
CHAPTER 8

PS2 KEYBOARD

8.1 INTRODUCTION

PS2 port was introduced in IBM’s Personal Sys t ed2 personnel computers. It is a widely
supported interface for a keyboard and mouse to communicate with the host. The PS2 port
contains two wires for communication purposes. One wire is for data, which is transmitted
in a serial stream. The other wire is for the clock information, which specifies when the
data is valid and can be retrieved. The information is transmitted as an 1 1-bit “packet” that
contains a start bit, 8 data bits, an odd parity bit, and a stop bit. Whereas the basic format
of the packet is identical for a keyboard and a mouse, the interpretation for the data bits is
different. The FPGA prototyping board has a PS2 port and acts as a host. We discuss the
keyboard interface in this chapter and cover the mouse interface in Chapter 9.

The communication of the PS2 port is bidirectional and the host can send a command
to the keyboard or mouse to set certain parameters. For our purposes, the bidirectional
communication is hardly required for the PS2 keyboard, and thus our discussion is limited
to one direction, from the keyboard to the prototyping board. Bidirectional design will be
examined in the mouse interface in Chapter 9.

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

183

184 ps2 KEYBOARD

data (ps2d)

clock (ps2c)

~ idle
start bit

Figure 8.1 Timing diagram of a PS2 port.

8.2 PS2 RECEIVING SUBSYSTEM

8.2.1

In addition to data and clock lines, the PS2 port includes connections for power (i.e., Vcc)
and ground. The power is supplied by the host. In the original PS2 port, V,, is 5 V and the
outputs of the data and clock lines are open-collector. However, most current keyboards
and mice can work well with 3.3 V. For an older keyboard and mouse, the 5-V supply can
be obtained by switching the 52 jumper on the S3 board. The FPGA should still function
properly since its I/O pins can tolerate 5-V input.

Physical interface of a PS2 port

8.2.2 Device-to-host communication protocol

A PS2 device and its host communicate via packets. The basic timing diagram of trans-
mitting a packet from a PS2 device to a host is shown in Figure 8.1, in which the data and
clock signals are labeled ps2d and ps2c, respectively.

The data is transmitted in a serial stream, and its format is similar to that of a UART.
Transmission begins with a start bit, followed by 8 data bits and an odd parity bit, and ends
with a stop bit. Unlike a UART, the clock information is carried in a separate clock signal,
ps2c. The falling edge of the ps2c signal indicates that the corresponding bit in the ps2d
line is valid and can be retrieved. The clock period of the ps2c signal is between 60 and
100 ps (i.e., 10 kHz to 16.7 kHz), and the ps2d signal is stable at least 5 ps before and after
the falling edge of the ps2c signal.

8.2.3 Design and code

The design of the PS2 port receiving subsystem is somewhat similar to that of a UART
receiver. Instead of using the oversampling scheme, the falling-edge of the ps2c signal is
used as the reference point to retrieve data. The subsystem includes a falling edge detection
circuit, which generates a one-clock-cycle tick at the falling edge of the ps2c signal, and
the receiver, which shifts in and assembles the serial bits.

The edge detection circuit discussed in Section 5.3.1 can be used to detect the falling edge
and generate an enable tick. However, because of the potential noise and slow transition, a
simple filtering circuit is added to eliminate glitches. Its code is

__ r e g i s t e r
p r o c e s s (clk , reset)

. . .
f ilter-reg <= f ilter-next ;

ps2 RECEIVING SUBSYSTEM 185

. . .
end p r o c e s s ;

-- 1- b i t s h i f t e r
filter-next <= ps2c & filter-reg(7 downto 1);
_- " f i l t e r "
f-ps2c-next <= '1' when filter-reg="llllllll" e l s e

' 0 ' when f ilter~reg="00000000" e l s e
f-ps2c-reg;

The circuit is composed of an 8-bit shift register and returns a '1' or '0' when eight consec-
utive 1's or 0's are received. Any glitches shorter than eight clock cycles will be ignored
(i.e., filtered out). The filtered output signal is then fed to the regular falling-edge detection
circuit.

The ASMD chart of the receiver is shown in Figure 8.2. The receiver is initially in
the idle state. It includes an additional control signal, rx-en, which is used to enable or
disable the receiving operation. The purpose of the signal is to coordinate the bidirectional
operation. It can be set to ' 1 ' for the keyboard interface.

After the first falling-edge tick and the rx-en signal are asserted, the FSMD shifts in the
start bit and moves to the dps state. Since the received data is in fixed format, we shift in
the remaining 10 bits in a single state rather than using separate data, parity, and s top
states. The FSMD then moves to the load state, in which one extra clock cycle is provided
to complete the shifting of the stop bit, and the psrx-done-tick signal is asserted for one
clock cycle. The HDL code consists of the filtering circuit and an FSMD, which follows
the ASMD chart. It is shown in Listing 8.1.

Listing 8.1 PS2 port receiver

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y ps2-rx i s

5 port (
clk, reset: in std-logic;
ps2d, ps2c: in std-logic; -- k e y d a t a , k e y c l o c k
rx-en : in std-logic ;
rx-done-tick: out std-logic;

10 dout: out std-logic-vector (7 downto 0)

) ;
end ps2-rx;

a r c h i t e c t u r e arch of ps2-rx i s
15 type statetype i s (idle, dps, load);

s i g n a l state-reg , state-next : statetype;
s i g n a l f ilter-reg , f ilter-next :

s i g n a l f -ps2c_reg, f -ps2c_next : std-logic ;

s i g n a l n-reg , n-next : unsigned (3 downto 0) ;
s i g n a l f all-edge : std-logic ;

std-logic-vector (7 downto 0) ;

zo s i g n a l b-reg , b-next : std-logic-vector (1 0 downto 0) ;

begin
___ __-------

2s -- f i l t e r and f a l l i n g e d g e t i c k g e n e r a t i o n f o r p s 2 c

186 ps2 KEYBOARD

-
............

............

i.............. t-----
................................ rg fall-edge= T 1

b c ps2d & (b W) c',
n t n-I

,,...........

Figure 8.2 ASMD chart of the PS2 port receiver.

ps2 RECEIVING SUBSYSTEM 187

____________________----------------------------- -_ __---------
p r o c e s s (c l k , r e s e t)
beg in

i f r e s e t = ' l ' then
30 f i l t e r - r e g <= (o t b e r s = > ' O ') ;

f - p s 2 c - r e g <= ' 0 ' ;

f i l t e r - r e g <= f i l t e r - n e x t ;
f - p s 2 c - r e g <= f - p s 2 c - n e x t ;

e l s i f (c l k ' e v e n t and c l k = ' l ') then

15 end i f ;
end p r o c e s s ;

f i l t e r - n e x t <= p s 2 c & f i l t e r - r e g (7 downto 1);
f - p s 2 c - n e x t <= '1' when f i l t e r ~ r e g = " l l l l l l l l " e l s e

40 ' 0 ' when f i l t e r ~ r e g = ' ' 0 0 0 0 0 0 0 0 " e l s e

f a l l - e d g e <= f - p s z c - r e g and (n o t f - p s 2 c - n e x t) ;
f - p s 2 c - r e g ;

ss

65

70

75

__-_-_---_-_- _-___--__-_--__-__-------------------------------
45 -- f s m d t o e x t r a c t t h e 8 - b i t d a t a

_-____--________--__-_------------------_-_------ ______-_________________________________--------- __

-_ r e g i s t e r s
p r o c e s s (c l k , r e s e t)
beg in

so i f r e s e t = ' l ' then
s t a t e - r e g <= i d l e ;
n - r e g <= (o t h e r s = > ' O ') ;
b - r e g <= (o t h e r s = > ' O ') ;

s t a t e - r e g <= s t a t e - n e x t ;
n - r e g <= n - n e x t ;
b - r e g <= b - n e x t ;

e l s i f (c l k ' e v e n t and c l k = ' l ') then

end i f ;
end p r o c e s s ;

p r o c e s s (s t a t e - r e g , ~ ~ - r e g , b - r e g , f a l l - e d g e , r x - e n , p s 2 d)
begin

w -- n e x t - s t a t e l o g i c

r x - d o n e - t i c k < = l o 7 ;
s t a t e - n e x t <= s t a t e - r e g ;
n - n e x t <= n - r e g ;
b - n e x t <= b - r e g ;
c a s e s t a t e - r e g i s

when i d l e =>
i f f a l l - e d g e = ' 1 ' and r x - e n = ' 1 ' then

__ s h i f t i n s t a r t b i t
b - n e x t <= ps2d & b - r e g (l 0 downto 1);
n - n e x t <= " 1 0 0 1 " ;
s t a t e - n e x t <= d p s ;

end i f ;
when d p s => -- 8 d a t a + I p a r i t y + 1 s t o p

i f f a l l - e d g e = ' 1 then
b - n e x t <= ps2d & b - r e g (l 0 downto 1) ;

i f n - r e g = 0 then

188 ps2 KEYBOARD

Figure 8.3
All rights reserved.)

Scan code of the PS2 keyboard. (Courtesy of Xilinx, Inc. 0 Xilinx, Inc. 1994-2007.

85

s t a t e - n e x t < = l o a d ;

n - n e x t <= n - r e g - 1;
no e l s e

end i f ;
end i f ;

when l o a d = >
-- I e x t r a c l o c k t o c o m p l e t e f h e l a s t s h i f t
s t a t e - n e x t <= i d l e ;
r x - d o n e - t i c k <='1';

end c a s e ;
end p r o c e s s ;

d o u t <= b - r e g (8 downto 1); -- d a t a b i t s
90 -- o u t p u t

end a r c h ;

There is no error detection circuit in the description. A more robust design should check
the correctness of the start, parity, and stop bits and include a watchdog timer to prevent the
keyboard from being locked in an incorrect state. This is left as an experiment at the end
of the chapter.

8.3 PS2 KEYBOARD SCAN CODE

8.3.1 Overview of the scan code

A keyboard consists of a matrix of keys and an embedded microcontroller that monitors
(i.e., scans) the activities of the keys and sends scan code accordingly. Three types of key
activities are observed:

0 When a key is pressed, the make code of the key is transmitted.
0 When a key is held down continuously, a condition known as typematic, the make

code is transmitted repeatedly at a specific rate. By default, a PS2 keyboard transmits
the make code about every 100 ms after a key has been held down for 0.5 second.

The make code of the main part of a PS2 keyboard is shown in Figure 8.3. It is normally
1 byte wide and represented by two hexadecimal numbers. For example, the make code

0 When a key is released, the break code of the key is transmitted.

PSZ KEYBOARD SCAN CODE 189

of the A key is I C . This code can be conveyed by one packet when transmitted. The make
codes of a handful of special-purpose keys, which are known as the extended keys, can have
2 to 4 bytes. A few of these keys are shown in Figure 8.3. For example, the make code of
the upper arrow on the right is EO 75. Multiple packets are needed for the transmission.
The break codes of the regular keys consist of FO followed by the make code of the key.
For example, the break code of the A key is FO 1C.

The PS2 keyboard transmits a sequence of codes according to the key activities. For
example, when we press and release the A key, the keyboard first transmits its make code
and then the break code:

1C FO 1C

If we hold the key down for awhile before releasing it, the make code will be transmitted
multiple times:

1C 1C 1 C . . . 1C FO 1 C

Multiple keys can be pressed at the same time. For example, we can first press the s h i f t
key (whose make code is 12) and then the A key, and release the A key and then release the
s h i f t key. The transmitted code sequence follows the make and break codes of the two
keys:

12 1 C FO 1 C FO 12

The previous sequence is how we normally obtain an uppercase A. Note that there is no
special code to distinguish the lower- and uppercase keys. It is the responsibility of the
host device to keep track of whether the shift key is pressed and to determine the case
accordingly.

8.3.2 Scan code monitor circuit

The scan code monitor circuit monitors the arrival of the received packets and displays the
scan codes on a PC's HyperTerminal window. The basic design approach is to first split the
received scan code into two 4-bit parts and treat them as two hexadecimal digits, and then
convert the two digits to ASCII code words and send the words to a PC via the UART. The
received scan codes should be displayed similar to the previous example sequences. The
program is shown in Listing 8.2.

Listing 8.2 PS2 keyboard scan code monitor circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y kb-monitor i s

5 p o r t (

c l k , reset: in std-logic;
ps2d, ps2c: i n std-logic;
t x : out std-logic

) ;
10 end kb-monitor;

a r c h i t e c t u r e arch of kb-monitor i s
c o n s t a n t SP: std-logic-vector (7 downto 0) : = " 0 0 1 0 0 0 0 0 " ;
__ b l a n k s p a c e i n A S C I I

190 PS2 KEYBOARD

s i g n a l
s i g n a l
s i g n a l
s i g n a l

20 s i g n a l
b e g i n

_-
i n s

25 -- i n s

__
__

15 t y p e s t a t e t y p e i s (i d l e , s e n d l , s e n d 0 , s e n d b) ;
s t a t e - r e g , s t a t e - n e x t : s t a t e t y p e ;
s c a n - d a t a , w - d a t a : s t d - l o g i c - v e c t o r (7 downto . 0) ;
s c a n - d o n e - t i c k , w r - u a r t : s t d - l o g i c ;
a s c i i - c o d e : s t d - l o g i c - v e c t o r (7 d o w n t o 0) ;
h e x - i n : s t d - l o g i c - v e c t o r (3 d o w n t o 0) ;

30

35

45

KI

65

a n t i a t i o n

a n t i a t e PS2 r e c e i v e r
p s 2 - r x - u n i t : e n t i t y w o r k . p s 2 - r x (a r c h)

p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , r x - e n = > ’ 1 I ,

p s 2 d = > p s 2 d , p s 2 c = > p s 2 c ,
rx-done-tick=>scan-done-tick,
d o u t = > s c a n - d a t a) ;

__ i n s t a n t i a t e UART
u a r t - u n i t : e n t i t y w o r k . u a r t (s t r - a r c h)

p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , r d - u a r t = > ’ O ’ ,
w r - u a r t = > w r - u a r t , r x = > ’1’ , w - d a t a = > w - d a t a ,
t x - f u l l = > o p e n , r x - e m p t y = > o p e n , r - d a t a = > o p e n ,
t x = > t x) ;

__

40 -- FSM t o s e n d 3 A S C I I c h a r a c t e r s
__
-- s t a t e r e g i s t e r s
p r o c e s s (c l k , r e s e t)
b e g i n

i f r e s e t = ’ l ’ t h e n

e l s i f (c l k ’ e v e n t a n d c l k = ’ l ’) t h e n

e n d i f ;

s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;

50 e n d p r o c e s s ;
__ n e x t - s t a t e l o g i c
p r o c e s s (s t a t e - r e g , s c a n - d o n e - t i c k , a s c i i - c o d e)
b e g i n

w r - u a r t <= ’ 0 ’ ;

s t a t e - n e x t <= s t a t e - r e g ;
c a s e s t a t e - r e g i s

55 w-data <= S P ;

when i d l e => -- s t a r t when a s c a n c o d e r e c e i v e d
i f s c a n - d o n e - t i c k = ’ l ’ t h e n

s t a t e - n e x t <= s e n d l ;
e n d i f ;

w-data <= a s c i i - c o d e ;
w r - u a r t <= ’ 1 ’ ;
s t a t e - n e x t <= s e n d o ;

w-da ta <= a s c i i - c o d e ;

when s e n d l = > -- s e n d h i g h e r h e x c h a r

when s e n d 0 => -- s e n d l o w e r h e x c h a r

PS2 KEYBOARD INTERFACE CIRCUIT 191

w r - u a r t <= JIJ;
s t a t e - n e x t <= s e n d b ;

w-da ta <= S P ;
w r - u a r t <= ' 1 ' ;
s t a t e - n e x t <= i d l e ;

70 when sendb => -- s e n d b l a n k s p a c e c h a r

end c a s e ;
7 5 end p r o c e s s ;

-- s c a n c o d e t o A S C I I d i s p l a y
--

so -- s p l i t t h e s c a n c o d e i n t o t w o 4 - b i t h e x
h e x - i n <= s c a n - d a t a (7

s c a n - d a t a (3
-- h e x d i g i t t o A S C I I
w i t h h e x - i n s e l e c t

85 a s c i i - c o d e <=
0 0 1 10000 It when

I' 0 0 1 1 0 0 0 1 when
It 00 1 100 10 when
I' 00 11 00 1 1 I' when

90 I' 0 0 1 10 100 If when
I' 0 0 1 1 0 1 0 1 'I when
'I 00 1 10 1 10 when
'I 00 11 0 1 1 1 when
' I 00 1 1 1000 It when

95 'I 0 0 11 100 1 when
'I 0 1 0 0 0 0 0 1 'I when
I' 0 10000 10 when
"01000011 when
'I 0 1 0 0 0 1 0 0 when

0 1 0 0 0 1 0 1 'I when
I' 0 1000 11 0 when

IW

end a r c h ;

downto 4) when s t a t e - r e g = s e n d l e l s e
downto 0) ;
c o d e

' ~ 0 0 0 0 " , -- 0
" O O O l " , -- 1
" O O l O " , -- 2
" 0 0 1 1 " , -- 3
" O l O O " , -- 4
" O l O l " , -- 5
" O l l O " , -- 6
"Olll", -- 7
" l O O O " , -- 8
" l O O l " , -- 9
"1010", -- A
" l o l l " , -- B
" 1 1 0 0 " , -- c
" 1 1 0 1 " , -- D
" 1 1 1 0 " , -- E
o t h e r s ; -- F

An FSM is used to control the overall operation. The UART operation is initiated when
a new scan code is received (as indicated by the assertion of scan-done-tick). The FSM
circulates through the s e n d l , send0, and sendb states, in which the ASCII codes of the
upper hexadecimal digit, lower hexadecimal digit, and blank space are written to the UART.
Recall that the UART has a FIFO of four words, and thus no overflow will occur. Note that
the UART receiver is not used and the corresponding ports are mapped to constants or open.

8.4 PS2 KEYBOARD INTERFACE CIRCUIT

As discussed in Section 8.3.1, a sequence of packets is transmitted even for simple keyboard
activities. It will be quite involved if we want to cover all possible combinations. In this
section, we assume that only one regular key is pressed and released at a time and design a
circuit that returns the make code of this key. This design provides a simple way to send a
character or digit to the prototyping board and should be satisfactory for our purposes.

192 PS2 KEYBOARD

Figure 8.4 Block diagram of a last-released key circuit.

8.4.1 Basic design and HDL code

The keyboard circuit, as a UART, is a peripheral circuit of a large system and needs a
mechanism to communicate with the main system. The flagging and buffering schemes
discussed in Section 7.2.4 can be applied for the keyboard circuit as well. We use a four-
word FIFO buffer as the interface in this design.

The top-level conceptual diagram is shown in Figure 8.4. It consists of the PS2 receiver,
a FIFO buffer, and a control FSM. The basic idea is to use the FSM to keep track of the FO
packet of the break code. After it is received, the next packet should be the make code of
this key and is written into the FIFO buffer. Note that this scheme cannot be applied to the
extended keys since their make codes involve multiple packets. The corresponding HDL
code is shown in Listing 8.3.

Listing 8.3 PS2 keyboard last-released key circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y kb-code i s

5 g e n e r i c (W-SIZE : integer : =2) ; -- 2 A W-SIZE w o r d s i n FIFO
port (

clk, reset: in std-logic;
ps2d, ps2c: in std-logic;
rd-key-code : in std-logic ;

kb-buf-empty: out std-logic
10 key-code : out std-logic-vector (7 downto 0) ;

) ;
end kb-code;

I5 a r c h i t e c t u r e arch of kb-code i s
c o n s t a n t B R K : std-logic-vector (7 downto 0) :="11110000";
-- FO (b r e a k c o d e)
type statetype i s (wait-brk, get-code) ;
s i g n a l state-reg , state-next : statetype;

s i g n a l scan-done-tick , got-code-tick: std-logic;
20 s i g n a l scan-out , w-data: std-logic-vector (7 downto 0) ;

b e g i n
-_

2s -- i n s t a n t i a t i o n

PSZ KEYBOARD INTERFACE CIRCUIT 193

30

p s 2 - r x - u n i t : e n t i t y w o r k . p s 2 - r x (a r c h)
p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , r x - e n = > ’ l ’ ,

p s 2 d = > p s 2 d , p s 2 c = > p s 2 c ,
rx-done-tick=>scan-done-tick,
d o u t = > s c a n - o u t) ;

f i f o - k e y - u n i t : e n t i t y w o r k . f i f o (a r c h)
g e n e r i c m a p (B = > 8 , W=>W-SIZE)
p o r t map(c l k = > c l k , r e s e t = > r e s e t , r d = > r d - k e y - c o d e ,

w r = > g o t - c o d e - t i c k , w - d a t a = > s c a n - o u t ,
e m p t y = > k b - b u f - e m p t y , f u l l = > o p e n ,
r - d a t a = > k e y - c o d e) ;

40 --

-- FSM t o g e t t h e s c a n c o d e a f t e r FO r e c e i v e d

45

p r o c e s s (c l k , r e s e t)
b e g i n

i f r e s e t = ’ l ’ t h e n

e l s i f (c l k ’ e v e n t a n d c l k = ’ l ’) t h e n
s t a t e - r e g <= w a i t - b r k ;

s t a t e - r e g <= s t a t e - n e x t ;
e n d i f ;

50 e n d p r o c e s s ;

p r o c e s s (s t a t e - r e g , s c a n - d o n e - t i c k ,
b e g i n

g o t - c o d e - t i c k < = ’ O ’ ;
55 s t a t e - n e x t <= s t a t e - r e g ;

case s t a t e - r e g i s
when w a i t - b r k => -- w a i t f o r

i f s c a n - d o n e - t i c k = ’ l ’ a n d
s t a t e - n e x t <= g e t - c o d e

e n d i f ;
when g e t - c o d e = > -- g e t t h e

s c a n - o u t)

FO of b r e a k c o d e
scan-out=BRK t h e n

60

o l l o w i n g s c a n c o d e
i f s c a n - d o n e - t i c k = ’ l ’ t h e n

g o t - c o d e - t i c k <= 1 ’ ;
s t a t e - n e x t <= w a i t - b r k ;

h l e n d i f ;
e n d c a s e ;

e n d p r o c e s s ;
e n d a r c h ;

The main part of the code is the FSM, which screens for the break code and coordi-
nates the operation of two other modules. It checks the received packets in the wai t -brk
state continuously. When the FO packet is detected, it moves to the get-code state and
waits for the next packet, which is the make code of the key. The FSM then asserts the
code-done-tick signal for one clock cycle and returns to the wait-brk state.

194 PS2 KEYBOARD

Figure 8.5 Block diagram of a keyboard verification circuit.

8.4.2 Verification circuit

We design a simple serial interface and decoding circuit to verify operation of the PS2
keyboard interface. The top-level block diagram is shown in Figure 8.5. The circuit
converts a key's make code to the corresponding ASCII code and then sends the ASCII code
to the UART. The corresponding character or digits can be displayed in the HyperTerminal
window. The HDL code for the conversion circuit is shown in Listing 8.4.

Listing 8.4 Keyboard make code to ASCII code

l i b r a r y ieee;
u s e ieee. std-logic-1164. a l l ;
u s e ieee. numeric-std. a l l ;
e n t i t y key2ascii i s

5 p o r t (
key-code : i n std-logic-vector (7 downto 0) ;
ascii-code : o u t std-logic-vector (7 downto 0)

) ;
end key2ascii ;

a r c h i t e c t u r e arch of key2ascii i s
b e g i n

10

w i t h key-code s e l e c t
ascii-code <=

15 'I 0 0 1 1 0 0 0 0 I' when 'I 0 1 0 0 0 1 0 1 'I , -- 0
' 1001100011 ' when " 0 0 0 1 0 1 1 0 " , -- 1
" 0 0 1 1 0 0 1 0 " when " 0 0 0 1 1 1 1 0 " , -- 2
" 0 0 1 1 0 0 1 1 " when " 0 0 1 0 0 1 1 0 " , -- 3
" 0 0 1 1 0 1 0 0 ~ ' when " 0 0 1 0 0 1 0 1 " , -- 4
" 0 0 1 1 0 1 0 1 " when " 0 0 1 0 1 1 1 0 " , -- 5
" 0 0 1 1 0 1 1 0 " when " 0 0 1 1 0 1 1 0 " , -- 6
I' 00 11 0 11 1 I' when I' 00 1 1 1 1 0 1 It , -- 7
" 0 0 1 1 1 0 0 0 ' ~ when " 0 0 1 1 1 1 1 0 " , -- 8
" 0 0 1 1 1 0 0 1 " when " 0 1 0 0 0 1 1 0 " , -- 9

20

" 0 1 0 0 0 0 0 1 " when " 0 0 0 1 1 1 0 0 " , -- A
" 0 1 0 0 0 0 1 0 " when " 0 0 1 1 0 0 1 0 ' ~ , -- B
" O I O O O O 1 l t ~ when " 0 0 1 0 0 0 0 1 " , -- C
" 0 1 0 0 0 1 0 0 ' ~ when " 0 0 1 0 0 0 1 1 " , -- D
" 0 1 0 0 0 1 0 1 " when " 0 0 1 0 0 1 0 0 " , -- E

PS2 KEYBOARD INTERFACE CIRCUIT 195

" 0 1 0 0 0 1 1 0 " when t ' O O I O I O 1 l " , -- F
" 0 1 0 0 0 1 1 1 " when ~ ' 0 0 1 1 0 1 0 0 " , -- G
" 0 1 0 0 1 0 0 0 " when " 0 0 1 1 0 0 1 1 " , -- H
" O I O O I O O 1 t ~ when " O I O O O O 1 l ' t , -- I
" 0 1 0 0 1 0 1 0 " when ' t O O 1 l l O 1 l " , -- J
" 0 1 0 0 1 0 1 1 " when " 0 1 0 0 0 0 1 0 " , -- K
"01001100" when " 0 1 0 0 1 0 1 1 " , -- L
" 0 1 0 0 1 1 0 1 " when t l O O 1 l l O I O " , -- M
" 0 1 0 0 1 1 1 0 1 ' when " 0 0 1 1 0 0 0 1 " , -- N
" 0 1 0 0 1 1 1 1 " when " 0 1 0 0 0 1 0 0 " , -- 0
" 0 1 0 1 0 0 0 0 " when ' 101001101 '1 , -- P
" 0 1 0 1 0 0 0 1 ~ ' when " 0 0 0 1 0 1 0 1 " , -- Q
" 0 1 0 1 0 0 1 0 ~ 1 when " 0 0 1 0 1 1 0 1 " , -- R
" 0 1 0 1 0 0 1 1 " when t ' O O O 1 l O 1 l ~ ~ , -- S
" 0 1 0 1 0 1 0 0 " when '100101100", -- T
" 0 1 0 1 0 1 0 1 " when " 0 0 1 1 1 1 0 0 " , -- U
" 0 1 0 1 0 1 1 0 " when ' ~ 0 0 1 0 1 0 1 0 " , -- V
"O101O11lt~ when " 0 0 0 1 1 1 0 1 ~ ' , -- W
"O1O110OOt' when " 0 0 1 0 0 0 1 0 ~ ' , -- X
"O1O110Olt~ when " O O 1 l O I O 1 l f , -- Y
" O 1 0 1 1 O 1 O r 1 when " O O O 1 l O I O t t , -- 2

'101100000" when " 0 0 0 0 1 1 1 0 " , -- '

" 0 0 1 0 1 1 0 1 " when " 0 1 0 0 1 1 1 0 " , -- -
" 0 0 1 1 1 1 0 1 " when 1 ' 0 1 0 1 0 1 0 1 " , -- -
"01011011" when ~ t O I O I O I O O " , -- [
"01011101" when ' 101011011" , --]
" 0 1 0 1 1 1 0 0 " when " 0 1 0 1 1 1 0 1 " , -- \
"00111011" when " O I O O 1 l O O t l , -- ;
t l O O I O O 1 l l " when " 0 1 0 1 0 0 1 0 " , -- '
l ' O O I O 1 l O O 1 t when " O I O O O O O 1 l t , -- ,
~ ' 0 0 1 0 1 1 1 0 " when " 0 1 0 0 1 0 0 1 " , -- .
" 0 0 1 0 1 1 1 1 " when " 0 1 0 0 1 0 1 0 " , -- /

-

65 " 0 0 1 0 0 0 0 0 " when " 0 0 1 0 1 0 0 1 " , -- (s p a c e)
" 0 0 0 0 1 1 0 1 " when " 0 1 0 1 1 0 1 0 " , -- (e n t e r , c r)
" 0 0 0 0 1 0 0 0 ' ~ when " 0 1 1 0 0 1 1 0 " , -- (b a c k s p a c e)
" 0 0 1 0 1 0 1 0 " when o t h e r s ; --

end arch;

The complete code for the verification circuit follows the block diagram and is shown
in Listing 8.5.

Listing 8.5 Keyboard verification circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
u s e ieee . numeric-std. a l l ;
e n t i t y kb-test i s

I p o r t (
clk, reset: i n std-logic;
ps2d, ps2c: i n std-logic;
tx : o u t std-logic

) ;

196 ps2 KEYBOARD

10 end kb-test;

architecture arch o f kb-test i s
signal scan-data, w-data: std-logic-vector (7 downto 0) ;
signal kb-not-empty , kb-buf -empty : std-logic;

I S signal key-code , ascii-code : std-logic-vector (7 downto 0) ;
begin

kb-code-unit : entity work. kb-code(arch)
port map(clk=>clk, reset=>reset , ps2d=>ps2d, ps2c=>ps2c,

rd-key-code=>kb-not-empty, key-code=>key-code,
20 kb-buf-empty=>kb_buf-empty);

uart-unit : entity work.uart (str-arch)
port map(clk=>clk, reset=>reset , rd-uart=>’O’,

wr-uart=>kb-not-empty, rx=>’l’,
w-dat a= > as c i i- c ode , t x-f ull =>open ,

25 rx-empty=>open, r-data=>open, tx=>tx);
key2a-unit : entity work. key2ascii(arch)

port map(key-code=>key-code, ascii-code=>ascii-code);

kb-not-empty <= not kb-buf-empty;
30 end arch;

8.5 BIBLIOGRAPHIC NOTES

Three articles, ‘‘PSI2 MouselKeyboard Protocol,” ‘‘PSI2 Keyboard Interface,” and ‘‘PSI2
Mouse Interface,” by Adam Chapweske, provide detailed information on the PS2 keyboard
and mouse interface. They can be found at the http://www.computer-engineering.org site.
Rapid Prototyping of Digital Systems: Quartus@ II Edition by James 0. Hamblen et al.
also contains a chapter on the PS2 port and the keyboard and mouse protocols.

8.6 SUGGESTED EXPERIMENTS

8.6.1 Alternative keyboard interface I

The interface circuit in Section 8.4 returns the make code of the last released key and
thus ignores the typematic condition. An alternative approach is to consider the typematic
condition. The keyboard interface circuit should return a key’s make code repeatedly when
it is held down and ignore the final break code. For simplicity, we assume that the extended
keys are not used. Design the new interface circuit, resynthesize the verification circuit,
and verify operation of the new interface circuit.

8.6.2 Alternative keyboard interface II

We can expand the interface circuit to distinguish whether the shift key is pressed so that
both lower- and uppercase characters can be entered. The expanded circuit can be modified
as follows:

0 The keycode output should be extended from 8 bits to 9 bits. The extra bit indicates
whether the shift key is held down.

SUGGESTED EXPERIMENTS 197

0 The FSM should add a special branch to process the make and break codes of the
shift key and set the value of the corresponding bit accordingly.

0 The width of the FIFO buffer should be extended to 9 bits.

Design the expanded interface circuit, modify the key2ascii circuit to handle both lower-
and uppercase characters, resynthesize the verification circuit, and verify operation of the
expanded interface circuit.

8.6.3 PS2 receiving subsystem with watchdog timer

There is no error-handling capability in the PS2 receiving subsystem in Section 8.2. The
potential noise and glitches in the ps2c signal may cause the FSMD to be stuck in an
incorrect state. One way to deal with this problem is to add a watchdog timer. The timer
is initiated every time the f all-edge-tick signal is asserted in the get-bit state. The
time-out signal is asserted if no subsequently falling edge arrives in the next 20 ps, and
the FSMD returns to the idle state. Design the modified receiving subsystem, derive a
testbench, and use simulation to verify its operation.

8.6.4 Keyboard-controlled stopwatch

Consider the enhanced stopwatch in Experiment 4.7.6. Operation of the stopwatch is
controlled by three switches on the prototyping board. We can use the keyboard to send
commands to the stopwatch:

0 When the C (for “clear”) key is pressed, the stopwatch aborts the current counting, is

0 When the G (for “go”) key is pressed, the stopwatch starts to count.
0 When the P (for “pause”) key is pressed, the counting pauses.
0 When the U (for “up-down”) key is pressed, the stopwatch reverses the direction of

0 All other keys will be ignored.

cleared to zero, and sets the counting direction to ‘‘up.’’

counting.

Design the new stopwatch, synthesize the circuit, and verify its operation.

8.6.5 Keyboard-controlled rotating LED banner

Consider the rotating LED banner circuit in Experiment 4.7.5. We can use a keyboard to
control its operation and dynamically modify the digits in the banner:

0 When the G (for “go”) key is pressed, the LED banner rotates.
0 When the P (for “pause”) key is pressed, the LED banner pauses.
0 When the D (for “direction”) key is pressed, the LED banner reverses the direction

of rotation.
0 When a decimal digit (i.e., 0, 1, . . ., 9) key is pressed, the banner will be modified.

The banner can be treated as a 10-word FIFO buffer. The new digit will be inserted at
the beginning (i.e., the leftmost position) of the banner, and the rightmost digit will
be shifted out and discarded.

0 All other keys will be ignored.
Design the new rotating LED banner, synthesize the circuit, and verify its operation.

