CHAPTER 16

PICOBLAZE 1/0O INTERFACE

16.1 INTRODUCTION

To interact with the external environment, a regular microcontroller chip consists of a
variety of built-in I/O peripherals, such as a UART, SPI (serial peripheral interface), timer,
etc. When starting a new development, we select a microcontroller chip according to the
1/0 requirements of the application and may sometimes need to use additional chips to
realize less commonly used functions.

Unlike a regular microcontroller, PicoBlaze has no built-in I/O peripherals. It just pro-
vides a simple generic input and output structure for an I/O interface. I/O peripherals are
constructed as needed and thus are customized to each application. PicoBlaze uses the
input and output instructions to transfer data between its internal registers and I/O ports,
and its interface consists of the following signals:

e port_id: an 8-bit signal that specifies the port id (i.e., port address) of an input or
output instruction

e in port: an 8-bit signal where PicoBlaze obtains input data during operation of an
input instruction

e out_port: an 8-bit signal where PicoBlaze places output data during operation of
an output instruction

e read_strobe: a 1-bit signal that is asserted in the second clock cycle of an input

instruction

e write_strobe: a 1-bit signal that is asserted in the second clock cycle of an output
instruction

FPGA Prototyping by VHDL Examples. By Pong P. Chu 367

Copyright © 2008 John Wiley & Sons, Inc.

368 PICOBLAZE I/Q INTERFACE

(" instruction X outpts0, 02 X
from ‘ port_id X 0 }i

PicoBlaze ‘ out_port X7 contant of s0 J

| write_strobe ——_'_,—_'—l-

en_d(0) g g
en_d(1) ! i
decoded) : :
signals | en_d(2) | T |
en_d(3)
out_data2 f _X content of s0

content of sO
sampled and stored

Figure 16.1 Timing diagram of an output instruction.

Although there are only two 8-bit ports to input and output data, the 8-bit port_id signal
can be used to distinguish different peripherals, and thus it is said that PicoBlaze can support
up to 256 (i.e., 2%) input ports and 256 output ports.

In the remaining chapter, we examine the detailed I/O timing of PicoBlaze and illustrate
the I/O interface development by adding a series of peripherals for the square circuit of
Chapter 15.

16.2 OUTPUT PORT

16.2.1 Output instruction and timing

The output instruction writes data to the output port. It has two forms:

output sX, (sY)
output sX, port_name

In the first form, the port id is stored in the sY register. In the second form, the port id is
specified explicitly by port_name, which is a two-digit hexadecimal number or a previously
defined symbolic constant. The output data is always stored in the sX register.

The timing diagram of an output instruction,

output s0, 02

is shown in the top five traces of Figure 16.1. Recall that each PicoBlaze instruction takes
two clock cycles. When the instruction is executed, the content of s0 is placed on out _port
and 02 is placed on port_id for two clock cycles. The write_strobe signal is asserted
in the second clock cycle. It can be used as an enable tick to store data in an output register
or to initiate the designated peripheral operation.

OUTPUT PORT 369

2 el 0UL_daral
in_port out_port : =
reset port_id j=—riy
read_strobe
, _ . 1 e 1
instruction —— - . - - out_dara
! . decoding —" |
interrupt interrupt_ack SE en_d(1)}
circuit >
address | i
> KCPSM3 |
%»-—u d Qe oUt_dara2
2 en
en d(2) |
>
lI.
U Qe out_dara3
en
en_d(3)
Figure 16.2 Output decoding of four output registers.
Table 16.1 Truth table of a decoding circuit
input output
write_strobe port_id(1) port_id(0) en.d
0 - - 0000
1 0 0 0001
1 0 1 0010
1 1 0 0100
1 1 1 1000

16.2.2 Output interface

The output interface between PicoBlaze and an output peripheral usually consists of a
decoding circuit and necessary output buffers, which are normally an array of registers.
The decoding circuit decodes the port id and generates an enable tick accordingly. After
the output instruction, the data will be stored in the designated buffer.

To illustrate the construction, let us consider a PicoBlaze interface with four output
buffers. We assign 0016, 0116, 0214, and 03¢ as their port ids. Note that the six MSBs of
the port addresses are identical and only two LSBs are needed to distinguish a port. The
block diagram is shown in Figure 16.2. The key is the decoding circuit, whose function
table is shown in Table 16.1. It is a 2-to-22? decoder. In the second clock cycle of an
output instruction, write_strobe is asserted and 1 bit of the 4-bit en_d signal is asserted
accordingly. The one-clock-cycle enable tick activates the corresponding output register to
retrieve data from the out_port signal. The decoding timing diagram of the instruction

output s0, 02

370 PICOBLAZE I/O INTERFACE

is shown at the bottom of Figure 16.1. During the second clock cycle of the output
instruction, the en_d (2) signal is asserted and the data value on out_port is stored in the
corresponding buffer at the rising edge of the next clock.

Once understanding the basic operation, we can derive the HDL code accordingly. The
code segment is

process (write_strobe ,port_id)
begin
if write_strobe=’0’ then
en_d <= "000O0";
else
case port_id (1 downto 0) is
when "00" =>
en_d <= "0001";
when "01" =>
en_d <= "Q010";
when "10" =>
en_d <= "0100";
when others =>
en_d <= "1000";
end case;
end if;
end process;

This scheme is very general and can be applied to any number of output ports.

The choice of the port address is somewhat arbitrary. We use the binary code in the
previous example. If the number of the output port is smaller than eight, one-hot code can
be used to simplify the decoding circuit. For example, we can define the four previous port
ids as 01,4 (i.e., 000000012), 0215 (i.e., 000000105}, 0414 (i.e., 00000100,), and 08¢ (i.e.,
000010002). The decoding logic can be simplified to

process (write_strobe,port_id)
begin
if write_strobe=’0’ then
en_d <= "0000";
else
en_d <= port_id (3 downto 0);
end if;
end process;

Note that no decoding logic is needed if there is only a single output port. The write_strobe
signal can be connected to the register’s enable signal, as shown in Figure 15.3.

As discussed in Section 15.4.2, it is good practice to use symbolic aliases for I/O ports
and declare its binary address in the header. For example, the initial output port address
assignment can be declared as

j——————————output port definitions
constant out_port_a, 00
constant out_port_b, 01
constant out_port_c, 02
constant out_port_d, 04

If the assignment is changed, we need to modify the header but keep the remaining assembly
code intact. Using a clear header also allows us easily to identify the port ids when the
companion HDL code is developed.

INPUT PORT 371

clk __l |_, u I_I_-

instruction X input s0, 02 X
port id ! 02 X
in_port D

read_strobe |

register s X sampled data

data is sampled

Figure 16.3 Timing diagram of an input instruction.

16.3 INPUT PORT

16.3.1 Input instruction and timing

The input instruction reads data from the input port. Similar to the output instruction, it
has two forms:

input sX, (sY)
input sX, port_name

The sY register or port_name specifies the read port id. The retrieved data is stored in the
sX register.
The timing diagram of an input instruction,

input s0, 02

is shown in Figure 16.3. When the instruction is executed, 02 is placed on port_id. After
two clock cycles, in_port will be sampled at the rising edge of the clock and its value is
stored in the sO register. The external circuit must ensure that the input data is stable during
the sampling edge to avoid timing violation.

As in the output instruction, the read_strobe signal is asserted in the second clock
cycle. The function of the read_strobe signal is less obvious and is discussed in the next
subsection.

16.3.2 Input interface

The input interface between PicoBlaze and input peripherals usually consists of a multi-
plexing circuit, which uses port_id as the selection signal to route the desired value to
in port. Sometimes, a decoding circuit similar to the one in the output interface is also
necessary to signal the completion of the data access.

For the purpose of input interface design, an input port can be classified as a continuous-
access or single-access port. For a continuous-access port, the data is presented continu-
ously, such as the switch input of Section 15.4.1. On the other hand, the availability of data
of a single-access port is triggered by a single discrete event, such as receiving a character
in an UART buffer. The flag FF and buffers discussed in Section 7.2.4 are in this category.
After the data is retrieved, we must remove it from the buffer to prevent the same data from

372 PICOBLAZE I/O INTERFACE

in_port out_part |
: t ort_id =
in_datal =8 B 3
)) read_strobe
)) instruction write. stk
in_data’ _ i 7 10ue
u interrupt interrupt_ack
; L IR address
in_data2
- P> KCPSM3
in_data3

Figure 16.4 Block diagram of four continuous-access ports.

in_data0
r_data
rd d t
v(0) S e in_port out_port ‘ '
Bl reset port_id -
)) read_strobe 2
in_datat instruction wite_ strobe
m
decodi _— u intermupt interrupt_ack
il (1) x address
aircuit [~ > FIFO : > KRS
data
o i data2
v(2)
> FIFO
r_data
in_data3
mv(3) i -
> FIFO

Figure 16.5 Block diagram of four single-access ports.

being processed again. This is usually done by utilizing a one-clock-cycle tick to clear the
flag FF or remove a word from a FIFO buffer.

The interface for continuous-access ports involves only a multiplexing circuit. Consider
an interface with four such ports. The block diagram is shown in Figure 16.4.

The interface for single-access ports needs a mechanism to remove the retrieved data from
the buffer in the end of an input instruction. This can be done by using a decoding circuit
that decodes the port_id and read_strobe signals. The circuit is identical to the decoding
circuit of the output interface except that write_strobe is replaced by read_strobe. The
decoded output can be considered as a “removal” signal, which is asserted for one clock
cycle and removes the previously retrieved data. Consider an interface with four FIFOs.
The diagram of the complete decoding and multiplexing circuit is shown in Figure 16.5.
The rv signal is the decoded removal signal. In the end of an input instruction, 1 bit of this
4-bit signal is asserted and the corresponding FIFO performs a read operation, in which the

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 373

first word is removed from the buffer. Assume that 001, 0116, 0216, and 03¢ are assigned
as the port ids. The HDL code segment for the interface is

— multiplexing circuit
with port_id (1 downto 0) select
data <= in_data0 when "00",
in_datal when "O1",
in_data2 when "10",
in_data3 when others;
— decoding circuit
process (reade_strobe,port_id)
begin
if read_strobe=’0’ then
rv <= "0000";
else
case port_id (1 downto 0) is
when "00" =>
rv <= "Q0001";
when "01i" =>
rv <= "0010";
when "10" =>
rv <= "0100";
when others =>
rv <= "1000";
end case;
end if;
end process;

In a real application, it is likely that the input interface contains both continuous- and
single-access ports. A decoding circuit is only needed for single-access ports.

16.4 SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED
DISPLAY INTERFACE

To demonstrate the construction of the PicoBlaze I/0O interface, we add more versatile input
and output peripherals to the square routine of Chapter 15. Recall that the square routine
calculates a® + b%, where a and b are 8-bit unsigned integers.

We use the 8-bit switch and a pushbutton to enter the values of @ and b. The pushbutton
generates a one-clock-cycle tick when pressed. The tick indicates that the current value
of the switch should be loaded. The values of ¢ and b are loaded alternately; i.e., the first
pressing loads a, the second pressing loads b, the third pushing loads a, and so on. A second
pushbutton is also included to clear the PicoBlaze’s data RAM and relevant registers.

We use four seven-segment LEDs to display the inputs and computed results. The LEDs
are arranged as four hexadecimal numbers. Since the range of a? + b2 is up to 17 bits, the
decimal point of the leftmost LED is used for the MSB. The three lower bits of the switch
select what to display, which can be a, b, a2, b2, or a? + b2.

In summary, the interface consists of the following:

e Swirch: provides the values of ¢ and b and selects the content of the LED display
e Pushbutton 0: loads the a and b alternatively when pressed

e Pushbutton I: clears data RAM and relevant registers when pressed

e Seven-segment LED: displays the selected 17-bit value in four hexadecimal digits

374

PICOBLAZE I/O INTERFACE

OUt_pOrt s

2

circuit

decoding ——"_ 11|

en_d(2} |

en

en_d(3)

disp_mux

| P

Figure 16.6 Output interface of a square circuit.

in_port

reset port_id

|) read_strobe

instruction wirlle “strobes

interrupt interrupt_ack
address

> KCPSM3

16.4.1 Output interface

- sseg

= an

Recall that the four seven-segment LEDs on the prototyping board share the same input pins,
and a time-multiplexing circuit is required. For a PicoBlaze-based design, the multiplexing
can be done by either an external circuit or a software routine. We use the external-circuit
approach, which is simpler for assembly code development, in this section and discuss
the software approach in Chapter 17. The LED time-multiplexing circuit designed in
Section 4.5.1 can be used for this purpose. This circuit shields the timing and appears
as four independent seven-segment LEDs for external system. The block diagram of the
PicoBlaze output interface is shown in Figure 16.6. The interface consists of four 8-bit
output ports, each port representing a seven-segment LED pattern.
In the assembly code, the four LED patterns are stored in PicoBlaze’s data RAM with
symbolic addresses of 1ed0, led1, led2, and 1ed3. The corresponding code segment is

sdata RAM address alias

constant
constant
constant
constant

youtput

constant
constant
constant
constant

disp_led:

fetch

output data,

led0, 10
ledl, 11
led2, 12
led3, 13
port definitions
ssegO_port, 00
ssegl_port, 01
sseg2_port, 02
sseg3_port, 03
data, led®

sseglO_port

;7—seg
;7—seg
;7—seg
;7—seg

led 0
led 1
led 2
led 3

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 375

r&y in_port out_port
3 | |reset port_id ===y
btn(0) — set - 1lag read strobe — |
debounce | —air btnc_flag instruction write_strobe
> >,|5|g FF interrupt interrupt_ack |
address |
[> KCPSM3 i
] |
btn{1) —| set flag | i
debounce | ¢—1air % e R U s _,gg
> Pragrr| | :.
decoder — k
’_’ |
|
|
|

\\\\\\ o e e T

Figure 16.7 Input interface of a square circuit.

fetch data, ledl

output data, ssegl_port
fetch data, led2

output data, sseg2_port
fetch data, led3

output data, sseg3_port
return

16.4.2 Input interface

The input interface consists of an 8-bit switch and two 1-bit pushbuttons. The former is a
continuous-access port since the value is always present. The latter is a single-access port
since pressing a button leads to only a single event (e.g., loading a to the register once rather
than continuously). Because of the mechanical glitches, a debouncing circuit is needed to
generate a clean one-clock-cycle tick. Since PicoBlaze’s port can take up 8-bit data, inputs
from the two pushbuttons can be grouped together as a single input port. The block diagram
of the input interface is shown in Figure 16.7. The interface consists of two debouncing
circuits, a two-to-one multiplexer, a decoding circuit, and two flag FFs. The function of
the two flag FFs is discussed in Section 7.2.4. They provide a mechanism to set and clear
the “button-pressing event.” When a button is pressed, the debouncing circuit’s output sets
the flag. It remains asserted until it is retrieved by the PicoBlaze’s input instruction, which
sets the selection signal of the multiplexer to route the desired value to PicoBlaze’s input
port, and activates the clear signal. For clarity, we name the pushbutton 1 as the s button
(for setting the value) and pushbutton O as the c button (for clearing the data RAM).
The pseudo code to process the input is

yinput the button flags
if c¢=1 then

376 PICOBLAZE I/Q INTERFACE

; call the clearing —ram routine
Jif s=1 then

; input switch value

; store it to data ram

; toggle a/b address offset

Since the s button inputs the values of g and b alternately, we use a global register,
switch_a_b, to keep track of which one is being read currently. The register serves as
the data RAM address offset, which can be 0 or 2, and its value toggles when the s button
is pressed. The corresponding assembly code subroutine is

sinput port definitions
constant rd_flag_port, 00 ;2 flags (xxxxxxsc):
constant sw_port, O1 ;8—bit switch

proc_btn:
input s3, rd_flag_port ;get flag
jcheck and process ¢ button

test s3, 01 scheck ¢ button flag
jump z, chk_btans ;flag not set
call init s flag set, clear
jump proc_btn_done
chk_btns:
scheck and process s button
test s3, 02 ;check s button flag
jump z, proc_btn_done s flag not set
input data, sw_port ;get switch
load addr, a_lsb ;get addr of a
add addr, switch_a_b ;yadd offset
store data, (addr) ;write data to ram
;update current disp position
xor switch_a_b, 02 ;toggle between 00, 02
proc_btn_done:
return

16.4.3 Assembly code development

After designing the I/0O interface, we can derive the assembly program. The development
follows the divide-and-conquer approach discussed in Chapter 15 and partitions the main
program into several subroutines. The main program is

call init sinitialization

forever:

;smain loop body

call proc_btn ;check & process buttons

call square ycalculate square

call load_led_pttn ;ystore led patterns to ram

call disp_led ;output led pattern
jump forever

The complete code is shown in Listing 16.1.
The square subroutine is from Chapter 15, and the proc_btn and disp_led subroutines

are discussed in the previous two subsections. The init subroutine performs system initial-
ization. It uses aloop to load 0’s to data RAM (i.e., clear the RAM) and sets the switch_a_b

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 377

register to O (i.e., read a). The load._led_pttn subroutine reads the switch input, retrieves
the desired values from the data RAM, converts the values to seven-segment LED pat-
terns, and stores them to the corresponding locations in the data RAM. These patterns are
then written to the output ports in the subsequent disp_led routine. The load_led.pttn
routine consists of the get_upper nibble and get_lower nibble routines to extract the
two hexadecimal digits and the hex _to_led routine to convert a hexadecimal digit to the
corresponding seven-segment LED pattern.

The program requires more storage. In addition to the data RAM and registers required
for the square subroutine, this program utilizes a new global register switch_a_b to keep
track of whether a or b is being read, and 4 bytes in data RAM, whose addresses are labeled
ledO0, ledl1, 1led2, and led3, to store four seven-segment LED patterns.

Listing 16.1 Square program with a switch and seven-segment LED interface

; square circuit with 7—seg LED interface

;program operation:

5 — read a and b from switch
— calculate axa + bxb

; — display data on 7—seg led

data RAM address alias

1

constant a_lsb, 00
constant b_1lsb, 02
constant aa_lsb, 04

s constant aa_msb, 05
constant bb_lsb, 06
constant bb_msb, 07
constant aabb_lsb, 08
constant aabb_msb, 09

20 constant aabb_cout, OA
constant 1led0, 10
constant ledl, 11
constant led2, 12
constant led3, 13

; register alias

;commonly used local variables

» namereg s0, data ;reg for temporary data
namereg sl, addr ;reg for temporary mem & i/0 port addr
namereg s2, i ;general—purpose loop index

;global variables
namereg sf, switch_a_b ;ram offset for current switch input

; port alias

——— input port definitions

378 PICOBLAZE I/O INTERFACE

o constant rd_flag_port, 00 ;2 flags (xxxxxxsc):
constant sw_port, O1 ;8—bit switch
j—————————output port definitions
constant ssegO_port, 00 ;7—seg led 0
constant ssegl_port, 01 ;7—seg led 1

s constant sseg2_port, 02 ;7—seg led 2
constant sseg3_port, 03 ;7—seg led 3

ycalling hierarchy:

s main
; — init
55 — proc_.btn
; — init
; — square
R — mult_soft
; load_led_pttn
& ; — get_lower_nibble
; — get_upper_nibble
: — hex_to_led
R disp.led

[P e e B S e S S e

call init Jinitialization
forever:

smain loop body

70 call proc_btn ;check & process buttons
call square ;calculate square
call load_led_pttn ;store led patterns to ram
call disp_led ;output led pattern
jump forever

75

sroutine : init
;s function: perform initialization , clear register/ram
; output register:

80) switch_a_b: cleared to 0

N temp register: data, i

;clear memory

85 load i, 40 ;unitize loop index to 64
load data, 00

clr_mem_loop:

store data, (i)
sub i, 01 ;dec loop index

9% jump nz, clr_mem_loop ;repeat until i=0
;clear register
load switch_a_b, 00

105

110

120

125

130

140

145

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 379

return

;routine: proc.btn

; function: check two buttons and process the display
; input reg:

; switch_a_.b: ram offset (0 for a and 2 for b)

output register:
; s3: store input port flag
R switch_a.b: may be toggled
; temp register used: data, addr
proc_btn:
input s3, rd_flag_port ;get flag
;check and process ¢ button
test s3, 01 ;check ¢ button flag
jump z, chk_btns ;flag not set
call init ;flag ser, clear
jump proc_btn_done
chk_btns:
;check and process s button
test s3, 02 ;check s button flag
jump z, proc_btn_done ;flag not set
input data, sw_port ;get switch
load addr, a_lsb ;get addr of a
add addr, switch_a_b yadd offset
store data, (addr) ;write data to ram
;update current disp position
XOor switch_a_b, 02 ;toggle between 00, 02
proc_btn_done:
return

;routine : load_led_pttn

; function: read 3 LSBs of switch input and convert the
; desired values to four led patterns and

; load them to ram

; switch: 000:a; 001:b; 010:a"2; 011:b"2;

; others: a2 + b"2

; temp register used: data, addr

; s6: data from sw input port

load_led_pttn:

input s6, sw_port ;get switch

sl0 s6 ;%2 to obtain addr offset

compare s6, 08 ;sw>100?

jump ¢, sw_ok ;no

load s6, 08 syyes, sw error , make default
sw_ok:

;process byte 0, lower nibble
load addr, a_1lsb
add addr, s6 ;get lower addr

380 PICOBLAZE I/O INTERFACE

fetch data, (s6) ;get lower byte
call get_lower_nibble ;get lower nibble
call hex_to_led sconvert to led pattern
store data, 1led0
150 ;process byte 0, upper nibble

fetch data, (addr)
call get_upper_nibble
call hex_to_led
store data, ledl
155 ;process byte 1, lower nibble
add addr, 01 ;get upper addr
fetch data, (addr)
call get_lower_nibble
call hex_to_led
160 store data, led2
;process byte 1, upper nibble
fetch data, (addr)
call get_upper_mnibble
call hex_to_led

165 ;check for sw=100 to process carry as led dp
compare s6, 08 ;display final result?
jump nz, led_done s no
add addr, 01 ;get carry addr
fetch s6, (addr) ;$6 to Store carry

170 test s6, 01 scarry=1?
jump z, led_done ;no
and data, 7F ;ves, assert msb (dp) to O

led_done:
store data, led3
175 return

yroutine : disp_led
; function: output four led patterns
80, temp register used: data

fetch data, led0O
output data, ssegO_port
185 fetch data, ledl
output data, ssegl_port
fetch data, led2
output data, sseg2_port
fetch data, led3
190 output data, ssegl3_port
return

syroutine : hex_to_led

s ; function: convert a hex digit to 7—seg led pattern
R input register: data
; output register . data

200

205

210

21

)

I
)
o

230

240

250

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE

hex_to_led:

compare data, 00

jump nz, comp_hex_1

load data, 81

jump hex_done
comp_hex_1:

compare data, 01

jump nz, comp_hex_2

load data, CF

jump hex_done
comp_hex_2:

compare data, 02

jump nz, comp_hex_3

load data, 92

jump hex_done
comp_hex_3:

compare data, 03

jump nz, comp_hex_4

load data, 86

jump hex_done
comp_hex_4:

compare data, 04

jump nz, comp_hex_5

load data, CC

jump hex_done
comp_hex_5b:

compare data, 05

jump nz, comp_hex_6

load data, A4

jump hex_done
comp_hex_6:

compare data, 06

jump nz, comp_hex_7

load data, AO

jump hex_done
comp_hex_7:

compare data, 07

jump nz, comp_hex_8

load data, 8F

jump hex_done
comp_hex_8:

compare data, 08

jump nz, comp_hex_9

load data, 80

jump hex_done
comp_hex_9:

compare data, 09

jump nz, comp_hex_a

load data, 84

jump hex_done
comp_hex_a:

compare data, OA

jump nz, comp_hex_b

;7—seg

;7—seg

;/—seg

;7—seg

;7—seg

;7—seg

;7—seg

;7—seg

;7—seg

;7—5eg

pattern

pattern

pattern

pattern

pattern

pattern

pattern

pattern

pattern

pattern

381

382 PICOBLAZE I/O INTERFACE

load data, 88 ;7—seg pattern a
jump hex_done
comp_hex_b:
255 compare data, OB
jump nz, comp_hex_c
load data, EO ;7—seg pattern b
jump hex_done
comp_hex_c:
260 compare data, 0C
jump nz, comp_hex_d
load data, Bl ;7—seg pattern C
jump hex_done
comp_hex_d:
265 compare data, 0D
jump nz, comp_hex_e
load data, C2 ;7—seg pattern d
jump hex_done
comp_hex_e:
270 compare data, OE
jump nz, comp_hex_f
load data, BO ;7—seg pattern E
jump hex_done
comp_hex_f:
275 load data, B8 ;7—seg pattern F
hex_done:
return

w0 ; routine: get_lower_nibble
; function: get lower 4 birs of data
; input register: data
; output register: data
285 get_lower_nibble:
and data, OF ;clear upper nibble
return

20 ; routine : get_upper_nibble
; function: get upper 4 bits of in_data
; input register: data
; output register: data
s get_upper_nibble:
sr0 data ;right shift 4 times
sr0 data
sr0 data
sr0 data
300 return

Jroutine: square
; function: calculate axa + bxb

310

330

340

345

350

355

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE

; data/result stored in ram started w/ SQ_BASE_ADDR
;, temp register: s3, s4, s5, s6, data

square:
ycalculate axa
fetch s3, a_lsb sload a
fetch s4, a_lsb ;load a
call mult_soft ycalculate axa
store s6, aa_lsb ;store lower byte of axa
store s5, aa_msb ;store upper byte of axa
;calculate bxb
fetch s3, b_1lsb ;load b
fetch s4, b_1sb sload b
call mult_soft ycalculate bxb
store s6, bb_lsb ;store lower byte of bxb
store s5, bb_msb ;Sstore upper byte of bxb
;calculate axa+bxb
fetch data, aa_lsb ;get lower byte of axa
add data, s6 ;add lower byte of axa+bxb
store data, aabb_lsb ystore lower byte of axa+bxb
fetch data, aa_msb ;8et upper byte of axa
addcy data, s5 ;add upper byte of axa+bxb
store data, aabb_msb ;yStore upper byte of axa+bxb
load data, 00 ;clear data, but keep carry
addcy data, 00 ;get carry from previous +
store data, aabb_cout ;store carry of axat+bxb
return

yroutine : mult_soft

sy function: 8—bit unsigned multiplier using

; shift —and—add algorithm
; input register:

N s3: multiplicand

; s4: multiplier

; output register:

; §5: upper byte of product

; s6: lower byte of product

;. temp register: i

mult_soft:
load s5, 00 yclear s5
load i, 08 yinitialize loop index
mult_loop:
sr0 s4 ;shift Isb to carry
jump nc, shift_prod Jlsb is O
add s5, s3 sIlsb Qs 1
shift_prod:
sra sb ;Shift upper byte right,
;carry to MSB, LSB to carry
sra sé6 ;Shift lower byte right,

;Isb of s5 to MSB of s6
sub i, 01 ;dec loop index

383

384 PICOBLAZE 1/O INTERFACE

jump nz, mult_loop ;repeat until (=0
return

16.4.4 VHDL code development

The complete HDL code simply combines the PicoBlaze processor, instruction ROM, the
input interface and peripherals shown in Figure 16.7, and the output interface and peripherals
shown in Figure 16.6. It is shown in Listing 16.2.

Listing 16.2 PicoBlaze with a switch and seven-segment LED interface

library ieee;
use iecee.std_logic_1164. all;
use ieee.numeric_std. all;
entity pico_btn is
5 port (
clk, reset: in std_logic;
sw: in std_logic_vector (7 downto 0);
btn: in std_logic_vector (1 downto 0);
an: out std_logic_vector (3 downto 0);
10 sseg: out std_logic_vector (7 downto 0)
)
end pico_btn;

architecture arch of pico_btn is

Is —— KCPSM3/ROM signals
signal address: std_logic_vector (9 downto 0);
signal instruction: std_logic_vector (17 downto 0);
signal port_id: std_logic_vector (7 downto 0);
signal in_port, out_port: std_logic_vector (7 downte 0);

20 signal write_strobe, read_strobe: std_logic;
signal interrupt, interrupt_ack: std_logic;
signal kcpsm_reset: std_logic;
—— [/0 port signals
—— output enable

2 signal en_d: std_logic_vector (3 downto 0);
—— four—digit seven—segment led display
signal ds3_reg, ds2_reg: std_logic_vector(7 downto 0);
signal dsl_reg, dsO_reg: std_logic_vector(7 downto 0);
—— two pushbuttons

30 signal btnc_flag_reg, btnc_flag_next: std_logic;
signal btns_flag reg, btns_flag_next: std_logic;
signal set_btnc_flag, set_btns_flag: std_logic;
signal clr_btn_flag: std_logic;

35 —— ET TS S CSS S S S EECo CCS S CSSCS =SS =SS SS S SS SIS ESEmOToS

disp_unit: entity work.disp_mux
port map (
40 clk=>clk, reset=>’0’,
in3=>ds3_reg, in2=>ds2_reg, inl=>dsl_reg,
in0=>dsO_reg, an=>an, sseg=>sseg);

43

50

55

65

70

75

80

85

95

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 385

btnc_db_unit: entity work.debounce

port map(
clk=>clk, reset=>reset, sw=>btn(0),
db_level=>open, db_tick=>set_btnc_flag);

btns_db_unit: entity work.debounce

port map(
clk=>clk, reset=>reset, sw=>btn (i),
db_level=>open, db_tick=>set_btns_flag);

KCPSM and ROM instantiation

proc_unit: entity work.kcpsm3

port map(
clk=>clk, reset =>kcpsm_reset,
address=>address, instruction=>instruction,
port_id=>port_id, write_strobe=>write_strobe,
out_port=>out_port, read_strobe=>read_strobe,
in_port=>in_port, interrupt=>interrupt,
interrupt_ack=>interrupt_ack);

rom_unit: entity work.btn_rom

port map(
clk => clk, address=>address,
instruction=>instruction);
unused inputs on processor

kcpsm_reset <= ’0’;
interrupt <= ’0’;

output interface

outport port id:

0x00: dsO
0x01: dsli
0x02: ds2
0x03: ds3

registers

process (clk)
begin

if (clk’event and clk=’1’) then
if en_d(0)=’1’ then dsO_reg <= out_port; end if;
if en_d(1)=’1’ them dsl_reg <= out_port; end if;
if en_d(2)=’1’ then ds2_reg <= out_port; end if;
if en_d(3)=’1’ then ds3_reg <= out_port; end if;
end if;

end process;

— decoding circuit for enable signals
process (port_id ,write_strobe)

begin

en_d <= (others=>’0’);
if write_strobe=’1’ then
case port_id(1 downto 0) is
when "00" => en_d <="0001";
when "01" => en_d4d <="0010";

386

105

110

115

120

125

1320

135

PICOBLAZE /O INTERFACE

when "10" => en_d <="0100";
when others => en_d <="1000";

end case;
end if;
end process;
—— input interface
— input port id
— 0x00: flag
— 0x01: switch
—— input register (for flags)
process (clk)
begin
if (clk’event and clk=’1’) then
btnc_flag_reg <= btnc_flag_next;
btns_flag_reg <= btns_flag_next;
end if;
end process;
btnc_flag_next <= ’1’ when set_btnc_flag=’1’ else
>0’ when clr_btn_flag=’1’ else
btnc_flag_reg;
btns_flag_next <= ’'1’ when set_btns_flag=’1’ else
>0’ when clr_btn_flag=’1’ else
btns_flag_reg;
—— decoding circuit for clear signals
clr_btn_flag <=’1’ when read_strobe=’1’ and
port_id (0)=’0’ else
101;
— input multiplexing
process (port_id,btns_flag_reg,btnc_flag_reg,sw)
begin
case port_id(0) is
when 0’ =>
in_port <= "000000" &
btns_flag_reg & btnc_flag_reg;
when others =>
in_port <= sw;
end case;
end process;
end arch;

16.5 SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND

UART CONSOLE

In this section, we add two more I/O peripherals to the previous design. One is a combi-
national multiplier, which accelerates the multiplication, and the other is an UART, which
provides a communication link to a PC.

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 387

16.5.1 Multiplier interface

Since PicoBlaze does not contain a hardware multiplier, the multiplication is done by a
software routine, mult_soft. It uses a shift-and-add algorithm to iterate through the 8-bit
multiplier and requires about 60 instructions in the worst-case scenario. An alternative is
to utilize the Spartan-3 device’s built-in combinational multiplier.

Since PicoBlaze provides no mechanism to use a coprocessor, the multiplier must be
configured as an I/O peripheral. We can create an 8-bit combinational multiplier that
takes two 8-bit operands and returns a 16-bit product. To facilitate this peripheral, the
PicoBlaze’s interface requires two additional output ports and buffers for the two operands
and two additional input ports for the 16-bit product. The assembly routine now only needs
to pass the operands to the output ports and then retrieve the results from the input ports.
The code becomes

;input port definitions

constant wmult_prodO_port, 03 ;multiplication product 8 LSBs
constant mult_prodl_port, 04 ;multiplication product 8 MSBs
soutputr port definitions

constant mult_srcO_port, 05 ;multiplier operand 0
constant mult_srcl_port, 06 ;multiplier operand I
mult_hard:

output s3, mult_srcO_port
output s4, mult_srcl_port
input s5, mult_prodl_port
input s6, mult_prodO_port
return

Note that the combinational multiplier can complete the computation with one instruction
(i.e., two clock cycles), and thus no additional timing mechanism is needed in the code.
This routine can be used in place of the previous mult.soft routine.

16.5.2 UART interface

With the UART interface, information can be entered and displayed in Windows HyperTer-
minal, which is more flexible and versatile than switches and LEDs. We use it as a simple
control console for the square routine. A representative screen is shown in Figure 16.8.
The console generates an SQ> prompt and a user can respond with a lowercase a, b, ¢, or
d character. The a and b characters are used to input values for a and b of the square
routine. When the key is pressed, the value of the 8-bit switch is read and stored into the
corresponding data RAM location. The ¢ character is used to clear the data RAM and
reinitialize the program. Its function is identical to that of the ¢ button. The d character
leads to a “data RAM dump,” in which the 64 bytes of the data RAM are displayed on
screen. This allows us to observe the various values of the square routine and the four
seven-segment LED patterns. An Error message is returned for all other characters.

The UART module designed in Section 7.4 can be used for this purpose. Since the
transmission and receiving FIFO buffers provide a storage and flagging mechanism, no
additional circuit is needed. We need only expand the decoding and multiplexing circuits
to accommodate the additional I/O ports. The UART interface block diagram is sketched
in Figure 16.9, in which the other I/O peripherals are omitted to reduce clutter. PicoBlaze’s
output port, out_port, is connected to w_data of UART. The decoded enable signal is
connected to wr_uart, and the data is written to UART transmitting FIFO when it is

388

PICOBLAZE I/O INTERFACE

S3 - HyperTerminal

File Edit View Call Transfer Help
D @383 DB =

c

SQ» ¢

SO> d
000000 00 00 00 00 00 00 00 00
001000 00 00 0O 00 0O 0O 00 0O
010000 00 00 00 00 81 81 81 81
011000 00 00 00 00 00 0O 00 00
100000 00 00 00 00 00 00 00 00
101000 00 00 00 00 00 00 00 00
110000 00 00 00 00 00 00 00 60

Sﬂllla% 00 00 00 00 00 00 60 00
> a

<

Connected 0:01:10 Auto detect 19200 8-N-1 °!

Figure 16.8 Representative console screen.

w_data .—l

m —» r_data s 'r';‘:;?n
tx +— tx 7—’
rx_emply instruction
tx_full
rd_uart
> UART wr_uart

out_port

_id
write_strobe
read_strobe
interrupt_ack

address
KCPSM3

output

»| decoding

input
decoding

S

Figure 16.9 UART I/O interface.

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 389

asserted. Similarly, r_data of UART is routed to PicoBlaze’s input multiplexing circuit,
and the decoded clear signal is connected to rd_uart. When the UART receiving FIFO
port is specified in an input instruction, the receiving FIFO’s output is routed to PicoBlaze’s
input port, in_port, and the decoded remove signal is asserted one clock cycle to remove
one word from the receiving FIFO. The UART interface also needs to route the two status
signals, rx_empty and tx_full, to PicoBlaze’s input multiplexing circuit. The assembly
program needs to check the status before reading or writing the UART’s FIFOs. Since the
signals are only 2 bits wide, they can be grouped with the previous s and ¢ buttons in the
same input port.

16.5.3 Assembly code development

Since the previous assembly code is developed in a modular fashion, we can expand the
program by adding a routine, proc.uart, to process UART transactions. The main program
becomes

call init yinitialization

forever:
;main loop body
call proc_btn ycheck & process buttons
call proc_uart ;check & process uart rx
call square ;calculate square
call load_led_pttn ;store led patterns to ram
call disp_led youtput led pattern

jump forever

Because of the complexity of the required console operation, the proc_uart is quite
involved. The pseudo code of this routine is

; if (no character in UART receiving FIFO) then
; return

N input characters from FIFO
; if (characters is a) then
; input switch value

R store it to data ram
; display prompt

; return

; if (characters is b) then
; input switch value

; store it to data ram
; display prompt

; return

R if (characters is c¢) then
; perform initialization
; return

; if (characters is d) then
; dump data ram

; return

; display error message

; return

We follow the modular development approach and further divide this routine into simpler
routines. A key low-level routine is tx_one_byte, which transmits 1 byte via the UART
port. Its code is

390 PICOBLAZE /O INTERFACE

Jinput port definitions

constant rd_flag_port, 00

; 4 flags (xxxxtrsc):

; t: wuart tx full , r: uart rx not empty
; s: s button flag, c: ¢ button flag
;output port definitions

constant uart_tx_port, 04 ;uart receiver port
;register alias
namereg sd, tx_data ;data to be tx by uart

tx_one_byte:
input s6, rd_flag_port

test s6, 08 ;check wart_ tx_full

jump nz, tx_one_byte ;yes , keep on waiting
output tx_data, uart_tx_port ;ro, write to uart tx fifo
return

Since PicoBlaze’s processing speed is much higher than the UART’s transmission speed, we
must prevent buffer overflow. The routine keeps on checking the status of the transmitting
FIFO buffer, and writes data only when the buffer is not full.

The task of dumping data RAM requires the most work. It displays the data RAM address
and contents as an 8-by-8 table, which lists the byte address first and then the 8 bytes of
data in hexadecimal format, as in

001000 00 OF 00 09 00 04 00 03
010000 00 00 FF 1D 00 00 00 19

111000 00 00 00 00 00 FF FF FF

The routine consists of three major routines: disp_ram_addr, which sends ASCII codes to
display the 5-bit base address in binary format; disp_ram_data, which sends ASCII codes
to display 8 bytes of data; and hex_to_ascii, which converts a hexadecimal digit to the
corresponding ASCII code.

The complete code is shown in Listing 16.3. It includes detailed comments to explain
operation of the subroutines. The unmodified subroutines of Listing 16.1 are omitted.

Listing 16.3 Square program with a UART console

; square circuit with UART and multiplier interface

;program operation:
s, — read a and b from switch
— calculate axa + bxb
;, — display data on HyperTerminal and 7—seg led

o, data constants

constant ASCII_O, 30
constant ASCII_1, 31
s constant ASCII_2, 32
constant ASCII_3, 33
constant ASCII_a, 61

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 391

constant ASCII_b, 62
constant ASCII_c, 63
constant ASCII_d, 64
constant ASCII_o, 6F
constant ASCII_r, 72
constant ASCII_E, 45
constant ASCII_S, 53
» constant ASCII_Q, 51

)
S

constant ASCII_D_U, 44 ; uppercase D

constant ASCII_GT, 3E ;s >

constant ASCII_SP, 20 ; Space

constant ASCII_CR, OD ; carriage return
o constant ASCII_LF, OA ; line feed

; data RAM address alias
s constant a_lsb, 00
constant b_lsb, 02
constant aa_lsb, 04
constant aa_msb, 05
constant bb_1lsb, 06
constant bb_msb, 07
constant aabb_1lsb, 08
constant aabb_msb, 09
constant aabb_cout, OA
constant led0O, 10
4s constant led1l, 11

constant led2, 12

constant led3, 13

A

S

o, register alias

scommonly used local variables

namereg sO, data ;reg for temporary data
namereg si, addr ;reg for temporary mem & i/o port addr
ss namereg s2, i ;general—purpose loop index

;global variables
namereg sc, switch_a_b ;ram offsetr for current switch input
namereg sd, tx_data ;data to be tx by uart

; port alias

;———— input port definitions
constant rd_flag_port, 00
s, 4 flags (xxxxtrsc):
; t: wuarr tx full
; r: uart rx not empty
: s: s button flag
; ¢: ¢ button flag
7 constant sw_port, 01 ;8—bit switches

392 PICOBLAZE 1/O INTERFACE

constant uart_rx_port, 02 suart receiver port
constant mult_prodO_port, 03 ;multiplication product 8 LSBs
constant mult_prodl_port, 04 ymultiplication product 8 MSBs
j—————————output port definitions
75 constant ssegO_port, 00 ;7—-seg led 0
constant ssegl_port, 01 ;7—seg led 1
constant sseg2_port, 02 ;7—seg led 2
constant sseg3_port, 03 ;7—seg led 3
constant uart_tx_port, 04 yuart receiver port
% constant mult_srcO_port, 05 ;multiplier operand 0
constant mult_srci_port, 06 ;multiplier operand 1

;calling hierarchy:

;main
N — init
% — tx_prompt
; — tx.one_byte
K — proc_btn
; — init
; — proc_uart
95 — tx_prompt

; — init
; — proc.uart_err
; — tx_one_byte
; — dump_mem
0o ; — tx_prompt
; — disp_-ram_addr
; — tx_one_byte
; — disp_ram_data
; — tx_one_byte
105 5 — get_upper_nibble
; — get_lower_nibble
; — hex_to_ascii
5 — Square
; — mult_hard
o ; — load_led_ptin
; — get_lower_nibble
; — get_upper_nibble
; — hex_to_led

;. ~ disp_led
1s
call init yinitialization
forever:
smain loop body
120 call proc_btn ;check & process buttons
call proc_uart ;check & process uart rx
call square scalculate square

call load_led_pttn ;store led patterns to ram

125

130

135

140

145

150

165

170

175

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE

call disp_led
jump forever

yroutine : init
; function: perform initialization , clear register/ram
K output register:
R switch_a_b: cleared to 0
R temp register: data, i
init
sclear memory
load i, 40 ;unitize loop index to 64
load data, 00
clr_mem_loop:
store data, (i)
sub i, 01 ;dec loop index
jump nz, clr_mem_loop ;yrepeat until i=0
;clear register
load switch_a_b, 00
call tx_prompt
return
;routine: proc.uart
; function: read wuart input char:
; a or b: read a or b from switch;
; c: clear; d: dump/display data ram other: error
; input reg: s3 (input port flag)
; temp register used: data
; s4: store received uart char or 00 (no uart input)

proc_uart

;output led pattern

test s3, 04 ;ycheck uart rx status
jump z, uvart_rx_done ;80 to done if rx empty
;process received char
input s4, uart_rx_port ;get char
;check if received char is a
compare s4, ASCII_a ;check ASCII a
jump nz, chk_ascii_b ;no, check next
input data, sw_port ;get switch
store data, a_lsb swrite a to data ram
call tx_prompt ;new prompt line
jump uart_rx_done

chk_ascii_b:
;check if received char is b
compare s4, ASCII_b ;check ASCII b
jump nz, chk_ascii_c sno, check next
input data, sw_port yget switch
store data, b_1lsb s write b to data ram

call tx_prompt
jump uart_rx_done
chk_ascii_c:

;new prompt line

393

394 PICOBLAZE I/O INTERFACE

;check if received char is ¢

compare s4, ASCII_c ;check ASCII ¢
jump nz, chk_ascii_d ;no check next
180 call init sclear

jump uart_rx_done
chk_ascii_d:
;check if received char is d

compare s4, ASCII_d ;check ASCII d
185 jump nz, ascii_undefined
call dump_mem sdump/display ram

jump uart_rx_done
ascii_undefined:
cundefined char
190 call proc_uart_error
uart_rx_done:
return

195 ; Foutine : proc_uart_error
s function: display "Error" for unknown uart char
proc_uart_error:
load tx_data, ASCII_LF

200 call tx_one_byte stransmit LF
load tx_data, ASCII_CR
call tx_one_byte stransmit CR
load tx_data, ASCII_SP
call tx_one_byte ;transmit SP
205 call tx_one_byte stransmit SP
load tx_data, ASCII_E
call tx_one_byte stransmit E
load tx_data, ASCII_r
call tx_one_byte stransmit r
210 load tx_data, ASCII_r
call tx_one_byte Jtransmit r
load tx_data, ASCII_o
call tx_one_byte Jtransmit o
load tx_data, ASCII_r
215 call tx_one_byte stransmit r
call tx_prompt
return

2 ;routine : dump_mem
; function: when d received , dump 64 bytes of ram as
; 001000 XX XX XX XX XX XX XX XX
; 010000 XX XX XX XX XX XX XX XX

25 111000 XX XX XX XX XX XX XX XX
; temp register used:
K s3: as outer loop index
: s4: ram base address

2

b

0

235

240

245

250

255

260

270

280

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE

dump_mem:

load

s3, 00

dump_loop:

;loop
load

body
s4, s3

sl0 s4
s10 s4
s10 s4

call
call

disp_ram_addr
disp_ram_data

add s3, 01
compare s3, 08

jump
call

nz, dump_loop
tx_prompt

return

sroutine :

; funct
; temp

tx_prompt

;addr used as loop index

;get ram base addr (xxx000)

;inc loop index

;loop not reach 8 yet
;new prompt

ion: generate prompt "SQO>"

register: tx_data

tx_prompt:

load
call
load
call
load
call
load
call
load
call
load
call

tx_data, ASCII_LF

tx_one_byte

tx_data, ASCII_CR

tx_one_byte

tx_data, ASCII_S

tx_one_byte

tx_data, ASCII_Q

tx_one_byte

tx_data, ASCII_GT

tx_one_byte

tx_data, ASCII_SP

tx_one_byte

return

sroutine :
; function :

disp_ram_addr

; bbb000

; input
; s4
; temp

; i,

register:

: base address
register:
s7:1—bit mask

disp_ram_addr:

s hew
load
call
load
call
load
call

line

tx_data, ASCII_LF

tx_one_byte

tx_data, ASCII_CR

tx_one_byte

tx_data, ASCII_SP

tx_one_byte

display 6—-bit

stransmit LF

ctransmit CR

ctransmit S

stransmit Q

stransmit >

ctransmit SP

ram addr

stransmit LF

stransmit CR

stransmit SP

395

396

285

305

310

315

320

330

PICOBLAZE I/O INTERFACE

call tx_one_byte ;transmit SP

;initialize the loop index and mask

load i, 06 yaddr used as loop index

load s7, 20 ;set mask to 0010_.0000
tx_loop:

;loop body

load tx_data, ASCII_1 ;load default ASCII 1

test s7, s4 ;check the bit

jump nz, tx_01 ;the bit is I

load tx_data, ASCII_O; ;the bit is 0, load ASCII 0
tx_01:

call tx_one_byte ;transmit the ASCII I or 0

;update loop index and mask

sr0 s7 ;shift mask bit

sub i, 01 ;dec loop index

jump nz, tx_loop ;loop not reach 0 yet

;done with loop, send ASCII space

load tx_data, ASCII_SP ;load ASCII SP

call tx_one_byte ;transmit SP

return

;routine : disp_ram_data

function: 8 —byte data in form of
00 11 22 33 44 55 66 77 88
input register:
s4: ram base address (xxx000)
temp register: i, addr, data

disp_ram_data:

sinitialize the loop index and mask

load i, 08 yaddr used as loop index
d_ram_loop:

;loop body

load addr, s4

add addr, i

sub addr, 01 scalculate
;send upper nibble

fetch data, (addr)

call get_upper_nibble

call hex_to_ascii yconvert to
load tx_data, data

call tx_one_byte

;send lower nibble

fetch data, (addr)

call get_lower_nibble

call hex_to_ascii yconvert to
load tx_data, data

call tx_one_byte

;send a space

load tx_data, ASCII_SP;

call tx_one_byte ;ytransmit SP

addr offset

ascii

ascii

sub i, 01 ;dec loop index

340

345

350

355

360

365

370

375

380

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE

jump nz, d_ram_loop ;loop not reach 0 yet
return

Jroutine. hex_to_.ascii

; function: convert a hex number to ascii code
; add 30 for 0-9, add 37 for A-F

R input register: data

hex_to_ascii:
compare data, Oa

jump ¢, add_30 ;0 10 9, offser 30

add data, 07 ;a to f, extra offset 07
add_30:

add data, 30

return

;routine . tx_one_byte

; function: wait until wuart tx fifo not full;
R then write a byte to fifo

: input register: tx_data

; temp register:

; s6: read port flag

tx_one_byte:
input s6, rd_flag_port
test s6, 08 ;check uart_tx_full
jomp nz, tx_one_byte ;yves, keep on waiting

output tx_data, uart_tx_port ;no, write to uart tx fifo

return

Jroutine : square

; function: calculate axa + bxb

R data/result stored in ram started w/ SQ_BASE_ADDR
R temp register: s3, s4, s5, s6, data

square:
scalculate axa
fetch s3, a_lsb ;load a
fetch s4, a_lsb ;load a
call mult_hard scalculate axa
store s6, aa_lsb ;store lower byte of axa
store s5, aa_msb ;store upper byte of axa
scalculate bxb
fetch s3, b_lsb ;load b
fetch s4, b_1lsb sload b
call mult_hard ycalculate bxb
store s6, bb_lsb ;store lower byte of bxb
store s5, bb_msb ;store upper byte of bxb

ycalculate axa+bxb
fetch data, aa_lsb ;get lower byte of axa

397

398 PICOBLAZE |/O INTERFACE

add data, sé

;add lower byte of axa+bxb

3% store data, aabb_lsb ;store lower byte of axa+bxb
fetch data, aa_msbd ;get upper byte of axa

addcy data, s5

;add upper byte of axa+bx*b

store data, aabb_msb ;store upper byte of axa+bxb

load data, 00
395 addcy data, 00

;clear data, but keep carry
;get carry from previous +

store data, aabb_cout ;store carry of axa+bxb

return

w0 s routine: mult_hard

; function: 8—bit

unsigned multiplication using

; external combinational multiplier;

; input register:

; s3: multiplicand
205 s4: multiplier

; output register

; s5: upper byte of product
; s6: lower byte of product

; temp register:

410 EEE T e e e s e e

mult_hard:

output s3, mult_srcO_port
output s4, mult_srcl_port
input s5, mult_prodl_port
415 input s6, mult_prod0_port

return

;The following are

the same as the previous Listing:

s ; proc.btn, load_led_pttn , disp_led

: hex_to_led , get

_lower_nibble , get_upper_nibble

16.5.4 VHDL code development

The new square circuit adds a UART and a combinational multiplier to an I/O interface.
The former is the module discussed in Section 7.4, and the latter can be inferred from the
HDL’s * operator. The decoding and multiplexing parts of HDL code in Listing 16.2 can be
expanded to accommodate the two new peripherals. The complete VHDL code is shown in
Listing 16.4. The detailed I/O port address assignment can be found in the header section

of Listing 16.3.

Listing 16.4 PicoBlaze with UART console and multiplier interface

library ieee;
use ieee.std_logic

_1164. all;

use ieee.numeric_std. all;
entity pico_uart is

5 port (
clk, reset:

in std_logic;

20

25

35

40

45

50

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE

sw: in std_logic_vector (7 downto 0);
btn: in std_logic_vector (3 downto 0);
rx: in std_logic;

an: out std_logic_vector (3 downto 0);
sseg: out std_logic_vector (7 downto 0);
tx: out std_logic

)5

end pico_uart;

architecture arch of pico_uart is

— KCPSM3/ROM

signal address:
signal instruction:
signal port_id:

signal in_port

signals

std_logic_vector (9 downto 0);
std_logic_vector (17 downto 0);
std_logic_vector (7 downto 0);
, out_port: std_logic_vector (7 downto 0);

signal write_strobe, read_strobe: std_logic;
signal interrupt, interrupt_ack: std_logic;
signal kcpsm_reset: std_logic;

— I/0 port signals

— output enable

signal en_d: std_logic_vector (6 downto 0);

—— four—digit
signal ds3_reg
signal dsil_reg

seven—segment led display

, ds2_reg: std_logic_vector (7 downto 0);
, dsO_reg: std_logic_vector (7 downto 0);

— two pushbuttons
signal btnc_flag_reg, btnc_flag_next: std_logic;

signal btns_flag_ reg, btns_flag_next:

std_logic;

signal set_btnc_flag, set_btns_flag: std_logic;
signal clr_btn_flag: std_logic;

— uart

signal w_data:
signal rd_uart
signal wr_uart

signal rx_char:

— multiplier

signal m_srcO_reg, m_srcl_reg:

std_logic_vector (7 downto 0)

, rx_not_empty, rx_empty: std_logic;

, tx_full: std_logic;

signal prod: std_logic_vector (15 downto 0);

begin

std_logic_vector (7 downto 0);

399

std_logic_vector (7 downto 0);

disp_unit: entity work.disp_mux

port map (

clk=>clk, reset=>’0",

in3=>ds3_reg, in2=>ds2_reg, inl=>dsl_reg,

in0=>ds0O_reg, an=>an, sseg=>sseg);
uart_unit: entity work.uart(str_arch)

port map(

clk=>clk, reset=>reset, rd_uart=>rd_uart,
wr_uvart=>wr_uart, rx=>rx,

w_data=>out_port, tx_full=>tx_£full,
rx_empty=>rx_empty, r_data=>rx_char,

btnc_db_unit:

entity work.debounce

tx=>tx);

400

70

80

85

95

105

110

PICOBLAZE I/O INTERFACE

port map(
clk=>clk, reset=>reset, sw=>btn(0),
db_level=>open, db_tick=>set_btnc_flag);

btns_db_unit: entity work.debounce

port map(
clk=>clk, reset=>reset, sw=>btn(l),
db_level=>open, db_tick=>set_btns_flag);
combinational multiplier

prod <= std_logic_vector

(unsigned(m_srcO_reg) * unsigned(m_srcl_reg));

KCPSM and ROM instantiation

proc_unit: entity work.kcpsm3

port map (
clk=>clk, reset =>kcpsm_reset,
address=>address, instruction=>instruction,
port_id=>port_id, write_strobe=>write_strobe,
out_port=>out_port, read_strobe=>read_strobe,
in_port=>in_port, interrupt=>interrupt,
interrupt_ack=>interrupt_ack);

rom_unit: entity work.uart_rom

port map(
clk => clk, address=>address,
instruction=>instruction);
unused inputs on processor

kcpsm_reset <= ’0’;
interrupt <= ’0’;

output interface

outport port id:

0x00: dsO
0x01: dsl
0x02: ds2
0x03: ds3

0x04: uart_tx_fifo
0x05: m_srcO

registers

process (clk)

be

gin
if (clk’event and clk=’1’) then

if en_d(0)=’1’ then dsO_reg <= out_port; end if;
if en_d(1)=’1’ then dsl_reg <= out_port; end if;
if en_d(2)=’1’ then ds2_reg <= out_port; end if;
if en_d(3)=’1’ then ds3_reg <= out_port; end if;
if en_d(5)=’1’ then m_srcO_reg <= out_port; end
if en_d(6)=’1’ then m_srcl_reg <= out_port; end

end if;

end process;

— decoding circuit for enable signals

if;
if;

120

130

135

145

150

155

165

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE

process (port_id,write_strobe)
begin
en_d <= (others=>’07);
if write_strobe=’1’ then
case port_id (2 downto 0) is
when "000" => en_d <="0000001";
when "001" => en_d <="0000010";
when "010" => en_d <="0000100";
when "011" => en_d <="0001000";
when "100" => en_d <="0010000";
when "101" => en_d <="0100000";
when others => en_d <="1000000";
end case;
end if;
end process;
wr_uart <= en_d(4);

—— input interface

— input port id

— 0x00: flag

— 0x01: switch

— 0x02: wuart-rx_fifo

- 0x03: prod lower byte
- 0x04 : prod upper byte

—— input register (for flags)
process (clk)
begin
if (clk’event and clk=’1’) then
btnc_flag_reg <= btnc_flag_next;
btns_flag_reg <= btns_flag_next;
end if;
end process;

btnc_flag_next <= ’1’ when set_btnc_flag=’1’ else
>0’ when clr_btn_flag=’1’ else
btnc_flag_reg;

btns_flag_next <= ’1° when set_btns_flag='1’ else
0’ when clr_btn_flag='1’ else
btns_flag_reg;

—— decoding circuit for clear signals

clr_btn_flag <=’1’ when read_strobe=’1’ and

port_id (2 downto 0)="000" else

)o};
rd_uart <= ’1’ when read_strobe=’1’ and
port_id (2 downto 0)="010" else
’O’;
—— input multiplexing
rx_not_empty <= not rx_empty;
process (port_id,tx_full ,rx_not_empty,
btns_flag_reg,btnc_flag_reg,sw,rx_char,prod)
begin

401

402 PICOBLAZE /O INTERFACE

case port_id (2 downto 0) is
when "000" =>
in_port <= "0000" & tx_full & rx_not_empty &
btns_flag_reg & btnc_flag_reg;
170 when "001" =>
in_port <= sw;
when "010" =>
in_port <= rx_char;
when "011" =>
175 in_port <=prod(7 downto 0);
when others =>
in_port <= prod (15 downto 8);
end case;
end process;
0 end arch;

16.6 BIBLIOGRAPHIC NOTES

The basic bibliographic information for this chapter is similar to that for Chapter 14. The
downloaded kcpsm file contains a comprehensive UART and timer design example. The
Xilinx Web site has pages for “PicoBlaze Forum” and “PicoBlaze User Resources,” where
additional PicoBlaze examples are available.

16.7 SUGGESTED EXPERIMENTS

16.7.1 Low-frequency counter |

An accurate low-frequency counter is discussed in Section 6.3.5. We can treat the period
counter, division circuit, and binary-to-BCD conversion circuit as three I/O modules, and
replace the top-level FSM with PicoBlaze. Design the I/O interface, derive the assembly
and HDL codes, compile and synthesize the circuit, and verify its operation.

16.7.2 Low-frequency counter ll

We can reduce the hardware of the frequency counter of Experiment 16.7.1 by replacing the
division circuit and binary-to-BCD conversion circuit with software subroutines. Redesign
the I/O interface, derive the assembly and HDL codes, compile and synthesize the circuit,
and verity its operation.

16.7.3 Auto-scaled low-frequency counter

An auto-scaled low-frequency counter is discussed in Experiment 6.5.5. We can use Pi-
coBlaze to perform all non-time-critical functions. Redesign the circuit with PicoBlaze and
minimal external hardware. Derive the assembly and HDL codes, compile and synthesize
the circuit, and verify its operation.

SUGGESTED EXPERIMENTS 403

16.7.4 Basic reaction timer with a software timer

The reaction timer is discussed in Experiment 6.5.6. We can redesign the circuit using
PicoBlaze. One task of the design is to keep track of the elapsed time interval. This can be
done by a software counting routine. Recall that a 50-MHz clock is used on the prototyping
board and each instruction takes two clock cycles. We can create a counting loop to record
the number of instructions executed and derive the time interval accordingly. Since the
interval is at least in the millisecond range, multiple registers are needed for this purpose.
Design the I/O interface, derive the assembly and HDL codes, compile and synthesize the
circuit, and verify its operation.

16.7.5 Basic reaction timer with a hardware timer

We can repeat Experiment 16.7.4 with a customized hardware timer. The timer should be
treated as an I/O peripheral. PicoBlaze can output a command to clear, start, or pause the
timer, and can input the counter’s content. Design the I/O interface, derive the assembly
and HDL codes, compile and synthesize the circuit, and verify its operation.

16.7.6 Enhanced reaction timer

An enhanced reaction timer keeps track of the last four response times and the fastest
response time, and displays the data on Windows HyperTerminal. We can design a console
similar to that of Section 16.5. There should be three commands:

e c: clears all data

e f: displays the fastest response

o r: displays the time of the last four responses

e All other characters: displays “error”

Expand the design in Experiment 16.7.4 or 16.7.5 to include this feature. Derive the
assembly and HDL codes, compile and synthesize the circuit, and verify its operation.

16.7.7 Small-screen mouse scribble circuit

A small-screen mouse scribble circuit is discussed in Experiment 12.7.10. We can use
PicoBlaze to monitor the activities of the mouse and update the video memory accordingly.
Design the I/O interface, derive the assembly and HDL codes, compile and synthesize the
circuit, and verify its operation.

16.7.8 Full-screen mouse scribble circuit

A full-screen mouse scribble circuit is discussed in Experiment 12.7.11. We can use Pi-
coBlaze to monitor the activities of the mouse and update the video memory accordingly.
Design the I/O interface, derive the assembly and HDL codes, compile and synthesize the
circuit, and verify its operation.

16.7.9 Enhanced rotating banner

A VGA rotating banner circuitis discussed in Experiment 13.6.1. Instead of a fixed message,
we can enhance this circuit by using a keyboard to enter the message dynamically. Assume

404 PICOBLAZE I/O INTERFACE

that the message buffer is 20 characters long and its characters are updated in a first-in-
first-out fashion. Redesign the circuit with PicoBlaze. Design the I/O interface, derive the
assembly and HDL codes, compile and synthesize the circuit, and verify its operation.

16.7.10 Pong game

The complete pong game is discussed in Section 13.4. Some functions of the design can
be implemented by PicoBlaze:

e Top-level control FSM

e Top-level two-second timer and two-digit decade counter

e The circuit that updates the paddle position, ball position, and ball velocities in

Listing 12.5

Modify the original circuit, design the I/O interface, derive the assembly and HDL codes,
compile and synthesize the circuit, and verify its operation.

16.7.11 Text editor

A UART terminal is discussed in Experiment 13.6.5. We can use PicoBlaze to obtain data
and commands from the UART and update the tile memory accordingly. Design the I/O
interface, derive the assembly and HDL codes, compile and synthesize the circuit, and
verify its operation.

