
CHAPTER 5 

FSM 

5.1 INTRODUCTION 

An FSM (finite state machine) is used to model a system that transits among a finite number 
of internal states. The transitions depend on the current state and external input. Unlike a 
regular sequential circuit, the state transitions of an FSM do not exhibit a simple, repetitive 
pattern. Its next-state logic is usually constructed from scratch and is sometimes known as 
“random” logic. This is different from the next-state logic of a regular sequential circuit, 
which is composed mostly of “structured” components, such as incrementors and shifters. 

In this chapter, we provide an overview of the basic characteristics and representation of 
FSMs and discuss the derivation of HDL codes. In practice, the main application of an FSM 
is to act as the controller of a large digital system, which examines the external commands 
and status and activates proper control signals to control operation of a data path, which 
is usually composed of regular sequential components. This is known as an FSMD (finite 
state machine with data path) and is discussed in Chapter 6. 

5.1.1 Mealy and Moore outputs 

The basic block diagram of an FSM is the same as that of a regular sequential circuit and is 
repeated in Figure 5.1. It consists of a state register, next-state logic, and output logic. An 
FSM is known as a Moore machine if the output is only a function of state, and is known as 
a Mealy machine if the output is a function of state and external input. Both types of output 
may exist in a complex FSM, and we simply refer to it as containing a Moore output and 
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Figure 5.1 Block diagram of a synchronous FSM. 
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Mealy output. The Moore and Mealy outputs are similar but not identical. Understanding 
their subtle differences is the key for a controller design. The example in Section 5.3.1 
illustrates the behaviors and constructions of the two types of outputs. 

output 
logic 

5.1.2 FSM representation 

An FSM is usually specified by an abstract state diagram or ASM chart (algorithmic state 
machine chart), both capturing the FSM's input, output, states, and transitions in a graphical 
representation. The two representations provide the same information. The FSM represen- 
tation is more compact and better for simple applications. The ASM chart representation is 
somewhat like a flowchart and is more descriptive for applications with complex transition 
conditions and actions. 

State diagram A state diagram is composed of nodes, which represent states and are 
drawn as circles, and annotated transitional arcs. A single node and its transition arcs are 
shown in Figure 5.2(a). A logic expression expressed in terms of input signals is associated 
with each transition arc and represents a specific condition. The arc is taken when the 
corresponding expression is evaluated t rue .  

The Moore output values are placed inside the circle since they depend only on the 
current state. The Mealy output values are associated with the conditions of transition arcs 
since they depend on the current state and external input. To reduce clutter in the diagram, 
only asserted output values are listed. The output signal takes the default (Le., unasserted) 
value otherwise. 

A representative state diagram is shown in Figure 5.3(a). The FSM has four states, two 
external input signals (i.e., a and b), one Moore output signal (i.e., y l ) ,  and one Mealy 
output signal (i.e., yo). The yl signal is asserted when the FSM is in the s2 or s3 state. 
The yo signal is asserted when the FSM is in the SO state and the a and b signals are "1 1". 

ASM chart An ASM chart is composed of a network of ASM blocks. An ASM block 
consists of one state box and an optional network of decision boxes and conditional output 
boxes. A representative ASM block is shown in Figure 5.2(b). 

A state box represents a state in an FSM, and the asserted Moore output values are 
listed inside the box. Note that it has only one exit path. A decision box tests the input 
condition and determines which exit path to take. It has two exit paths, labeled T and F, 
which correspond to the t r u e  and f a l s e  values of the condition. A conditional output box 
lists asserted Mealy output values and is usually placed after a decision box. It indicates 
that the listed output signal can be activated only when the corresponding condition in the 
decision box is met. 
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A state diagram can easily be converted to an ASM chart, and vice versa. The corre- 
sponding ASM chart of the previous FSM state diagram is shown in Figure 5.3(b). 

5.2 FSM CODE DEVELOPMENT 

The procedure of developing code for an FSM is similar to that of a regular sequential 
circuit. We first separate the state register and then derive the code for the combinational 
next-state logic and output logic. The main difference is the next-state logic. For an FSM, 
the code for the next-state logic follows the flow of a state diagram or ASM chart. 

For clarity and flexibility, we use the VHDL‘s enumerated data type to represent the 
FSM’s states. The enumerated data type can best be explained by an example. Consider 
the FSM of Section 5.1.2, which has three states: SO, sl, and s2. We can introduce a 
user-defined enumerated data type as follows: 

type  e g - s t a t e - t y p e  i s  ( s o ,  sl, s 2 ) ;  

The data type simply lists (i.e., enumerates) all symbolic values. Once the data type is 
defined, it can be used for the signals, as in 

s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : e g - s t a t e - t y p e ;  

During synthesis, software automatically maps the values in an enumerated data type to 
binary representations, a process known as state assignment. Although there is a mechanism 
to perform this manually, it is rarely needed. 

The complete code of the FSM is shown in Listing 5.1. It consists of segments for the 
state register, next-state logic, Moore output logic, and Mealy output logic. 

Listing 5.1 FSM example 

l i b r a r y  i e e e ;  
use i e e e .  s t d - l o g i c - 1 1 6 4 ,  a l l  ; 
e n t i t y  f sm-eg  i s  

port  ( 
5 c l k ,  r e s e t :  i n  s t d - l o g i c ;  

a ,  b :  in  s t d - l o g i c ;  
y o ,  y l :  out  s t d - l o g i c  

) ;  
end f s m - e g ;  

a r c h i t e c t u r e  m u l t - s e g - a r c h  of  f sm-eg  i s  
10 

type  e g - s t a t e - t y p e  i s  ( s o ,  s l ,  s 2 ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : e g - s t a t e - t y p e  ; 

beg in  
I5  -- s t a t e  r e g i s t e r  

p r o c e s s  ( c l k  , r e s e t )  
beg in  

i f  ( r e s e t = ’ l ’ )  then 
s t a t e - r e g  <= S O ;  

s t a t e - r e g  <= s t a t e - n e x t ;  
20 e 1 s i f  ( c l k  ’ e v e n t  and c l k =  ’ 1 ’ ) then 

end i f  ; 
end p r o c e s s ;  
-_ n e x t - s t a t e  l o g i c  

25 p r o c e s s  ( s t a t e - r e g  , a ,  b )  



112 FSM 

30 

40 

45 

55  

65 

begin  
case  s t a t e - r e g  i s  

when SO => 
i f  a = ’ 1 ’  then 

i f  b=’l) then 

e l s e  

end i f  ; 

s t a t e - n e x t  <= S O ;  

s t a t e - n e x t  <= s 2 ;  

s t a t e - n e x t  <= s l ;  

e l s e  

end i f ;  
when sl => 

i f  ( a = ’ 1 ’ )  then 

e l s e  

end i f  ; 
when s 2  => 

s t a t e - n e x t  <= S O ;  

s t a t e - n e x t  <= SO; 

s t a t e - n e x t  <= s l ;  

end c a s e ;  
end p r o c e s s ;  
-- M o o r e  o u t p u t  l o g i c  
p r o c e s s  ( s t a t e - r e g )  

50 beg in  
case  s t a t e - r e g  i s  

when s o l s 2  => 
y l  <= ’ 0 ’ ;  

when sl = >  
y l  <= ’ 1 ’ ;  

end c a s e ;  
end p r o c e s s ;  
-- M e a l y  o u t p u t  l o g i c  
p r o c e s s  ( s t a t e - r e g  , a ,  b) 

case  s t a t e - r e g  i s  
when SO => 

M begin  

i f  ( a = ’ l ’ )  and (b=)l’) then 

e l s e  

end i f  ; 

yo <= > 1 ’ ;  

yo <= ) O ’ ;  

when sl I s 2  = >  
yo <= ’ 0 ’ ;  

70 end c a s e ;  
end p r o c e s s ;  

end m u l t - s e g - a r c h ;  

The key part is the next-state logic. It uses a case statement with the s ta te - reg  signal 
as the selection expression. The next state (i.e., s t a t e x e x t  signal) is determined by the 
current state (i.e., s ta te-reg)  and external input. The code for each state basically follows 
the activities inside each ASM block of Figure 5.3(b). 
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An alternative code is to merge next-state logic and output logic into a single combina- 
tional block, as shown in Listing 5.2. 

Listing 5.2 FSM with merged combinational logic 

a r c h i t e c t u r e  two-seg -a rch  of  fsm-eg i s  
type  e g - s t a t e - t y p e  i s  ( s o ,  sl, s2); 
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : e g - s t a t e - t y p e ;  

beg in  
5 -- s t a t e  r e g i s t e r  

p r o c e s s  ( c l k ,  r e s e t )  

10 

beg in  
i f  ( r e s e t = ’ l ’ )  then 

s t a t e - r e g  <= S O ;  
e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

s t a t e - r e g  <= s t a t e - n e x t ;  
end i f ;  

end p r o c e s s ;  
-_ n e x t - s t a t e  / o u t p u t  l o g i c  

15 p r o c e s s  ( s t a t e - r e g  , a , b )  
beg in  

30 

35 

s t a t e - n e x t  <= s t a t e - r e g  ; -- d e f a u l t  b a c k  t o  same  s t a t e  
y o  <= ’ 0 ’ ;  _- d e f a u l t  0 

d e f a u l t  0 y l  <= j 0 ’ ;  __ 
c a s e  s t a t e - r e g  i s  

when SO => 
i f  a = ’ 1 ’  then 

i f  b = ’ l ’  then 
s t a t e - n e x t  <= s 2 ;  
y o  <= ’1’; 

e l s e  

end i f  ; 
s t a t e - n e x t  <= sl; 

-- no e l s e  b r a n c h  
end i f  ; 

when sl => 
y l  <= ’ l > ;  
i f  ( a = ’ l ’ )  then 

-- no e l s e  b r a n c h  
end i f  ; 

when s2 = >  
s t a t e - n e x t  <= S O ;  

s t a t e - n e x t  <= S O ;  

end c a s e ;  
40 end p r o c e s s ;  

end t w o - s e g - a r c h ;  

Note that the default output values are listed at the beginning of the code. 
The code for the next-state logic and output logic follows the ASM chart closely. Once a 

detailed state diagram or ASM chart is derived, converting an FSM to HDL code is almost 
a mechanical procedure. Listings 5.1 and 5.2 can serve as templates for this purpose. 
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Xilinx 
specific 

Xilinx ISE includes a utility program called StateCAD, which allows a user to draw a 
state diagram in graphical format. The program then converts the state diagram to HDL 
code. It is a good idea to try it first with a few simple examples to see whether the generated 
code and its style are satisfactory, particularly for the output signals. 

5.3 DESIGN EXAMPLES 

5.3.1 Rising-edge detector 

The rising-edge detector is a circuit that generates a short, one-clock-cycle pulse (we call it 
a tick) when the input signal changes from ’0’ to ’ 1 ’. It is usually used to indicate the onset 
of a slow time-varying input signal. We design the circuit using both Moore and Mealy 
machines, and compare their differences. 

Moore-based design The state diagram and ASM chart of a Moore machine-based 
edge detector are shown in Figure 5.4. The zero and one states indicate that the input 
signal has been ’0’ and ’ 1’ for awhile. The rising edge occurs when the input changes to ’ 1 ’ 
in the zero state. The FSM moves to the edge state and the output, t i c k ,  is asserted in 
this state. A representative timing diagram is shown at the middle of Figure 5.5. The code 
is shown in Listing 5.3. 

Listing 5.3 Moore machine-based edge detector 

l i b r a r y  i e e e ;  
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  e d g e - d e t e c t  i s  

port  ( 
5 c l k ,  r e s e t :  in s t d - l o g i c ;  

l e v e l  : in s t d - l o g i c  ; 
t i c k :  out  s t d - l o g i c  

) ;  
end e d g e - d e t e c t ;  

a r c h i t e c t u r e  m o o r e - a r c h  of  e d g e - d e t e c t  i s  
10 

type  s t a t e - t y p e  i s  ( z e r o ,  e d g e ,  o n e ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : s t a t e - t y p e ;  

begin  
15 -- s t a t e  r e g i s t e r  

p r o c e s s  ( c l k  , r e s e t  1 
begin  

i f  ( r e s e t = ’ l ’ )  then 
s t a t e - r e g  <= z e r o ;  

s t a t e - r e g  <= s t a t e - n e x t ;  
20 e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

end i f  ; 
end p r o c e s s ;  
-- n e x t - s t a t e  / o u t p u t  logic 

begin  
25 p r o c e s s  ( s t a t e - r e g ,  l e v e l )  

s t a t e - n e x t  <= s t a t e - r e g ;  
t i c k  <= ’ 0 ’ ;  
c a s e  s t a t e - r e g  i s  
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116 FSM 

30 

35 

40 

(a) State diagram (b) ASM chart 

Figure 5.6 Edge detector based on a Mealy machine. 

when z e r o = >  
i f  l e v e l =  'I' then 

end i f  ; 
when e d g e  => 

t i c k  <= ' 1 ' ;  
i f  l e v e l =  ' 1 '  then 

e l s e  

end i f ;  

i f  l e v e l =  ' 0 '  then 

end i f  ; 

s t a t e - n e x t  <= e d g e ;  

s t a t e - n e x t  <= o n e ;  

s t a t e - n e x t  <= z e r o ;  

when o n e  = >  

s t a t e - n e x t  <= z e r o ;  

45 end c a s e ;  
end p r o c e s s ;  

end r n o o r e - a r c h ;  

Mealy-based design The state diagram and ASM chart of a Mealy machine-based 
edge detector are shown in Figure 5.6. The zero and one states have similar meaning. 
When the FSM is in the zero  state and the input changes to 'l ' , the output is asserted 
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Figure 5.7 Gate-level implementation of an edge detector. 

immediately. The FSM moves to the one state at the rising edge of the next clock and the 
output is deasserted. A representative timing diagram is shown at the bottom of Figure 5.5. 
Note that due to the propagation delay, the output signal is still asserted at the rising edge 
of the next clock (i.e., at t l) .  The code is shown in Listing 5.4. 
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25 

Listing 5.4 Mealy machine-based edge detector 

a r c h i t e c t u r e  m e a l y - a r c h  of  e d g e - d e t e c t  i s  
type  s t a t e - t y p e  i s  ( z e r o ,  o n e ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : s t a t e - t y p e ;  

begin  
5 -- s t a t e  r e g i s t e r  

process  ( c l k ,  r e s e t )  
begin  

i f  ( r e s e t = ’ l ’ )  then 

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

end i f  ; 
end p r o c e s s ;  
_- n e x t - s t a t e  / o u t p u t  logic 

begin  

s t a t e - r e g  <= z e r o ;  

s t a t e - r e g  <= s t a t e - n e x t ;  

15 p r o c e s s  ( s t a t e - r e g  , l e v e l )  

s t a t e - n e x t  <= s t a t e - r e g ;  
t i c k  <= ’ 0 ’ ;  
case  s t a t e - r e g  i s  

when z e r o = >  
i f  l e v e l =  ’ 1 ’  then 

s t a t e - n e x t  <= o n e ;  
t i c k  <= ’1’; 

end i f ;  

i f  l e v e l =  ’ 0 ’  then 

end i f  ; 

when one  = >  

s t a t e - n e x t  <= z e r o ;  

end c a s e ;  
?O end p r o c e s s ;  

end m e a l y - a r c h ;  

Direct implementation Since the transitions of the edge detector circuit are very sim- 
ple, it can be implemented without using an FSM. We include this implementation for 
comparison purposes. The circuit diagram is shown in Figure 5.7. It can be interpreted that 
the output is asserted only when the current input is ’1’ and the previous input, which is 
stored in the register, is ’0’. The corresponding code is shown in Listing 5.5. 
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Listing 5.5 Gate-level implementation of an edge detector 

a r c h i t e c t u r e  gate-level-arch of edge-detect i s  

begin  
s i g n a l  delay-reg : std-logic ; 

_- d e l a y  r e g i s t e r  
5 p r o c e s s  (clk, reset 1 

lo 

begin  
i f  (reset=’l’) then 

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end p r o c e s s ;  
-- d e c o d i n g  l o g i c  
tick <= ( n o t  delay-reg) and level; 

delay-reg <= ’ 0 ’ ;  

delay-reg <= level; 

15 end gate-level-arch; 

Although the descriptions in Listings 5.4 and 5.5 appear to be very different, they describe 
the same circuit. The circuit diagram can be derived from the FSM if we assign ’0’ and ’1’ 
to the zero and one states. 

Comparison Whereas both Moore machine- and Mealy machine-based designs can 
generate a short tick at the rising edge of the input signal, there are several subtle differences. 
The Mealy machine-based design requires fewer states and responds faster, but the width 
of its output may vary and input glitches may be passed to the output. 

The choice between the two designs depends on the subsystem that uses the output 
signal. Most of the time the subsystem is a synchronous system that shares the same clock 
signal. Since the FSM’s output is sampled only at the rising edge of the clock, the width 
and glitches do not matter as long as the output signal is stable around the edge. Note that 
the Mealy output signal is available for sampling at t l ,  which is one clock cycle faster than 
the Moore output, which is available at t 2 .  Therefore, the Mealy machine-based circuit is 
preferred for this type of application. 

5.3.2 Debouncing circuit 

The slide and pushbutton switches on the prototyping board are mechanical devices. When 
pressed, the switch may bounce back and forth a few times before settling down. The 
bounces lead to glitches in the signal, as shown at the top of Figure 5.8. The bounces 
usually settle within 20 ms. The purpose of a debouncing circuit is to filter out the glitches 
associated with switch transitions. The debounced output signals from two FSM-based 
design schemes are shown in the two bottom parts of Figure 5.8. The first design scheme is 
discussed in this subsection and the second scheme is left as an exercise in Experiment 5.5.2. 
A better alternative FSMD-based scheme is discussed in Section 6.2.1. 

An FSM-based design uses a free-running 10-ms timer and an FSM. The timer generates 
a one-clock-cycle enable tick (the m-tick signal) every 10 ms and the FSM uses this 
information to keep track of whether the input value is stabilized. In the first design scheme, 
the FSM ignores the short bounces and changes the value of the debounced output only 
after the input is stabilized for 20 ms. The output timing diagram is shown at the middle 
of Figure 5.8. The state diagram of this FSM is shown in Figure 5.9. The zero  and one 
states indicate that the switch input signal, sw, has been stabilized with ’0’ and ’ 1 ’ values. 
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Figure 5.9 State diagram of a debouncing circuit. 



Assume that the FSM is initially in the zero state. It moves to the w a i t  1-1 state when s w  
changes to ’1’. At the w a i t l - l  state, the FSM waits for the assertion of m - t i c k .  If s w  
becomes ’0’ in this state, it implies that the width of the ’1’ value does not last long enough 
and the FSM returns to the zero state. This action repeats two more times for the w a i t  1-2 
and w a i t  1-3 states. The operation from the one state is similar except that the s w  signal 
must be ’0’. 

Since the 10-ms timer is free-running and the m - t i c k  tick can be asserted at any time, 
the FSM checks the assertion three times to ensure that the s w  signal is stabilized for at least 
20 ms (it is actually between 20 and 30 ms). The code is shown in Listing 5.6. It includes 
a 10-ms timer and the FSM. 

Listing 5.6 FSM implementation of a debouncing circuit 

l i b r a r y  i e e e ;  
use  i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
use  i e e e  . n u m e r i c - s t d .  a l l  ; 
e n t i t y  db-fsm i s  

5 p o r t (  
c l k ,  r e s e t :  i n  s t d - l o g i c ;  
s w :  i n  s t d - l o g i c ;  
d b :  o u t  s t d - l o g i c  

) ;  
1 0  end db-f  s m  ; 

a r c h i t e c t u r e  a r c h  of  db-fsm i s  
c o n s t a n t  N: i n t e g e r : = 1 9 ;  -- 2 * N  * 2 0 n s  = l O m s  
s i g n a l  q - r e g ,  q - n e x t  : u n s i g n e d ( N - 1  downto 0)  ; 

t y p e  e g - s t a t e - t y p e  i s  ( z e r o  , w a i t l - l ,  w a i t l - 2  , w a i t l - 3 ,  
o n e ,  w a i t 0 - 1 ,  w a i t 0 - 2 ,  w a i t 0 - 3 )  ; 

s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : e g - s t a t e - t y p e ;  

15 s i g n a l  m - t i c k :  s t d - l o g i c ;  

b e g i n  
20 

-- c o u n t e r  t o  g e n e r a t e  l O m s  t i c k  
-- ( 2 ^ 1 9  * 2 0 n s )  

p r o c e s s  ( c l k ,  r e s e t )  
25 beg in  

i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

end i f ;  
end p r o c e s s ;  

q - n e x t  <= q - r e g  + 1; 
- - o u t p u t  t i c k  
rn- t ick  <= ’ 1 ’  when q - r e g = O  e l s e  

q - r e g  <= q - n e x t ;  

30 -- n e x t - s t a t e  l o g i c  

’ 0 ’ .  

35 

-- d e b o u n c i n g  FSM 

__ s t a t e  r e g i s t e r  
p r o c e s s  ( c l k ,  r e s e t  1 

40 beg in  



DESIGN EXAMPLES 121 

i f  ( r e s e t = ’ l ’ )  t h e n  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  t h e n  
s t a t e - r e g  <= z e r o ;  

s t a t e - r e g  <= s t a t e - n e x t ;  
45 end i f  ; 

end p r o c e s s ;  
-- n e x t - s t a t e / o u t p u t  l o g i c  
p r o c e s s  ( s t a t e - r e g  , sw , m - t i c k )  
b e g i n  

50 s t a t e - n e x t  <= s t a t e - r e g ;  - - d e f a u l t :  b a c k  t o  same s t a t e  
db <= ’ 0 ’ ;  -- d e f a u l t  0 
c a s e  s t a t e - r e g  i s  

when z e r o  => 
i f  s w = ’ l ’  t h e n  

55  

65  

7 5  

80 

85 

s t a t e - n e x t  <= w a i t l - 1 ;  
end i f  ; 

i f  s w = ’ O ’  t h e n  

e l s e  

when w a i t l - 1  = >  

s t a t e - n e x t  <= z e r o ;  

i f  m - t i c k = ’ l ’  t h e n  

end i f ;  
s t a t e - n e x t  <= w a i t l - 2 ;  

end i f  ; 

i f  s w = ’ O ’  t h e n  

e l s e  

when w a i t l - 2  => 

s t a t e - n e x t  <= z e r o ;  

i f  m - t i c k = ’ l ’  t h e n  

end i f  ; 
s t a t e - n e x t  <= w a i t l - 3 ;  

end i f  ; 

i f  s w = ’ O ’  t h e n  

e l s e  

when wai t l -3  => 

s t a t e - n e x t  <= z e r o ;  

i f  m - t i c k = ’ l ’  t h e n  

end i f  ; 
s t a t e - n e x t  <= o n e ;  

end i f  ; 
when one = >  

db < = ’ l ’ ;  
i f  s w = ’ O ’  t h e n  

end i f  ; 
s t a t e - n e x t  <= w a i t 0 - 1 ;  

when w a i t 0 - 1  => 
db < = ’ I J ;  
i f  s w = ’ 1 ’  t h e n  

e l s e  
s t a t e - n e x t  <= o n e ;  

i f  m - t i c k = ’ l ’  t h e n  

end i f  ; 
s t a t e - n e x t  <= w a i t 0 - 2  ; 
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Figure 5.10 Debouncing testing circuit. 

end i f  ; 
when w a i t 0 - 2  = >  

db < = ’ I > ;  
i f  s w = ’ 1 ’  then 

e l s e  
s t a t e - n e x t  <= o n e ;  

i f  m - t i c k = ’ l J  then 

end i f  ; 
s t a t e - n e x t  <= w a i t 0 - 3 ;  

end i f  ; 
when w a i t 0 - 3  = >  

db < = ’ I > ;  
i f  s w = ’ 1 ’  then 

e l s e  
s t a t e - n e x t  <= o n e ;  

i f  m - t i c k = ’ l ’  then 

end i f  ; 
s t a t e - n e x t  <= z e r o ;  

end i f  ; 
end c a s e ;  

end p r o c e s s ;  
11s end a r c h ;  

5.3.3 Testing circuit 

We use a bounce counting circuit to verify operation of the rising-edge detector and the 
debouncing circuit. The block diagram is shown in Figure 5.10. The input of the verification 
circuit is from a pushbutton switch. In the lower part, the signal is first fed to the debouncing 
circuit and then to the rising-edge detector. Therefore, a one-clock-cycle tick is generated 
each time the button is pressed and released. The tick in turn controls the enable input of 
an 8-bit counter, whose content is passed to the LED time-multiplexing circuit and shown 
on the left two digits of the prototyping board’s seven-segment LED display. In the upper 
part, the input signal is fed directly to the edge detector without the debouncing circuit, 
and the number is shown on the right two digits of the prototyping board’s seven-segment 
LED display. The bottom counter thus counts one desired 0-to- 1 transition as well as the 
bounces. 
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The code is shown in Listing 5.7. It basically uses component instantiation to realize 
the block diagram. 

Listing 5.7 Verification circuit for a debouncing circuit and rising-edge detector 

l i b r a r y  ieee; 
use ieee. std-logic-1164 ~ a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  debounce-test i s  

s p o r t (  
clk: i n  std-logic; 
btn: i n  std-logic-vector ( 3  downto 0) ; 
a n :  o u t  std-logic-vector (3  downto 0) ; 
sseg: o u t  std-logic-vector ( 7  downto 0) 

10 ) ; 
end debounce-test ; 

a r c h i t e c t u r e  arch of debounce-test i s  
s i g n a l  ql-reg , ql-next : unsigned ( 7  downto 0)  ; 

I S  s i g n a l  qO-reg, q0-next : unsigned(7 downto 0) ; 
s i g n a l  b-count , d-count: std-logic-vector (7 downto 0)  ; 
s i g n a l  btn-reg , db-reg : std-logic ; 
s i g n a l  db-level , db-tick, btn-tick , clr: std-logic; 

begin  
2o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

__ c o m p o n e n t  i n s  t a n  t i a  t i  o n  

__ i n  s t a n t i  a t e hex  d i s p l a y  t i m e  - m u  1 t i p  1 e x i n  g 
disp-unit : e n t i t y  work. disp-hex-mux 

____________________----------------------------- __ ____________________----------------------------- 
c i r c u i I 

5 p o r t  map( 
clk=>clk, reset=>'O', 
hex3=>b_count (7 downto 4) , hex2=>b_count (3 downto 0) , 
hexl=>d-count (7 downto 4 ) ,  hexO=>d-count ( 3  downto 0 1 ,  
dp-in=>"lOll", an=>an, sseg=>sseg); 

30 -- i n s t a n t i a t e  d e b o u n c i n g  c i r c u i t  
db-unit: e n t i t y  work.db-fsm(arch1 

clk=>clk, reset=>'O', 
sw=>btn (1) , db=>db-level) ; 

p o r t  map( 

__ e d g e  d e t e c t i o n  c i r c u i t s  

p r o c e s s  (clk) 
40 begin  

if (clk'event and clk='l') t hen  
btn-reg <= btn(1) ; 
db-reg <= db-level; 

end i f  ; 
JS end p r o c e s s ;  

btn-tick <= ( n o t  btn-reg) and btn(l); 
db-tick <= ( n o t  db-reg) and db-level; 
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__ two c o u n t e r s  

clr <= btn(0) ; 
p r o c e s s  (clk) 
beg in  

____________________------------------------------- ________----------------------------------------- 

i f  (clk event and clk= ’ 1 ’ then 
ql-reg <= ql-next; 
q0-reg <= q0-next; 

end i f  ; 
end p r o c e s s ;  
_- n e x t - s t a t e  l o g i c  for t h e  c o u n t e r  
ql-next <= ( o t h e r s = > ’ O ’ )  when clr=’l’ e l s e  

ql-reg + 1 when btn-tick=’l’ e l s e  
ql-reg ; 

q0-reg + 1 when db-tick=’l’ e l s e  
qO-reg; 

q0-next <= ( o t h e r s = > ’ O ’ )  when clr=’l’ e l s e  

-- 0 u t p  u t 
b-count <= std-logic-vector(q1-reg); 
d-count <= std-logic-vector (qO-reg) ; 

70 end arch; 

The seven-segment display shows the accumulated numbers of 0-to-1 edges of bounced 
and debounced switch input. After pressing and releasing the pushbutton switch several 
times, we can determine the average number of bounces for each transition. 

5.4 BIBLIOGRAPHIC NOTES 

The bibliographic information for this chapter is similar to that for Chapter 3. 

5.5 SUGGESTED EXPERIMENTS 

5.5.1 Dual-edge detector 

A dual-edge detector is similar to a rising-edge detector except that the output is asserted 
for one clock cycle when the input changes from 0 to 1 (i.e., rising edge) and 1 to 0 (i.e., 
falling edge). 

1. Design the circuit based on the Moore machine and draw the state diagram and ASM 

2. Derive the HDL code based on the state diagram of the ASM chart. 
3. Derive a testbench and use simulation to verify operation of the code. 
4. Replace the rising detectors in Section 5.3.3 with dual-edge detectors and verify their 

5. Repeat steps 1 to 4 for a Mealy machine-based design. 

chart. 

operations. 

5.5.2 Alternative debouncing circuit 

One problem with the debouncing design in Section 5.3.2 is the delayed response of the 
onset of a switch transition. An alternative is to react to the first edge in the transition and 
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Figure 5.11 Conceptual diagram of gate sensors. 

then wait for a small amount of time (at least 20 ms) to have the input signal settled. The 
output timing diagram is shown at the bottom of Figure 5.8. When the input changes from 
'0' to ' l ' ,  the FSM responds immediately. The FSM then ignores the input for about 20 ms 
to avoid glitches. After this amount of time, the FSM starts to check the input for the falling 
edge. Follow the design procedure in Section 5.3.2 to design the alternative circuit. 

1. Derive the state diagram and ASM chart for the circuit. 
2. Derive the HDL code. 
3. Derive the HDL code based on the state diagram and ASM chart. 
4. Derive a testbench and use simulation to verify operation of the code. 
5 .  Replace the debouncing circuit in Section 5.3.3 with the alternative design and verify 

its operation. 

5.5.3 Parking lot occupancy counter 

Consider a parking lot with a single entry and exit gate. Two pairs of photo sensors are used 
to monitor the activity of cars, as shown in Figure 5.11. When an object is between the 
photo transmitter and the photo receiver, the light is blocked and the corresponding output 
is asserted to '1'. By monitoring the events of two sensors, we can determine whether a 
car is entering or exiting or a pedestrian is passing through. For example, the following 
sequence indicates that a car enters the lot: 

0 Initially, both sensors are unblocked (i.e., the a and b signals are ''00''). 
0 Sensor a is blocked (i.e., the a and b signals are "lo"). 
0 Both sensors are blocked (i.e., the a and b signals are 'I 1 1 "). 
0 Sensor a is unblocked (i.e., the a and b signals are ''01''). 
0 Both sensors becomes unblocked (i.e., the a and b signals are llOO1l). 

1. Design an FSM with two input signals, a and b, and two output signals, e n t e r  and 
e x i t .  The en te r  and e x i t  signals assert one clock cycle when a car enters and one 
clock cycle when a car exits the lot, respectively. 

2.  Derive the HDL code for the FSM. 

Design a parking lot occupancy counter as follows: 
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3. Design a counter with two control signals, inc  and dec, which increment and decre- 
ment the counter when asserted. Derive the HDL code. 

4. Combine the counter and the FSM and LED multiplexing circuit. Use two debounced 
pushbuttons to mimic operation of the two sensor outputs. Verify operation of the 
occupancy counter. 




