
CHAPTER 15 

PICOBLAZE ASSEMBLY CODE 
DEVELOPMENT 

15.1 INTRODUCTION 

Because of its simplicity, PicoBlaze cannot effectively support high-level programming 
languages and the code is generally developed in assembly language. In this chapter, we 
provide an overview of code development, which is illustrated in a bottom-up fashion. We 
first introduce the segments of frequently used data and control operations and then examine 
the use of a subroutine and finally outline the derivation of overall program structure. 

15.2 USEFUL CODE SEGMENTS 

The PicoBlaze microcontroller contains instructions for byte-oriented data manipulation 
and simple conditional branch. In this section, we illustrate how to construct code to 
perform bit and multiple-byte operations and to realize frequently used high-level language 
control constructs. 

15.2.1 KCPSM3 conventions 

The KCPSM3 assembler uses the following conventions in an assembly program: 
0 Use a “ : ” sign after a symbolic address in code, as in “done : ”. 
0 Use a “; ” sign before a comment. 
0 Use HH for a constant, in which H is a hexadecimal digit. 
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An example of a code segment follows: 

; t h i s  is a demo s e g m e n t  
t e s t  S O ,  82 ; compare  S O  w i t h  1 0 0 0  -001  0 
jump z ,  clr-sl ; i f  MSB of S O  is 0 ,  g o  t o  c l r - s l  
l oad  s l ,  FF ; n o ,  l o a d  l I l I _ l I I l  t o  s l  

l oad  sl, 0 1  ; load  0000 -0001 t o  s l  
clr-sl: 

15.2.2 Bit manipulation 

PicoBlaze’s instruction set is primarily for byte-oriented operations. Bit-oriented operations 
are frequently needed to control low-level I/O activities, such as testing, setting, and clearing 
a 1-bit flag signal. 

To manipulate a single bit, we first define a musk to isolate and preserve (i.e., mask) the 
unrelated bits and then apply the designated operation on the desired bits (i.e., unmasked 
bits). We can set, clear, and toggle (i.e., invert) some bits of a data byte by performing or, 
and, and xor instructions with a proper mask. The following code segment shows how to 
set, clear, and toggle the second LSB of the SO register: 

c o n s t a n t  SET-MASK , 0 2  ; m a s k = 0 0 0 0 ~ 0 0 1 0  
c o n s t a n t  CLR-MASK , FD ; m a s k = I l I l - l l O l  
c o n s t a n t  TOG-MASK , 0 2  ;mask=OOOO-OOIO 

or S O ,  SET-MASK ; s e t  2 n d  LSB t o  1 
and S O ,  CLR-MASK ; c l e a r  2 n d  LSB t o  0 
xor S O ,  TOG-MASK ; t o g g l e  2 n d  LSB 

The toggle operation is based on the observation that for any Boolean variable z, z C? 0 = z 
and z E? 1 = z’. The same principle can be applied to multiple bits. For example, we can 
clear the upper nibble (i.e., four MSBs) by using 

and S O ,  OF ; mask =OOOO -1 1 I 1 

We can also apply the concept of the and mask to the test instruction to check a single 
bit. For example, the following code segment tests the MSB of the SO register and branches 
to a proper routine accordingly: 

t e s t  S O ,  80 ; m a s k = 1 0 0 0 ~ 0 0 0 0  
jump n z ,  msb-set ;MSB i s  1 ,  b r a n c h  t o  m s b - s e t  
; c o d e  f o r  MSB n o t  s e t  
jump done 

; c o d e  f o r  MSB s e t  
msb-set : 

. . .  
done : 

. . .  
A single bit can be extracted by applying the previous code. For example, the following 
code segment extracts the MSB of the SO register and stores it in the si register: 

load s l ,  00 
t e s t  S O ,  8 0  ; m a s k = 1 0 0 0 ~ 0 0 0 0 ,  e x t r a c t  MSB 
jump z ,  done ; y e s ,  MSB i s  0 
l oad  s l ,  0 1  ; n o ,  l o a d  1 t o  s l  
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done : 

15.2.3 Multiple-byte manipulation 

A microcontroller sometimes needs to handle wide, multiple-byte data, such as a large 
counter. Since the data width of PicoBlaze is 8 bits, processing this type of data requires a 
mechanism to propagate information between two successive instructions. PicoBlaze uses 
the carry flag for this purpose. For the arithmetic instructions, there are two versions for 
addition and subtraction, one with carry and one without carry, as in the add and addcy 
instructions. For the shift and rotate instructions, carry can be shifted into the MSB or LSB 
of a register, and vice versa. 

Assume that x and y are 24-bit data and each occupies three registers. The following 
code segment illustrates the use of carry in multiple-byte addition: 

namereg S O ,  x0 ; l e a s t  s i g n i f i c a n t  b y t e  of x 
namereg sl, xl ; m i d d l e  b y t e  of x 
namereg s2, x2 ; m o s t  s i g n i f i c a n t  b y t e  o f  x 
namereg s3, yo ; l e a s t  s i g n i f i c a n t  b y t e  of y 
namereg s 4 ,  yl ; m i d d l e  b y t e  of y 
namereg s5, y2 ; m o s t  s i g n i f i c a n t  b y t e  of  y 

; a d d :  { x 2 , x l , x O }  + { y 2 , y l , y O }  
add x0, yo ; add 1 e a s t  s i g n i f i c a n t  b y t e s  
addcy xl, yl ; a d d  m i d d l e  b y t e s  w i t h  c a r r y  
addcy x2, y2 ; a d d  m o s t  s i g n i f i c a n t  b y t e s  w i t h  c a r r y  

The first instruction performs normal addition of the least significant bytes and stores the 
carry-out bit into the carry flag. The second instruction then includes the carry flag when 
adding the middle bytes. Similarly, the third instruction uses the carry flag from the previous 
addition to obtain the result for the most significant bytes. 

The incrementing and subtraction of multiple bytes can be achieved in a similar fashion: 

; i n c r e m e n t  : { x 2 ,  X I ,  XO } + I 
add x0, 0 1  ; i n c  l e a s t  s i g n i f i c a n t  b y t e  
addcy xi, 00 ; a d d  c a r r y  t o  m i d d l e  b y t e  
addcy x2, 00 ; a d d  c a r r y  t o  mos t  s i g n i f i c a n t  b y t e  

; s u b t r a c t :  ( x 2 , x l  , x O }  - ( y 2 , y l  , y o }  
sub x0, yo ; s u b  l e a s t  s i g n i f i c a n t  b y t e  
subcy xl, yl ; s u b  m i d d l e  b y t e  w i t h  borrow 
subcy x2, y2 ; s u b  m o s t  s i g n i f i c a n t  b y t e  w i t h  borrow' 

Multiple-byte data can be shifted by including the carry flag in the individual shift 
instruction. For example, the sla instruction shifts data left one position and shifts the carry 
flag into LSB. The code for shifting a 3-byte data left can be written as 

; s h i f t  { x 2 ,  x l  , x 0  } v i a  c a r r y  
,510 xo ; O  t o  LSB of  x 0 ,  MSB of x 0  t o  c a r r y  
s l a  xi ; c a r r y  t o  LSB of x l ,  MSB of x l  t o  c a r r y  
s l a  x2 ; c a r r y  t o  LSB of x 2 ,  MSB of x2  t o  c a r r y  
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15.2.4 Control structure 

A high-level programming language usually contains various control constructs to alter 
the execution sequence. These include the if-then-else, case, and for-loop statements. On 
the other hand, PicoBlaze provides only simple conditional and unconditional jump in- 
structions. Despite its simplicity, we can use them with a test or compare instruction to 
implement the high-level control constructs. The following examples illustrate the con- 
struction of the if-then-else, case, and for-loop statements. 

Let us first consider the if-then-else statement: 

i f  (sO==sl)  { 
/ *  t h e n - b r a n c h  s t a t e m e n t s  * /  

e l s e  { 

3 
/ *  e l s e - b r a n c h  s t a t e m e n t s  * /  

The corresponding assembly code segment is 

compare S O ,  sl 
jump n z ,  e l s e - b r a n c h  
; c o d e  f o r  t h e n  b r a n c h  

jump i f - d o n e  

; c o d e  f o r  e l s e  b r a n c h  

. . .  

e l s e - b r a n c h  : 

i f  - d o n e  : 
; c o d e  f o l l o w i n g  i f  s t a t e m e n t  
. . .  

The code uses the compare instruction to check the sO==sl condition and to set the zero 
flag. The following jump instruction examines the flag and jumps to the else branch if the 
flag is not set. 

The case statement can be considered as a multiway jump, in which the execution is 
transferred according to the value of the selection expression. The following statement uses 
the SO variable as the selection expression and jumps to the corresponding branch: 

s w i t c h  (SO) { 
c a s e  v a l u e l :  

/ *  c a s e  v a l u e l  s t a t e m e n t s  * /  
b r e a k  ; 

c a s e  v a l u e 2 :  
/ *  c a s e  v a l u e 2  s t a t e m e n t s  * /  
b r e a k  ; 

c a s e  v a l u e 3 :  
/ *  c a s e  v a l u e 3  s t a t e m e n t s  * /  
b r e a k :  

/ *  d e f a u l t  s t a t e m e n t s  * /  
d e f a u l t  : 

The multiway jump can be implemented by a hardware feature known as “index address 
mode” in some processors. However, since PicoBlaze does not support this feature, the case 
statement has to be constructed as a sequence of if-then-else statements. In other words, 
the previous case statement is treated as: 
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i f  ( s O = = v a l u e l )  { 

> 
e l s e  i f  ( s O = = v a l u e Z )  { 

/ *  c a s e  v a l u e l  s t a t e m e n t s  * /  

/ *  c a s e  v a l u e 2  s t a t e m e n t s  * /  

e l s e  i f  ( s O = = v a l u e 3 )  { 
/ *  c a s e  v a l u e 3  s t a t e m e n t s  * /  

Jt 

e l s e €  
/ *  d e f a u l t  s t a t e m e n t s  * /  

J 

The corresponding assembly code segment becomes 

c o n s t a n t  v a l u e l  , . . . 
c o n s t a n t  v a l u e 2 ,  . . . 
c o n s t a n t  v a l u e 3 ,  . . . 

compare S O ,  v a l u e l  ; t e s t  v a l u e l  
jump n z ,  c a s e - 2  ; n o t  e q u a l  t o  v a l u e l  , j u m p  
; c o d e  f o r  c a s e  1 

jump c a s e - d o n e  

compare S O ,  value:! ; t e s t  v a l u e 2  
jump n z ,  c a s e - 3  ; n o t  e q u a l  t o  v a l u e 2 ,  j u m p  
; c o d e  f o r  c a s e  2 

jump c a s e - d o n e  

compare S O ,  v a l u e 3  ; t e s t  v a l u e 3  
jump d e f a u l t  ; n o t  e q u a l  t o  v a l u e 3 ,  j u m p  
; c o d e  f o r  c a s e  3 

. . .  

c a s e - 2  : 

. . .  

c a s e - 3  : 

jump c a s e - d o n e  

: c o d e  f o r  d e f a u l t  c a s e  
d e f a u l t  : 

. . .  
c a s e - d o n e  : 

; c o d e  f o l l o w i n g  c a s e  s t a t e m e n t  

The for-loop statement executes a segment of the code repetitively. The loop statement 
can be implemented by using a counter to keep track of the iteration number. For example, 
consider the following: 

f o r ( i = M A X ,  i = O ,  i -1 )  C 

> 
/ *  l o o p  body s t a t e m e n t s  * /  

The assembly code segment is 

namereg S O ,  i ; l o o p  i n d e x  
c o n s t a n t  MAX, . . . ; l o o p  b o u n d a r y  
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load i ,  M A X  ; l o a d  l o o p  i n d e x  

; c o d e  f o r  l o o p  b o d y  
loop-body : 

sub i ,  01 ; d e c  l o o p  i n d e x ?  
jump nz , loop-body ; d o n e ?  
; c o d e  f o l l o w i n g  f o r  l o o p  

15.3 SUBROUTINE DEVELOPMENT 

A subroutine, such as a function in C, implements a section of a larger program. It is coded 
to perform a specific task and can be used repetitively. Using subroutines allows us to 
divide a program into small, manageable parts and thus greatly improve the reliability and 
readability of a program. It is the base of modem programming practice and is supported 
by all high-level programming languages. 

PicoBlaze uses the call and return instructions to implement the subroutine. The call 
instruction saves the current content of the program counter and transfers the program exe- 
cution to the starting address of a subroutine. A subroutine ends with a return instruction, 
which restores the saved program counter and resumes the previous execution. A represen- 
tative flow is shown in Figure 14.7. Note that PicoBlaze only saves and restores the content 
of the program counter during a function call and return. We have to manage the register 
and data RAM use manually to ensure that the original system state is not altered after a 
subroutine call. 

The following multiplication example illustrates the development of subroutines. We 
assume that the inputs are two 8-bit numbers in unsigned integer format and the output is 
a 16-bit product. The algorithm is based on a simple shift-and-add method. This method 
iterates through 8 bits of multiplier. In each iteration, the multiplicand is shifted left one 
position. If the corresponding multiplier bit is ' l ' ,  the shifted multiplicand is added to 
the partial product. The assembly code is shown in Listing 15.1. The multiplicand and 
multiplier are stored in the s3 and s4 registers. The individual bit of multiplier is obtained 
by repetitively shifting s4 to the right, which moves the LSB to the carry flag. Note that 
instead of actually shifting the multiplicand to the left, we shift the partial product, which 
consists of 2 bytes and is stored in s5 and s6, to the right. 

Listing 15.1 Software integer multiplication 

,___________________------------------------_------------- 
; r o u t i n e  : m u l t - s o f t  
; f u n c t i o n :  8 -  b i t  u n s i g n e d  m u l t i p l i e r  u s i n g  

s h i f t  -and-add a l g o r i t h m  
5 ; i n p u t  r e g i s t e r :  

s3: m u l t i p l i c a n d  
s 4 :  m u l t i p l i e r  

s5: u p p e r  b y t e  of p r o d u c t  
10 ; s 6 :  l o w e r  b y t e  of p r o d u c t  

: o u t p u t  r e g i s t e r :  

; t e m p  r e g i s t e r :  i 

mult-soft: 

.______________-_--_-------------------------------------- ,_______________________________________------_----------- 

load s 5 ,  00  ; c l e a r  s5 



PROGRAM DEVELOPMENT 351 

15 l oad  i, 08 ; i n i t i a l i z e  l o o p  i n d e x  
mult-loop: 

srO s4  ; s h i f t  LSB t o  c a r r p  
jump n c ,  shift-prod ; L S B  i s  0 
add s5, s3 ; L S B  i s  1 

20 shif t-prod : 
s r a  s5  

sra  s6  

; s h i f t  u p p e r  b y t e  r i g h t ,  
; c a r r y  t o  MSB,  LSB t o  c a r r y  
; s h i f t  l o w e r  b y t e  r i g h t ,  
; L S B  of s 5  t o  MSB o f  s 6  

25 sub i ,  0 1  ; d e c  l o o p  i n d e x  
jump n z ,  mult-loop ; r e p e a t  u n t i l  i=O 
re turn  

Because of the primitive nature of the assembly language, thorough documentation is 
instrumental. A subroutine should include a descriptive header and detailed comments. A 
representative header is shown in Listing 15.1. It consists of a short function description 
and the use of registers. The latter shows how the registers are allocated and is crucial to 
preventing conflict in a large program. 

15.4 PROGRAM DEVELOPMENT 

Developing a complete assembly program consists of the following steps: 
1. Derive the pseudo code of the main program. 
2.  Identify tasks in the main program and define them as subroutines. If needed, continue 

3. Determine the register and data RAM use. 
4. Derive assembly code for the subroutines. 

refining the complex subroutines and divide them into smaller routines. 

Steps 1, 2,  and 4 basically follow a divide-and-conquer approach and are applicable for 
any software development. A microcontroller-based application is normally for a simple 
embedded system, in which the processor monitors the I/O activities continuously and 
responds accordingly. Its main program usually has the following structure: 

c a l l  initilaization-routine 

c a l l  taskl-routine 
c a l l  task2-rout ine 

c a l l  taskn-rout ine 
jump forever 

forever : 

. . .  

Step 3 is unique for assembly code development. Unlike a high-level language program, 
in which the compiler automatically allocates storage to variables, we must manually man- 
age the data storage in assembly code. PicoBlaze has 16 registers and 64 bytes of data 
RAM to store data. The registers can be considered as fast storage, in which the data can 
be manipulated directly. The data RAM, on the other hand, is “auxiliary” storage. Its data 
needs to be transferred to a register for processing. For example, if we want to increment a 
data item located in the RAM, it must first be loaded into a register, incremented there, and 
then stored back to the RAM. 

Because of the limited space for data storage, its use has to be planned carefully in 
advance, particularly when the code is complex and involves nested subroutines. To assist 
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09 
OA 

00 I lowerbvteof a 

upper byte of a' + b' 
carrv of a' + b' 

01 I unused 
02 1 lowerbvteof b 
03 I unused I 
04 
05 
06 lower byte of b 

Figure 15.1 Data RAM memory allocation. 

coding, we can first identify the needed global storage or local storage. The former keeps 
data that is needed in the entire program. The latter provides space to store intermediate 
results, and the data will be discarded after the required computation is completed. 

15.4.1 Demonstration example 

The development process can best be explained by an example. Let us consider a program 
that uses the previous multiplication subroutine. It reads two inputs, a and b, from the 
switch, calculates a2 + b2, and displays the result on eight discrete LEDs. Since the I/O 
interface is to be discussed in Chapter 16, we limit the I/O to a single input port, the 8-bit 
switch, and a single output port, the 8-bit LEDs. We assume that a and b are obtained 
from the upper nibble (i,e., the four MSBs) and the lower nibble (i.e., the four LSBs) of the 
switch. The main program is 

c a l l  c l e a r -  d a t  a-  r am 

c a l l  r e a d - s w i t c h  
c a l l  s q u a r e  
c a l l  w r i t e - l e d  
jump f o r e v e r  

f o r e v e r  : 

The subroutines are defined as follows: 
0 clr-dataaem: clears data memory at system initialization 
0 readswi tch :  obtains the two nibbles from the switch and stores their values to the 

data RAM 
0 square: uses the multiplication subroutine to calculate a2 + b2 
0 write-led: writes the eight LSBs of the calculated result to the LED port 

For demonstration purposes, we create two smaller routines, ge t  -uppernibble  and 
get- lowernibble ,  within the read-switch routine to obtain the upper nibble and lower 
nibble from a register. 

The next step in development is to plan the register and data RAM use. For global storage, 
we introduce a global register, sw-in, to store the input value of switch and allocate 1 1 bytes 
of data RAM to store the inputs and result of the square routine. Allocation of the data 
RAM is shown in Figure 15.1. Note that the addresses 01 and 03 are not actually used. 
They are reserved to simplify the seven-segment LED display code, which is discussed 
in Chapter 16. All remaining registers are used as local storage. For program clarity, we 
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define three symbolic names, data ,  addr, and i, as temporary registers for data, port and 
memory address, and loop index. 

The last step is to derive the assembly code for the subroutines. The complete code is 
shown in Listing 15.2. The clr-dataaem uses a loop to clear data memory. The i register 
is the loop index and initialized with 64 (i.e., 4016). The index is decremented in each loop 
and 0 is loaded to the corresponding data RAM address. The wri te- led routine fetches 
the eight LSBs of the calculated result from the data RAM and outputs them to the LED 
port. 

The read-switch routine includes two smaller routines. The get-uppernibble  rou- 
tine shifts the da t a  register right four times to move the upper nibble to the four LSBs. 
The get- lowenibble  routine clears the four MSBs of the da t a  register to 0’s and thus 
removes the upper nibble. The “glue instructions” of read-switch input the switch values, 
set up the input for the two nibble routines, and store the result in the data RAM. 

The square routine fetches data from the data RAM, utilizes the mult-sof t routine to 
calculate u2 and b2, performs addition, and stores the result back to the data RAM. 

Listing 15.2 Square program with simple nibble input 

10 

15 

20 

2s 

30 

35 

; s q u a r e  c i r c u i t  w i t h  s i m p l e  1 / 0  i n t e r f a c e  

; p r o g r a m  o p e r a t i o n  : 
; - r e a d  s w i t c h  t o  a ( 4  M S B s )  a n d  b ( 4  L S B s )  
; - c a l c u l a t e  a * a  + b * b  
; - d i s p l a y  d a t a  on 8 l e d s  

; d a t a  c o n s t a n t  

cons tant  UP-NIBBLE-MASK , OF ; 00001 11 1 

; d a t a  ram a d d r e s s  a l i a s  

c o n s t a n t  a - l s b ,  00 
c o n s t a n t  b - l s b ,  0 2  
c o n s t a n t  a a - l s b ,  04 
c o n s t a n t  aa-msb,  05 
c o n s t a n t  b b - l s b ,  06 
c o n s t a n t  bb-msb, 07 
c o n s t a n t  a a b b - l s b  , 08 
cons tant  aabb-msb , 09 
c o n s t a n t  aabb-cou t  , OA 

; r e g i s t e r  a l i a s  

; c o m m o n l y  u s e d  l o c a l  v a r i a b l e s  
namereg S O ,  d a t a  ; r e g  f o r  t e m p o r a r y  d a t a  
namereg s l ,  a d d r  ; r e g  f o r  t e m p o r a r y  mem & i / o  p o r t  a d d r  
namereg s 2 ,  i ; g e n e r a l  - p u r p o s e  l o o p  i n d e x  
; g l o b a l  v a r i a b l e s  
namereg s f ,  sw- in  
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; p o r t  a l i a s  

40 ,’ i n p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  sw-port, 01 ; & b i t  s w i t c h e s  

o u t p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  led-port , 05 

45 ; 
; m a i n  p r o g r a m  

; c a l l i n g  h i e r a r c h y :  

50 ; m a i n  
; - c l r - d a t a - m e m  

- r e a d - s w i t c h  
- g e t  - u p p e r - n  i b b l  e 
- g e t - l o  w e r - n  i b b l  e 

- m u l t - s o f t  
5s ; - s q u a r e  

; - w r i t e - l e d  

60 c a l l  clr-data-mem 
forever : 

c a1 1 
c a l l  square 
c a l l  write-led 

read- sw i t ch 

65 jump forever 

; r o u t i n e  : c l r - d a t a - m e m  
; f u n c t i o n  : c l e a r  d a t a  ram 

7 0 ;  t e m p  r e g i s t e r :  d a t a ,  i 

; u n i t i z e  l o o p  i n d e x  t o  6 4  
clr-data-mem : 

load i ,  40 
load data, 00 

75 clr-mem-loop: 
s t o r e  d a t a ,  (i) 
sub i ,  0 1  ; d e c  l o o p  i n d e x  
jump n z ,  clr-mem-loop ; r e p e a t  u n t i l  i=O 
re turn  

80 

; r o u t i n e  : r e a d  s w i t c h  
; f u n c t i o n :  o b t a i n  t w o  n i b b l e s  f r o m  i n p u t  
; i n p u t  r e g i s t e r :  s w - i n  

85 ; t e m p  r e g i s t e r :  d a t a  

read-switch : 
input  sw-in, sw-port ; r e a d  s w i t c h  i n p u t  
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l oad  d a t a ,  sw-in 
90 c a l l  get-lower-nibble 

s t o r e  d a t a ,  a-lsb ; s t o r e  a t o  d a t a  ram 
l oad  d a t a ,  sw-in 
c a l l  get-upper-nibble 
s t o r e  data, b-lsb ; s t o r e  b t o  d a t a  ram 

YS 

; r o u t i n e  : g e t - l o w e r - n i b b l e  
; f u n c t i o n :  g e t  l o w e r  4 b i t s  of d a t a  
; i n p u t  r e g i s t e r :  d a t a  

IW ; o i i t p u r  r e g i s t e r  : d a t a  

get-lower-nibble: 
and data, UP-NIBBLE-MASK ; c l e a r  u p p e r  n i b b l e  
re turn  

10s 

; r o u t i n e  : g e t - u p p e r - n i b l e  
; f u n c t i o n :  g e t  u p p e r  4 b i t s  o f  d a t a  
; i n p u t  r e g i s t e r :  d a t a  

1 1 0  ; o u t p u t  r e g i s t e r :  d a t a  

get-upper-nibble: 
s r o  data 
s r o  data 

115 srO data 
s r o  data 
re turn  

; r i g h t  s h i f t  4 t i m e s  

IZO ; r o u t i n e  : w r i t e - l e d  
; f u n c t i o n :  o u t p u t  8 LSBs  of r e s u l t  t o  8 I e d s  
; t e m p  r e g i s t e r :  d a t a  

write-led: 
125 f e t c h  d a t a ,  aabb-lsb 

output  data, led-port 
re turn  

130 ; r o u t i n e  : s q u a r e  
; f u n c t i o n :  c a l c u l a t e  a * a  + b * b  

; t e m p  r e g i s t e r :  s 3 ,  s 4 ,  s 5 ,  s 6 ,  d a t a  
d a t a l r e s u l t  s t o r e d  i n  ram s t a r t e d  w /  SQ-BASEADDR 

1?5 square : 
; c a l c u l a t e  a * a  
f e t c h  s3, a-lsb 
f e t c h  9 4 ,  a-lsb 
c a l l  mult-soft 

140 s t o r e  s 6 ,  aa-lsb 
s t o r e  s 5 ,  aa-msb 

; l o a d  a 
; l o a d  a 
; c a l c u l a t e  a * a  
; s t o r e  l o w e r  b y t e  of a * a  
; s t o r e  u p p e r  b y t e  of a * a  
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; c a l c u l a t e  b * b  
f e t c h  s3, b - l s b  
f e t c h  s 4 ,  b - l s b  

s t o r e  s 6 ,  b b - l s b  
s t o r e  s 5 ,  07 
; c a l c u l a t e  a*a+b*b  
f e t c h  d a t a ,  a a - l s b  

s t o r e  d a t a ,  a a b b - l s b  
f e t c h  d a t a ,  aa-msb 
addcy d a t a ,  s5 
s t o r e  d a t a ,  aabb-msb 

addcy d a t a ,  00 
s t o r e  d a t a ,  a a b b - c o u t  
re turn  

145 c a l l  m u l t - s o f t  

150 add d a t a ,  s6 

155 load d a t a ,  00 

; l o a d  b 
; l o a d  b 
; c a l c u l a t e  b * b  
; s t o r e  l o w e r  b y t e  of b * b  
; s t o r e  u p p e r  b y t e  of b * b  

; g e t  l o w e r  b y t e  of a*a  
; a d d  l o w e r  b y t e  of a * a + b * b  
; s t o r e  l o w e r  b y t e  of a * a + b * b  
; g e t  u p p e r  b y t e  of a * a  
; a d d  u p p e r  b y t e  of a * a + b * b  
; s t o r e  u p p e r  b y t e  of a * a + b * b  
; c l e a r  d a t a ,  b u t  k e e p  c a r r y  
; g e t  c u r r y - o u t  f r o m  p r e v i o u s  + 
; s t o r e  c a r r y - o u t  o f  a*a+b*b  

,M) ,.--------------------------------------------------------- ......................................................... 
; r o u t i n e  : m u l t - s o f t  
: f u n c t i o n :  8 -  b i t  u n s i g n e d  m u l t i p l i e r  u s i n g  

; i n p u t  r e g i s t e r :  
s h i f t  -and-add a 1 g o  r i  t h  m 

165 ,' s3: m u l t i p l i c a n d  
s 4 :  m u l d i p l i e r  

s5: u p p e r  b y t e  of p r o d u c t  
s 6 :  l o w e r  b y t e  of p r o d u c t  

; o u t p u t  r e g i s t e r :  

170 ; t e m p  r e g i s t e r :  i 
,____-_-_____--_____-------------------------------------- 
m u l t - s o f t :  

load s 5 ,  00 ; c l e a r  s5 
load i ,  08 ; i n i t i a l i z e  l o o p  i n d e x  

srO s4  ; s h i f t  l s b  t o  c a r r y  
jump n c ,  s h i f t - p r o d  ; l s b  i s  0 
add s 5 ,  s3 ; l s b  i s  1 

175 m u l t - l o o p :  

s h i f t - p r o d :  
180 s r a s 5  

sra  s 6  

; s h i f t  u p p e r  b y t e  r i g h t ,  
; c a r r y  t o  MSB,  LSB t o  c a r r y  
; s h i f t  l o w e r  b y t e  r i g h t ,  
; l s b  of s 5  t o  MSB of s6 

sub i ,  01 ; d e c  l o o p  i n d e x  

re turn  
185 jump n z ,  m u l t - l o o p  ; r e p e a t  u n t i l  i=O 

15.4.2 Program documentation 

Developing an assembly program is a tedious process. The use of symbolic names and good 
documentation can make the code clear and reduce many unnecessary errors. It also helps 
future revision and maintenance. For the KCPSM3 assembler. we can use the constant 
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directive to assign a symbolic name (alias) to a data constant, a memory address, or a port 
id, and use the namereg directive to assign a symbolic name to a register. 

A representative main program header is shown in Listing 15.2. It contains the following 
segments : 

General program description: provides a general description for the purpose, oper- 

0 Data constants: declares symbolic names for constants 
0 Data RAM address alias: declares symbolic names for data RAM addresses 
0 Register alias: declares symbolic names for registers 
0 Port alias: declares symbolic names for I/O ports 
0 Program calling hierarchy: illustrates the calling structure and subroutines 

ation, and I/O of the program 

The aliases and directives have no effect on the final machine code. When the assembly 
code is processed, they are replaced with the actual constant values. However, using aliases 
can greatly enhance the readability of the assembly code and reduce unnecessary errors. 
The following code segment further illustrates the impact of the alias and documentation. 
The purpose of this segment is to obtain values for variables a, b, and c, and store them 
in proper data RAM locations. The location is specified by the UART input, which is the 
ASCII code of character a, b, or c. The segment with aliases and proper comments is 

; c o n s t a n t  a l i a s  
c o n s t a n t  ASCII-a, 61 
c o n s t a n t  ASCII-b, 6 2  
c o n s t a n t  ASCII-c , 6 3  

; d a t a  ram a d d r e s s  a l i a s  
c o n s t a n t  a-addr, 0 2  
c o n s t a n t  b-addr, 04 
c o n s t a n t  c-addr, 06 

namereg S O ,  data 
namereg sl , addr 
namereg s F ,  sw-in 

c o n s t a n t  sw-port , 01 
c o n s t a n t  uart-rx-port , 02 

; r e g i s t e r  a l i a s  

; p o r t  a l i a s  

; a s s e m b l y  c o d e  w i t h  a l i a s  
; g e t  i n p u t  
input  sw-in, sw-port 
input  data, uart-rx-port 
; c h e c k  r e c e i v e d  c h a r  
compare data, ASCII-a 
jump n z ,  chk-ascii-b 
s t o r e  sw-in, a-addr 
jump done 

chk-ascii-b : 
compare data, ASCII-b 
jump n z ,  chk-ascii-c 
s t o r e  sw-in, b-addr 
jump done 

chk-ascii-c: 
compare data, ASCII-c 
jump n z ,  ascii-err 

; A S C I I  c o d e  f o r  a 
; A S C I I  c o d e  f o r  b 
; A S C I I  c o d e  f o r  c 

; r e g  f o r  t e m p o r a r y  d a t a  
; r e g  f o r  t e m p o r a r y  a d d r  
; s w i t c h  i n p u t  

; s w i t c h  i n p u t  
; UART i n p  u t 

; g e t  s w i t c h  
; g e t  c h a r  

; c h e c k  A S C I I  a 
; n o ,  c h e c k  n e x t  
; y e s ,  s t o r e  a t o  d a t a  ram 

; c h e c k  A S C I I  b 
, ' n o ,  c h e c k  n e x t  
: y e s ,  s t o r e  b t o  d a t a  ram 

; c h e c k  A S C I I  c 
; n o ,  e r r o r  
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Store  sw-in, c-addr 
jump done 

ascii-err: 

; y e s ,  s t o r e  b t o  d a t a  ram 

done : 
. . .  

If we use hard literals and strip the comments, the code becomes 

; a s s e m b l y  code  with no a l i a s  or  comments  
input  sf, 0 1  
input  s o ,  02 
compare S O ,  61 
jump nz , addrl 
s t o r e  sf, 02 
jump addr4 

compare S O ,  6 2  
jump n z ,  addr2 
s t o r e  sf, 04 
jump addr4 

compare S O ,  6 3  
jump n z ,  addr3 
s t o r e  sf, 06 
jump addr4 

addrl : 

addr2 : 

addr3 : 

addr4 : 
. . .  

. . .  
While the functionality of this code segment is the same, it is very difficult to comprehend, 
debug, or modify. 

15.5 PROCESSING OF THE ASSEMBLY CODE 

PicoBlaze-based development flow is reviewed in Section 14.4. After the assembly code is 
developed, it is then compiled (translated) to machine instruction in step 3. The instruction- 
set-level simulation can also be performed to verify the correctness of the code, as in step 4. 
The two steps and the direct downloading process (step 9) are discussed in detail in this 
section. 

Xilinx provides an assembler known as KCPSM3 for compiling in step 3 and download- 
ing utility programs in step 9. The programs, HDL codes for the PicoBlaze processor, and 
relevant template files can be downloaded from the Xilinx’s web site. A program known as 
PBlazeZDE from Mediatronix can perform the instruction-set-level simulation in step 4. It 
can also be used as an assembler. PBlazeIDE can be downloaded from Mediatronix’s Web 
site. 

15.5.1 Compiling with KCSPMB 

Assembler is the software that translates the instruction mnemonics to machine instructions, 
which are represented as 0’s and l’s, and substitutes the aliases and symbolic branch ad- 
dresses with actual values. The machine instructions are then downloaded to the instruction 
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memory of a microcontroller. Since PicoBlaze is embedded inside FPGA, the instruction 
ROM becomes an HDL ROM module with the compiled assembly code. The ROM will be 
instantiated later in the top-level HDL code and synthesized along with PicoBlaze and the 
I/O interface circuit. 

Xilinx provides the KCPSM3 assembler for this task. It is a command-line, DOS-based 
program. KCPSM3 basically takes an assembly program, along with the necessary template 
files, and generates the HDL code for the instruction ROM. The procedure of compiling an 
assembly program is as follows: 

1. Create a directory for the project and copy kcpsm3.exe, R O M 4  orm.vhd, R O M 4  orm.v, 
and ROM-form.coe to the directory. The latter three are code templates used by 
KCPSM3. 

2.  Create the assembly program and save it as plain text file with an extension of .psm. 
Any PC-based editor, such as Notepad, can be used for this purpose. 

3. Invoke a DOS window by selecting Start + Programs + Accessories + Command 
Prompt. In the DOS window, navigate to the project directory. 

4. Type kcpsm3 myf ile.psm to run the program. 
5. Correct syntax errors if necessary and recompile. 
6. After successful compiling, the file containing the instruction ROM, myf i le.vhd, is 

In addition to the HDL file, KCPSM3 also generates files that are suitable for block RAM 
initialization and other utilities. The file with the .hex extension can be used for JTAG 
downloading, which is discussed in Section 15.5.3, and the file with the .fmt extension is 
a reformatted .psm file for “pretty printing.” 

generated. 

15.5.2 Simulation by PBlazelDE 

As the name indicates, instruction-set-level simulation simulates the operation of a Pi- 
coBlaze system instruction by instruction. The PBlazeZDE program can be used for this 
purpose. PBlazeIDE is a Windows-based program with an integrated development envi- 
ronment, which includes a text editor, an assembler, and an instruction-set-level simulator. 

PBlazeIDE uses slightly different instruction mnemonics and directives, as discussed in 
Section 14.5. Thus, the code written for by KCPSM3 cannot be used directly by PBlazeIDE, 
and vice versa. The mnemonic differences are summarized in Table 15.1, and the directive 
examples are shown in Table 15.2. Note that the PBlazeIDE assembler uses both decimal 
and hexadecimal format for constants. A hexadecimal number is started with a $ sign, as 
in $1A.  

The procedure of using PBlazeIDE for KCPSM3 code is as follows: 
1. Compile the assembly code with KCPSM3. 
2 .  Launch PBlazeIDE. 
3. Select Settings + PicoBlaze 3. This specifies the version 3 of PicoBlaze, which is 

used in the Spartan-3 device. 
4. Select File + Import and a dialog window appears. Select the corresponding . f m t  

file. The “import” function converts the KCPSM3 code to the PBlazeIDE code. The 
formatted program is easier for conversion. The converted file may sometimes need 
minor manual editing. 

5. Manually specify the dsin, dsout, and dsio directives for I/O ports. When one of 
these directives is used, a port indicator will be added to the simulation screen to 
show the activities of the port. 
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Table 15.1 Mnemonic differences between KCPSM3 and PBlazeIDE 

KCPSM3 PBlazeIDE 

addcy 
subcy 
compare 
store sX, (sY) 
fetch s X ,  (sY) 
input sX, (sY> 
input s X ,  KK 

output sX, KK 
return 
returni 
enable interrupt 
disable interrupt 

output sx, (SY) 

addc 
subc 
comp 
store sX, sY 
fetch sX,  sY 
in sX, SY 
in sX, $KK 
out sx, SY 
out sX, $KK 
ret 
reti 
eint 
dint 

Table 15.2 Directive examples of KCPSM3 and PBlazeIDE 

Function KCPSM3 PBlazeIDE 

code location address 3FF org $3FF 
constant constant MAX, 3F MAX equ $3F 
register alias namereg addr,  s2 addr equ s2 

port alias constant in-port ,  00 in-port  dsin $00 
out-port  dsout $10 
bi-port  dsio $OF 

constant out-port ,  I0  
constant bi-port ,  OF 

Enter the simulation mode by selecting Simulate + Simulate. Perform simulation. 
If the assembly code needs to be revised, it must be done outside PBlazeIDE. Simply 
close the current file, invoke an external editor to edit the original .psm file, save 
the file, and restart from step 1. If the file is edited within PBlazeIDE, it cannot be 
converted back to KCPSM3 code. 

A representative simulation screenshot is shown in Figure 15.2. The simulator displays 
the assembly code in the central window and highlights the next instruction to be executed. 
The instruction address, instruction code, and breakpoints are shown next to the code. The 
current state of PicoBlaze is shown at the left, which includes the status of the flags, the 
content of the registers, and the content of the data RAM. The values of the program counter 
and stack pointer as well as some execution statistics are shown in the bottom row. 

The emulated I/O ports created by the dsin, dsout, and dsio directives are shown at the 
right. There are an input port, switch,  and an output port, led, on this particular screen. 
Since PBlazeIDE has no information about I/O behavior, the input port data must be entered 
and modified manually during simulation. 

During simulation, the assembly program can be executed continuously, by one step, by 
one instruction, or to pause at a specific breakpoint. The simulation action is controlled by 
the commands of the Simulate menu or the icons on the top: 
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Figure 15.2 Screenshot of pBlazeIDE in simulation mode. 
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0 Reset: clears the program counter and stack pointer 
0 Run: runs the program continuously until a breakpoint 
0 Single step: executes one instruction 
0 Step over: executes the entire subroutine for a call instruction and executes one 

0 Run to cursor: runs the program to the current cursor position 
0 Pause: pauses the simulation 
0 Toggle breakpoint: sets or clears a breakpoint at the current cursor position 

Remove all breakpoints: clears all breakpoints 

instruction for other instructions 

15.5.3 Reloading code via the JTAG port 

After the instruction ROM HDL is generated, we can continue steps 6 and 8 in Figure 14.4 
to synthesize the entire code and download the configuration file to the FPGA chips. Note 
that the synthesis flow must be repeated each time the assembly code is modified. 

Since synthesis is a complex process, it requires a significant amount of computation time. 
When the I/O configuration is fixed, resynthesizing the entire circuit after each assembly 
program modification is not really needed. It is possible to reload the machine code to the 
ROM, which is implemented by a block RAM, by using the FPGA's JTAG interface. This 
corresponds to the dotted line of step 9 in Figure 14.4. The basic procedure is as follows: 

1. Replace the original ROM template with one that contains the JTAG interface circuit. 
2. Use KCPSM3 to compile the assembly code as usual. 
3. Synthesize the top-level HDL code and program the FPGA chip. 
4. In subsequent assembly program modifications, compile the program as usual. Recall 

5. Use the Xilinx utility to embed the . hex file to a JTAG programming file and download 

The detailed procedure and the relevant programs and templates can be found in the 
JTAG-loader directory of the downloaded KCPSM file. 

that a file in hex format (ended with the .hex extension) is generated. 

the file to the FPGA's block RAM via the JTAG interface. 

15.5.4 Compiling by PBlazelDE 

As discussed earlier, PBlazeIDE is an integrated program that contains an assembler and 
editor. If the program is developed with PBlazeIDE mnemonics, PBlazeIDE can replace 
the KCPSM3 assembler. The instruction ROM VHDL file is generated by a directive. If 
the HDL file is needed, simply include the vhdl directive in the assembly code. Its syntax 
is 

vhdl  "ROM-form.vhd",  " r o m - t a r g e t  . vhd"  , " r o m - e n t i t y - n a m e "  

The "ROM-f orm. vhd" term specifies a VHDL template file, which is the same file as 
that discussed in Section 15.5.1. It should be copied to the directory where the assembly 
program file resides. The "rom-target.vhd" term specifies the name of the generated 
ROM VHDL file, and the " rom-ent i tyname"  term indicates the desired entity name 
of the previously generated VHDL file. The VHDL file is generated automatically when 
PBlazeIDE is switched from the edit mode to the simulation mode. 

Note that since PBlazeIDE does not generate a hex file, the reloading scheme discussed 
in Section 15.5.3 cannot be applied directly. 
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Figure 15.3 PicoBlaze with a simple IiO interface. 

15.6 SYNTHESES WITH PICOBLAZE 

After generating the HDL file for the instruction ROM, we can combine it with PicoBlaze to 
synthesize the entire system in an FPGA chip. Unlike a normal microcontroller, PicoBlaze 
has no built-in I/O peripherals. The I/O interface is created and customized as needed. 
The circuit is described in HDL code. Since the focus in this chapter is assembly program 
development, we use a simple 1/0 configuration, which contains only one switch input port 
and one led output port, for synthesis. The development of more sophisticated I/O interface 
is discussed in detail in Chapters 16 and 17. 

The top-level block diagram of this design is shown in Figure 15.3. It contains the 
PicoBlaze processor, which is labeled kcpsm3, the instruction ROM, and a register. The 
register functions as a buffer for the eight LEDs. When PicoBlaze executes the output 
instruction, it places the data on out-port  and asserts the wr i t e - s t robe  signal, which 
enables the register and stores the data in the register. The sw signal is connected to in-port .  
When PicoBlaze executes the input instruction, it retrieves the value of the sw signal and 
stores it in an internal register. The corresponding HDL code is shown in Listing 15.3. It 
consists of instantiations of the PicoBlaze processor and instruction ROM, and a segment 
for the output buffer. The kcpsm3 entity is the name of the PicoBlaze processor, and its 
code is stored in an HDL file of the same name. The sio-rom entity is from the previously 
generated instruction ROM file. 

Listing 15.3 PicoBlaze with a simple I/O configuration 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  pico-sio i s  

5 p o r t (  
clk, reset: in  std-logic; 
sw: in std-logic-vector ( 7  downto 0)  ; 
led: out  std-logic-vector (7 downto 0) 

) ;  
10 end p i c o - s i o  ; 

a r c h i t e c t u r e  a r c h  of pico-sio i s  
-- KCPSM3/ROM s i g n a Is 
s i g n a l  address : std-logic-vector (9 downto 0 )  ; 

15 s i g n a l  instruction: std-logic-vector ( 1 7  downto 0)  ; 
s i g n a l  port-id: std-logic-vector (7 downto 0)  ; 
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signal in-port , out-port : std-logic-vector ( 7  downto 0 )  ; 
signal write-strobe : std-logic; 
__ r e g i s t e r  s i g n a l s  

20 signal led-reg : std-logic-vector (7 downto 0) ; 

30 

begin 
_- 
__ KCFSM and ROM i n s t a n t i a t i o n  

proc-unit : entity work. kcpsm3 

clk=>clk, reset=>reset , 
address=>address , instruction=>instruction, 
port-id=>open, write-strobe=>write-strobe, 
out-port=>out-port , read-strobe=>open, 
in-port=>in-port , interrupt=>’O’, 
interrupt-ack=>open); 

25 -- 

port map( 

rom-unit : entity work. sio-rom 
35 port map( 

clk = >  clk, address=>address , 
instruction=>instruction); 

__ 
__ o u t p u t  i n t e r f a c e  

-- o u t p  u t 
process (clk) 
begin 

40 -- 
r e g i s t e r 

if (clk ’ event and clk= ’ 1 ’ then 

led-reg <= out-port ; 
45 if write-strobe=’l’ then 

end if ; 
end if ; 

end process; 
50 led <= led-reg; 

__ i n p u t  i n t e r f a c e  

in-port <= sw; 
__ 

55 end arch; 

15.7 BIBLIOGRAPHIC NOTES 

The bibliographic information for this chapter is similar to that for Chapter 14. The pro- 
cedure of reloading compiled code via JTAG port is explained in the article, “PicoBlaze 
JTAG Loader Quick User Guide,” by Kris Chaplin and Ken Chapman, which appears in the 
JTAG-loader directory of the downloaded KCPSM file. 
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15.8 SUGGESTED EXPERIMENTS 

15.8.1 Signed multiplication 

The subroutine in Listing 15.1 assumes that the inputs are in unsigned integer format. 
Modify the subroutine to perform the signed multiplication, in which the two inputs and 
output are interpreted as signed integers, and use simulation to verify its operation. 

15.8.2 Multi-byte multiplication 

The subroutine in Listing 15.1 assumes that the inputs are 8 bits wide. Some application 
may need more precision and we want to extend the subroutine to take 16-bit unsigned 
inputs. An operand now requires two registers and the result needs four registers. Develop 
the subroutine and use simulation to verify its operation. 

15.8.3 Barrel shift function 

PicoBlaze can only shift or rotate a single bit. A “barrel” shifting function can perform 
the shift and rotate operation for multiple bits. This function has three input registers. The 
first register contains data to be shifted or rotated; the second register specifies the amount, 
which is between 0 and 7; and the third register indicates the types of operation, which can 
be shift left, shift right, rotate left, or rotate right. We assume that 0 will be shifted in for 
the two shift operations. Develop the subroutine and use simulation to verify its operation. 

15.8.4 Reverse function 

A reverse function reverses the bit order of an input. For example, if the input is ”0101001 l ” ,  
the output becomes “1 1001010”. We can use the 8-bit switch as input and the 8-bit discrete 
LEDs as output. Derive and simulate the assembly code, obtain the instruction ROM and 
create the top-level HDL code, synthesize the system, and verify its operation. 

15.8.5 Binary-to-BCD conversion 

Binary-to-BCD conversion is discussed in Section 6.3.3. This function can be implemented 
by using assembly code as well. Assume that the input is an 8-bit binary number and the 
output is a two-digit 8-bit BCD number. If the input exceeds 99, the output generates a 
special overflow pattern, “1 11 11 11 1”.  We can use the 8-bit switch as input and the 8-bit 
discrete LEDs as output. Derive and simulate the assembly code, obtain the instruction 
ROM and create the top-level HDL code, synthesize the system, and verify its operation. 

15.8.6 BCD-to-binary conversion 

Repeat Experiment 15.8.5, but develop the assembly code and circuit for BCD-to-binary 
conversion. 

15.8.7 Heartbeat circuit 

A “heartbeat circuit” is discussed in Experiment 4.7.4. We can create a similar pattern 
using the eight discrete LEDs as well. Derive and simulate the assembly code, obtain the 
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instruction ROM and create the top-level HDL code, synthesize the system, and verify its 
operation. 

15.8.8 Rotating LED circuit 

We want to design a circuit that rotates a simple LED pattern to the left or right at four differ- 
ent speeds. The four patterns are "00000001", "00000011", "00001111", and "00001101". 
The pattern, direction, and rotation speed can be selected from the 8-bit switch (only 5 bits 
are used). The speed should be properly chosen so that all four patterns are visually ob- 
servable. Derive and simulate the assembly code, obtain the instruction ROM and create 
the top-level HDL code, synthesize the system, and verify its operation. 

15.8.9 Discrete LED dimmer 

The concept of PWM and LED dimmer are discussed in Experiment 4.7.2. In this exper- 
iment, we want to use eight discrete LEDS to show the various degrees of the brightness. 
This can be done by changing the "on" fraction of an LED. The "on" fraction of the eight 
LEDS will be :, g, :, . . . i. Derive and simulate the assembly code, obtain the instruction 
ROM and create the top-level HDL code, synthesize the system, and verify its operation. 




