correctness of the parity and acknowledgment bits and include a watchdog timer to prevent
the mouse from being locked in an incorrect state.

9.4 BIDIRECTIONAL PS2 INTERFACE

9.4.1 Basic design and code

We can combine the receiving and transmitting subsystems to form a bidirectional PS2
interface. The top-level diagram is shown in Figure 9.4. We use the t x - id l e and rx-en
signals to coordinate the transmitting and receiving operations. Priority is given to the
transmitting operation. When the transmitting subsystem is in operation, the t x - id l e signal
is deasserted, which, in turn, disables the receiving subsystem. The receiving subsystem
can process input only when the transmitting subsystem is idle. The corresponding HDL
code is shown in Listing 9.2.

BIDIRECTIONAL ps2 INTERFACE 207

Figure 9.4 Top-level block diagram of a bidirectional PS2 interface.

Listing 9.2 Bidirectional PS2 interface

library ieee;
use ieee. std-logic-1164, all ;
entity ps2-rxtx is

port (
5 clk, reset: in std-logic;

wr-ps2 : std-logic;
din: in std-logic-vector (7 downto 0) ;
dout : out std-logic-vector (7 downto 0) ;
rx-done-tick : out std-logic ;

ps2d, ps2c : inout std-logic
10 tx-done-tick: out std-logic;

) ;
end ps2-rxtx;

15 architecture arch of ps2-rxtx i s
signal tx-idle : std-logic;

ps2-tx-unit : entity work. ps2_tx(arch)
begin

port map(clk=>clk, reset=>reset , wr_ps2=>wr_ps2,
20 din=>din, ps2d=>ps2d, ps2c=>ps2c,

tx-idle=>tx-idle, tx-done-tick=>tx-done-tick);
ps2-rx-unit : entity work. ps2-rx (arch)

port map(clk=>clk , reset=>reset , rx-en=>tx-idle,
ps2d=>ps2d, ps2c=>ps2c,

25 rx-done-tick=>rx-done-tick, dout=>dout);
end arch;

208 PS2MOUSE

Figure 9.5 Block diagram of a mouse monitor circuit.

9.4.2 Verification circuit

We create a testing circuit to verify and monitor operation of the bidirectional interface.
The block diagram is shown in Figure 9.5. A command is transmitted manually. We use
the 8-bit switch to specify the data (i.e., the command from the host) and use a pushbutton
to generate a one-clock-cycle tick to transmit the packet. The received packet data is first
passed to the byte-to-ascii circuit, which converts the data into two ASCII characters
plus a blank space. The characters are then transmitted via the UART and displayed in
Windows HyperTerrninal. The HDL code is shown in Listing 9.3.

Listing 9.3 Bidirectional PS2 interface monitor circuit

library ieee;
use ieee. std-logic-1164. all ;
use ieee. numeric-std. all ;
entity ps2-monitor i s

5 port (
clk, reset: in std-logic;
sw: in std-logic-vector (7 downto 0) ;
btn: in std-logic-vector (2 downto 0) ;
ps2d, ps2c : inout std-logic ;

10 tx : out std-logic

) ;
end ps2-monitor;

architecture arch of ps2-monitor is
15 constant SP: std-logic-vector (7 downto 0) : = " 0 0 1 0 0 0 0 0 " ;

-- b l a n k s p a c e i n A S C I I
type state-type is (idle, sendh, sendl, sendb);
signal state-reg , state-next : state-type;
signal rx-data , w-data: std-logic-vector (7 downto 0) ;

signal wr-ps2, wr-uart : std-logic;
signal ascii-code : std-logic-vector (7 downto 0) ;
signal hex-in: std-logic-vector (3 downto 0) ;

20 signal psrx-done-tick: std-logic ;

begin
__-_____________--__----------------------- __--- 25 --

-- i n s t a n t i a t i o n

btn-db-unit: entity work. debounce(fsmd-arch)

___________________-____________________--- --______________________________________-----

port map(clk=>clk, reset=>reset , sw=>btn(O),
30 db-level=>open, dbdtick=>wr-ps2);

BIDIRECTIONAL PSZ INTERFACE 209

p s 2 - r x t x - u n i t : e n t i t y w o r k . p s 2 _ r x t x (a r c h)
p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , w r _ p s 2 = > w r _ p s 2 ,

d i n = > s w , d o u t = > r x - d a t a , p s 2 d = > p s 2 d ,
p s 2 c = > p s 2 c t rx-done-tick=>psrx-done-tick,

3s t x - d o n e - t i c k = > o p e n) ;
__ o n l y use t h e UART t r a n s m i t t e r
u a r t - u n i t : e n t i t y w o r k . u a r t (s t r - a r c h)

g e n e r i c map (FIFO-W= >4)
p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , r d - u a r t = > ’ O ’ ,

10 w r - u a r t = > w r - u a r t , r x = > ’ l ’ , w - d a t a = > w - d a t a ,
t x - f u l l = > o p e n , r x - e m p t y = > o p e n , r - d a t a = > o p e n ,
t x = > t x) ;

-- FSM t o send 3 A S C I I c h a r a c t e r s

--____-------_____------------------------- --__________________------------------_------

_________________-__------_---------------- _____-_________-____----------------------- 4s --

Mi

65

70

7 5

-- s t a t e r e g i s t e r s
p r o c e s s (c l k , r e s e t)
b e g i n

i f r e s e t = ’ l ’ t h e n

e l s i f (c l k ’ e v e n t a n d c l k = ’ l ’) t h e n

e n d i f ;
e n d p r o c e s s ;

p r o c e s s (s t a t e - r e g , p s r x - d o n e - t i c k , a s c i i - c o d e)
b e g i n

s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;

ss -- n e x t - s t a t e l o g i c

w r - u a r t <= ’ 0 ’ ;
w - d a t a <= S P ;
s t a t e - n e x t <= s t a t e - r e g ;
c a s e s t a t e - r e g i s

when i d l e =>
i f p s r x - d o n e - t i c k = ’ 1 ’ t h e n

s t a t e - n e x t <= s e n d h ;
e n d i f ;

w - d a t a <= a s c i i - c o d e ;
w r - u a r t <= ’1’;
s t a t e - n e x t <= s e n d l ;

w - d a t a <= a s c i i - c o d e ;
w r - u a r t <= ’ 1) ;
s t a t e - n e x t <= s e n d b ;

w-data <= S P ;
w r - u a r t <= ’ I) ;
s t a t e - n e x t <= i d l e ;

when s e n d h = > -- send h i g h e r hex c h a r

when s e n d l = > -- send l o w e r hex c h a r

when s e n d b => -- send b l a n k s p a c e c h a r

e n d c a s e ;
e n d p r o c e s s ;

-- s c a n c o d e t o A S C I I d i s p l a y

-- s p l i t t h e s c a n code i n t o two 4 - b i t hex

80 .

____________________----------------------- ____________________-------------------_--- --

210 PSZMOUSE

90

YS

hex-in <= rx-data (7 downto 4) when state-reg=sendh e l s e
85 rx-data (3 downto 0) ;

-- h e x d i g i t t o A S C I I c o d e
w i t h hex-in s e l e c t

ascii-code <=
" 0 0 1 1 0 0 0 0 " when " O O O O " , -- 0
" 0 0 1 1 0 0 0 1 " when "OOOl", -- I
"00110010" when "OOlO", -- 2
' 100110011" when "OOll", -- 3
" 0 0 1 1 0 1 0 0 1 1 when 1 ' 0 1 0 0 " , -- 4
" 0 0 1 1 0 1 0 1 " when 1 ' 0 1 0 1 " , -- 5
" 0 0 1 1 0 1 1 0 " when " O 1 l O t ' , -- 6
1'00110111'1 when "Olll", -- 7
" 0 0 1 1 1 0 0 0 1 ~ when 1 1 1 0 0 0 " , -- 8
110011100111 when t l l O O 1 " , -- 9
~ t O I O O O O O 1 l ~ when " 1 0 1 O 1 l , -- A

" 0 1 0 0 0 0 1 1 " when ' 1 1 1 0 0 " , -- C
" 0 1 0 0 0 1 0 0 " when " 1 1 0 1 " , -- D
"O1OO01Ol1' when " 1 1 1 0 " , -- E
" 0 1 0 0 0 1 1 0 " when o t h e r s ; -- F

IW " 0 1 0 0 0 0 1 0 " when " 1 0 1 1 " , -- B

I05 end arch;

If a mouse is connected to the PS2 circuit, we can first issue the FF command to reset the
mouse and then issue the F4 command to enable the stream mode. Windows HyperTerminal
will show the mouse's acknowledge packets and subsequent mouse movement packets.

9.5 PS2 MOUSE INTERFACE

9.5.1 Basic design

The basic PS2 mouse interface creates another layer over the bidirectional PS2 circuit. Its
two basic functions are to enable the stream mode and to reassemble the 3 data bytes. The
output of the circuit are xm and ym, which are two 9-bit x- and y-axis movement signals;
btm, which is the 3-bit button status signal; and m-done-tick, which is a one-clock-cycle
status signal and is asserted when the assembled data is available.

The HDL code is shown in Listing 9.4. It is implemented by an FSMD with seven states.
The i n i t l , i n i t 2 , and i n i t 3 states are executed once after the r e s e t signal is asserted.
In these states, the FSMD issues the F4 command, waits for completion of the transmission,
and then waits for the acknowledgment packet. The mouse is in the stream mode now. The
FSMD then obtains and assembles the next three packets in the packl, pack2, and pack3
states, and activates the m-done-tick signal in the done state. The FSMD circulates these
four states afterward.

Listing 9.4 Basic mouse interface circuit

l i b r a r y ieee;
u s e ieee. std-logic-1164. a l l ;
u s e ieee. numeric-std. a l l ;
e n t i t y mouse i s

5 p o r t (
clk, reset: i n std-logic;

PS2 MOUSE INTERFACE 21 1

ps2d, ps2c : i n o u t std-logic ;
xm, ym: out std-logic-vector (8 downto 0) ;
btnm: out std-logic-vector (2 downto 0) ;

10 m-done-tick : out std-logic
1 ;

end mouse;

30

40

45

55

a r c h i t e c t u r e arch of mouse i s
15 c o n s t a n t STRM: std-logic-vector (7 downto 0) : = “ 1 1 1 1 0 1 0 0 ” ;

-- s t r e a m command F4
type state-type i s (initl, init2, init3,

s i g n a l state-reg , state-next : state-type;
zo s i g n a l rx-data: std-logic-vector (7 downto 0) ;

s i g n a l rx-done-tick , tx-done-tick: std-logic;
s i g n a l wr-ps2 : std-logic;
s i g n a l x-reg , y-reg : std-logic-vector (8 downto 0) ;
s i g n a l x-next , y-next : std-logic-vector (8 downto 0) ;

25 s i g n a l btn-reg , btn-next : std-logic-vector (2 downto 0) ;

pack1 , pack2, pack3, done) ;

begin
__ i n s t a n t i a t i o n
ps2-rxtx-unit : e n t i t y work. ps2-rxtx (arch)

port map(clk=>clk , reset=>reset , wr-ps2=>wr-ps2,
din=>STRM , dout=>rx-data ,
ps2d=>ps2d, ps2c=>ps2c,
rx-done_tick=>rx-done-tick,
tx-done-tick=>tx-done-tick);

-_ s t a t e and d a t a r e g i s t e r s

begin
35 p r o c e s s (clk, reset)

i f reset = 1 then
state-reg <= initl;
x-reg <= (o t h e r s = > ’ 0 J) ;
y-reg <= (o t h e r s = > ’ O ’) ;
btn-reg <= (o t h e r s = > ’ O ’) ;

state-reg <= state-next ;
x-reg <= x-next;
y-reg <= y-next;
btn-reg <= btn-next ;

e l s i f (clk’event and clk=’lJ) then

end i f ;
end p r o c e s s ;

n e x t - s t a t e 1 o g i c -_
50 p r o c e s s (state-reg ,rx-done-tick, tx-done-tick,

x-reg ,y-reg, btn-reg, rx-data)
begin

wr-ps2 <= ’ 0 ’ ;
m-done-tick <= ’ 0 ’ ;
x-next <= x-reg;
y-next <= y-reg;
btn-next <= btn-reg ;
state-next <= state-reg;
case state-reg i s

212 PS2MOUSE

65

70

75

KO

85

90

60 when i n i t l = >
w r - p s 2 <= ’1’;
s t a t e - n e x t <= i n i t 2 ;

i f t x - d o n e - t i c k = ’ l ’ t h e n

end i f ;

i f r x - d o n e - t i c k = ’ l ’ t h e n

end i f ;

i f r x - d o n e - t i c k = ’ l ’ t h e n

when i n i t 2 = > -- w a i t f o r s e n d t o c o m p l e t e

s t a t e - n e x t <= i n i t 3 ;

when i n i t 3 = > -- w a i t f o r a c k n o w l e d g e p a c k e t

s t a t e - n e x t <= p a c k l ;

when p a c k l = > -- w a i t f o r 1 s t d a t a p a c k e t

s t a t e - n e x t <= p a c k 2 ;
y - n e x t (8) <= r x - d a t a (5) ;
x - n e x t (8) <= r x - d a t a (4) ;
b t n - n e x t <= r x - d a t a (2 downto 0) ;

end i f ;

i f r x - d o n e - t i c k = ’ l ’ t h e n
when p a c k 2 = > -- w a i t f o r 2 n d d a t a p a c k e t

s t a t e - n e x t <= p a c k 3 ;
x - n e x t (7 downto 0) <= r x - d a t a ;

end i f ;

i f r x - d o n e - t i c k = ’ l ’ t h e n
s t a t e - n e x t <= d o n e ;
y - n e x t (7 downto 0) <= r x - d a t a ;

when p a c k 3 = > -- w a i t f o r 3 r d d a t a p a c k e t

end i f ;
when d o n e = >

m - d o n e - t i c k <= ’ 1 ’ ;
s t a t e - n e x t <= p a c k l ;

end c a s e ;
end p r o c e s s ;
xm <= x - r e g ;
ym <= y - r e g ;

9s b tnm <= b t n - r e g ;
end a r c h ;

This design provides only minimal functionalities. A more sophisticated circuit should
have a robust method to initiate the stream mode and add additional buffer, similar to that
in Section 7.2.4, to interact better with the external system.

9.5.2 Testing circuit

We use a simple testing circuit to demonstrate the use of the PS2 interface. The circuit uses
a mouse to control the eight discrete LEDs of the prototyping board. Only one of the eight
LEDs is lit and the position of that LED follows the x-axis movement of the mouse. The
pressing of the left or right button places the lit LED to the leftmost or rightmost position.

The HDL code is shown in Listing 9.5. It uses a 10-bit counter to keep track of the
current x-axis position. The counter is updated when a new data item is available (ie. ,
when the m-done-tick signal is asserted). The counter is set to 0 or maximum when the
left or right mouse button is pressed. Otherwise, it adds the amount of the signed-extended

PSZ MOUSE INTERFACE 213

x-axis movement. A decoding circuit uses the three MSBs of the counter to activate one of
the LEDs.

Listing 9.5 Mouse-controlled LED circuit

l i b r a r y ieee;
u s e ieee. std-logic-1164. a l l ;
u s e ieee. numeric-std. a l l ;
e n t i t y mouse-led i s

s p o r t (
clk, reset: i n std-logic;
ps2dt ps2c : i n o u t std-logic;
led: o u t std-logic-vector (7 d o w n t o 0)

1 ;
10 e n d mouse-led;

a r c h i t e c t u r e arch o f mouse-led i s
s i g n a l p-reg , p-next : unsigned (9 d o w n t o 0) ;
s i g n a l xm: std-logic-vector (8 d o w n t o 0) ;

s i g n a l m-done-tick: std-logic;
15 s i g n a l btnm: std-logic-vector (2 d o w n t o 0) ;

b e g i n
__ i n s t a n t i a t i o n

20 mouse-unit: e n t i t y work.mouse(arch)
p o r t map(clk=>clk, reset=>reset ,

ps2d=>ps2d, ps2c=>ps2c,
xm=>xm, ym=>open , btnm=>btnm ,
m-done-tick=>m-done-tick);

25 -- r e g i s t e r
p r o c e s s (clk , reset)
b e g i n

i f reset='l' t h e n
p-reg <= (o t h e r s = > ' 0 ' 1 ;

p-reg <= p-next;
?n e l s i f (clk'event a n d clk='l') t h e n

e n d i f ;
e n d p r o c e s s ;

c o u n t e r --

35 p-next <= p-reg when m-done-tick='O' e l s e
110000000000" when btnm(O)='l ' e l s e - - l e f t b u t t o n
'tllllllllll" when btnm(l)= '1 ' e l s e - - r i g h t b u t t o n
p-reg + unsigned(xm(8) & xm);

40 w i t h p-reg(9 d o w n t o 7) s e l e c t
led <= "10000000" when " O O O " ,

'I 0 1 0 00 0 00 I' when It 00 1 It ,
"00100000" when " 0 1 0 " ,
'I 000 1000 0 I' when I' 0 11 '' ,
" 0 0 0 0 1 0 0 0 " when t ' l O O " ,
I' 00000 100 I' when It 10 1 It ,
'I 0 0 0 0 0 0 1 0 I' when It 1 1 0 I' ,
" 0 0 0 0 0 0 0 1 ' ~ when o t h e r s ;

e n d arch;

45

214 PS~MOUSE

9.6 BIBLIOGRAPHIC NOTES

The bibliographic information for this Chapter is similar to that for Chapter 8.

9.7 SUGGESTED EXPERIMENTS

The mouse is used mainly with a graphic video interface, which is discussed in Chapters 12
and 13. Many additional mouse-related experiments can be found in these chapters.

9.7.1 Keyboard control circuit

A host can issue a command to set certain parameters for a PS2 keyboard as well. For
example, we can control the three LEDs of the keyboard by sending ED OX. The X is a
hexadecimal number with a format of “Osnc”, where s, n, and c are l-bit values that control
the Scroll, Num, and Caps Lock LEDs, respectively. We can incorporate this feature into
the keyboard interface circuit of Section 8.4.1 and use a 3-bit switch to control the three
keyboard LEDs. Design the expanded interface circuit, resynthesize the circuit, and verify
its operation.

9.7.2 Enhanced mouse interface

For the mouse interface discussed in Section 9.5, we can alter the design to manually
enable or disable the steam mode. This can be done by using two pushbuttons of the FPGA
prototyping board. One button issues the reset command, FF, which disables the stream
mode during operation, and the other button issues the F4 command to enable the steam
mode. Modify the original interface to incorporate this feature, and resynthesize the LED
testing circuit to verify its operation.

9.7.3 Mouse-controlled seven-segment LED display

We can use the mouse to enter four decimal digits on the four-digit seven-segment LED
display. The circuit functions as follows:

0 Only one of the four decimal points of the LED display is lit. The lit decimal point

0 The location of the selected digit follows the x-axis movement of the mouse.
0 The content of the select seven-segment LED display is a decimal digit (i.e., 0, . . ., 9)

indicates the location of the selected digit.

and changes with the y-axis movement of the mouse.
Design and synthesize this circuit and verify its operation.

