
PART 111

P ICOBLAZE
M I C RO C 0 N T RO L L E RXILINX S P E C I ~ I ~

CHAPTER 14

PICOBLAZE OVERVIEW

14.1 INTRODUCTION

The PicoBlaze processor is a compact 8-bit microcontroller core for Xilinx FPGA devices.
It is provided as a cell-level HDL description (which is known as soft core) and can be
synthesized along with other logic. PicoBlaze is optimized for efficiency and occupies only
about 200 logic cells, which amount to less than 5% resource of a 3.3200 device. While not
intended as a high-performance processor, it is compact and flexible and can be used for
simple data processing and control, particularly for non-time-critical “house-keeping’’ and
I/O operations. The PicoBlaze processor can be easily integrated into a larger system and
adds another dimension of flexibility in an FPGA-based design.

Although the detailed coverage of assembly language programming and microcontrollers
is beyond the scope of this book, this part provides acomprehensive overview of PicoBlaze’s
organization and instruction set, and illustrates the general assembly program development
and I/O interface through a set of examples. We review PicoBlaze’s organization and
instruction set in this chapter, introduce assembly language programming in Chapter 15,
and discuss the general 1/0 interface and interrupt interface in Chapters 16 and 17.

FPGA Protovping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

323

324 PICOBLAZE OVERVIEW

14.2 CUSTOMIZED HARDWARE AND CUSTOMIZED SOFTWARE

14.2.1 From special-purpose FSMD to general-purpose microcontroller

The RT-level design and FSMD discussed in Chapter 6 provide a general methodology to
convert a sequential algorithm to customized hardware. The rearranged block diagram is
shown in Figure 14.1(a). In an FSMD, all components, including the number of registers,
the routing of registers’ input and output, the number and types of functional units, and
the control FSM, are tailored to the target application. The data path may contain multiple
function units and multiple routing paths, as shown in the diagram.

An alternative is to keep the same hardware but use customized software for different
applications. The transformation can be done as follows. First, we can replace the cus-
tomized data path with a fixed configuration, as shown in the top of Figure 14.l(b). The data
registers and customized routing networks are replaced by a register file, which has a fixed
number of registers and contains only two read ports and one write port. The customized
function units are replaced with an ALU (arithmetic and logic unit), which can only perform
a set of predefined functions. The data path now can perform RT operations in the following
format only:

r d c r l op r 2

where rl , r2 , and r d are the addresses of two source registers and one destination register,
and op is one of the available ALU functions.

Second, we can replace the customized FSM with a programmable state machine, as
shown in the bottom of Figure 14.l(b). Recall that operation of an FSM consists of three
parts:

0 The state register keeps track of the current state.
0 The output logic activates certain output signals according to the current state.
0 The next-state logic determines the new state.

0 It replaces the state register with the program counter. The content of the program
counter represents the current state of the control path.

0 In an FSM, each state activates certain output signals to control operation of the data
path. The programmable state machine encodes these output patterns into instructions
and stores them in a memory module, known asprogram memory or instruction mem-
ory. A memory address corresponds to a state (i.e., a value) of the program counter.
During execution, the instruction pointed by the program counter is retrieved from
the memory and decoded to generate the control signals. The instruction memory
and decoding logic function as a sophisticated output logic circuit.

0 In an FSM, there is no limitation on where to go next. From a given state, the FSM
can check the input condition and move to one of many possible next states. In a
programmable state machine, the next state is usually the value of the current state
plus 1 (i.e., the program counter is incremented by l) , which reflects the nature of the
sequential execution. The sequential execution may be altered only by several special
instructions, such as a jump instruction, in which the program counter is loaded with
a different value. The incrementor and the associated multiplexing logic function as
a simple next-state logic circuit.

After we replace the data path with a register file and an ALU and replace the dedicated
FSM with a programmable state machine, customizing the system corresponds to developing
a new sequence of instructions (i.e., develop a software program) and loads the instructions

The programmable state machine modifies these operations as follows:

CUSTOMIZED HARDWARE AND CUSTOMIZED SOFTWARE 325

rout
-ing

*

-* -*

-+ registers -* -ing units

-
4

data rout + functional

ctrl ctrl ctrl status

ctrl

(a) Block diagram of an FSMD

~ ~ ~ ~ ~ g i s t e r s and routing
replace
functional units

I / / I

7

ctrl ctrl flag

ctri

.....

ctrl

replace \ replace
output logic

replace
next-state logic state register

(b) Simplified block diagram of a microcontroller

Figure 14.1 Diagrams of an FSMD and a microcontroller.

326 PICOBLAZE OVERVIEW

to the instruction memory. The organization of the FSMD is now the same for different
applications and becomes a general-purpose hardware platform. The platform constitutes
the basic skeleton of the PicoBlaze microcontroller.

14.2.2 Application of microcontroller

In a customized FSMD, the data path can be created to accommodate an individual applica-
tion’s needs. It may contain multiple customized functional units and parallel routing paths,
and can complete complex computation in a single state (i.e., one clock cycle). On the other
hand, the PicoBlaze microcontroller can only perform one predefined RT operation (i.e.,
an instruction) at a time. It may need many instructions to perform the same task and thus
require much more time.

Many tasks can be done by either a customized FSMD or a microcontroller. The trade-
off is between the hardware complexity, performance and ease of development. There is
no exact rule on which one to choose. Because developing software is usually easier than
creating customized hardware, the microcontroller option is generally preferable for non-
time-critical applications. We can determine the feasibility of this option by examining the
computation complexity. PicoBlaze requires two clock cycles to complete an instruction.
If the system clock is 50 MHz, 25 million instructions can be perform in one second. For
a task (or a collection of tasks), we can examine how frequent a request is issued and how
fast the task must be completed, and then estimate the number of available instructions.
For example, assume that a keyboard interface generates a new input data every 1 ms
and the data must be processed within this interval. Within the 1-ms period, PicoBlaze
can complete 25,000 instructions. The PicoBlaze controller will be a viable option if the
required processing can be done by using less than 25,000 instructions. In general, the
microcontroller is suitable for many non-time-critical I/O-interface or “house-keeping’’
tasks.

14.3 OVERVIEW OF PICOBLAZE

14.3.1 Basic organization

PicoBlaze is a compact 8-bit microcontroller with the following characteristics:
0 8-bit data width
0 8-bit ALU with the carry and zero flags
0 16 8-bit general-purpose registers
0 64-byte data memory
0 18-bit instruction width
0 10-bit instruction address, which supports a program up to 1024 instructions
0 31-word callheturn stack
0 256 input ports and 256 output ports
0 2 clock cycles per instruction
0 5 clock cycles for interrupt handling

PicoBlaze is based on the skeleton described in Figure 14.l(b) and adds several enhance-
ments to make it more versatile. The expanded diagram is shown in Figure 14.2. To reduce
clutter, only the main data flow is shown. The sizes of main storage components are listed
in round brackets. The processor makes several enhancements over the original skeleton:

OVERVIEW OF PICOBLAZE 327

I

-b
register

+ file

data memory
address -1

in-port b

memory
(64-by-8)

out-port
port-id

(1 &by-8)

M n s t a n t

....................

logic
stack

(31-by.10)
L....

I

instruction instruction memory 1
address

outside
processor module

.......... ctrl

Figure 14.2 Block diagram of PicoBlaze.

328 PICOBLAZE OVERVIEW

Figure 14.3 Top-level diagram of PicoBlaze.

0 Add a 44-word data memory. It is known as scratch RAM in Xilinx literature but we
call it data RAM. The data RAM can be considered as a reservoir to store additional
data. Note that there is no direct path between the data RAM and ALU. Data must
be fetched to a register for processing and then stored back to the data RAM.
Add an immediate constantfield in some instructions. This allows a constant, rather
than the content of a register, to be used in ALU and other operations. The two-to-one
multiplexer before the ALU’s bottom input is used to select the register output or the
constant field.
Add a 31-word stack to support the callheturn functions. We discuss the call and
return procedure in more detail in Section 14.5.8.

0 Add paths to input and output external data. An 8-bit por t - id signal is used to
identify a port and thus up to 256 input ports and 256 output ports can be supported.
The I/O interface is discussed in detail in Chapter 16.

0 Add an interrupt handling circuit (not shown in the diagram). The interrupt mecha-
nism is discussed in detail in Chapter 17.

14.3.2 Top-level HDL modules

During synthesis, a PicoBlaze system is organized as two top-level HDL modules, as shown
in Figure 14.3. The KCPSM3 module is the PicoBlaze processor. KCPSM3, which stands for
constant (K) codedprogrammable state machine, reflects the original name of the PicoBlaze
processor. It has following input and output signals:

0 c l k (input, 1 bit): system clock signal
0 r e s e t (input, 1 bit): reset signal
0 address (output, 10 bits): address of the instruction memory, which specifies the

0 i n s t r u c t i o n (input, 18 bits): fetched instruction
0 por t - id (output, 8 bits): address of the input or output port
0 in-port (input, 8 bits): input data from I/O peripherals
0 read-storbe (output, 1 bit): strobe associated with the input operation
0 out-port (output, 8 bits): output data to I/O peripherals
0 wri te -s torbe (output, 1 bit): strobe associated with the output operation
0 i n t e r r u p t (input, 1 bit): interrupt request from I/O peripherals
0 in te r rupt -ack (output, 1 bit): interrupt acknowledgement to 110 peripherals

location of the instruction to be retrieved

DEVELOPMENT FLOW 329

The second module is for the instruction memory. During the development, we usually
store the compiled assembly code to memory in advance and configure it as a ROM in HDL
code. It is thus known as an instruction ROM.

14.4 DEVELOPMENT FLOW

While developing a system based on a conventional microcontroller, we examine the re-
quired functionalities and select a processor with the proper computation capability and
adequate IiO interface. Additional chips are frequently needed to perform special functions.
One advantage of using a soft-core microcontroller is that we can have both a customized
circuit and a microcontroller developed and implemented in the same FPGA device. A
large application usually includes many different tasks. In an FPGA platform, we can im-
plement the time-critical tasks in a customized circuit (i.e., “hardware”) for performance
and realize the remaining house-keeping and low-speed I/O functions in a microcontroller
(i.e., “software”).

The basic PicoBlaze-based development flow is shown in Figure 14.4. It consists of the
following steps:

1. Determine the software-hardware partition.
2 . Develop the assembly program for the software portion.
3. Compile the assembly program to generate an instruction ROM. The ROM is an HDL

4. Perform instruction-set-level simulation.
5. Derive HDL code for the hardware portion. The hardware includes customized

circuits to perform special I/O and time-critical functions and customized circuits to
interface with PicoBlaze.

6. Create the top-level HDL code that combines the codes for the PicoBlaze core, the
instruction ROM, and customized hardware.

7. Develop a testbench and perform HDL simulation for the entire system.
8. Synthesize and implement the HDL code and program the FPGA chip on the proto-

file.

typing board.
The subsequent chapters explain these steps in detail.

The step 9 shown in the dotted line is not a part of the normal development flow. It
reloads the instruction memory after the entire system is synthesized. This step is discussed
in Section 15.5.3.

14.5 INSTRUCTION SET

PicoBlaze has 57 instructions. The instructions have five general formats. We organize
the instructions according to the nature of their operations and divide them into following
categories:

0 Logical instructions
0 Arithmetic instructions
0 Compare and test instructions
0 Shift and rotate instructions
0 Data movement instructions
0 Program flow control instructions
0 Interrupt related instructions

330 PICOBLAZE OVERVIEW

hardware
development

r-p.7 PicoBlaze /-/

/-/ assembly

simulation e

/ testbench / / $:::e /
I -

om synthesis

device
programming

0

F-" dowloading

Figure 14.4 Development flow of a system with PicoBlaze.

INSTRUCTION SET 331

s3

sc

Sd

se E sf register file

3c

3D

3E

3F

data
RAM

1.9
:: t-j
3FF

Instruction callheturn
memory stack

El
El
flags

Figure 14.5 PicoBlaze programming model.

In this section, we first examine the program model and instruction format, and then list
and explain each instruction.

14.5.1 Programming model

From an assembly programming point of view, PicoBlaze contains 16 8-bit registers, a
64-byte data RAM, three flags (for zero, carry and interrupt), the program counter and the
top-of-stack pointer. The model, sometimes known as the instruction set architecture, is
shown in Figure 14.5. After an instruction is executed, the contents of these components
are modified explicitly or implicitly. The operations associated with each instruction are
discussed in Section 14.5.3.

We use the following notations for these memory components and some constant defi-
nitions:

sX, sY: each representing one of the 16 general-purpose registers, where X and Y take
on hexadecimal values from 0 to f
pc: program counter
t 0s: top-of-stack pointer of the callheturn stack
c, z , i: carry, zero, and interrupt flags
KK: 8-bit constant value or port id, which is usually expressed as two hexadecimal
digits
SS: 6-bit constant data memory address, which is usually expressed as two hexadec-
imal digits
AAA: 10-bit constant instruction memory address, which is usually expressed as three
hexadecimal digits

332 PICOBLAZE OVERVIEW

14.5.2 Instruction format

In an assembly program, we generally follow the conventions used in our HDL code, in
which a keyword (an instruction mnemonic) is in a boldface font and a constant is in capital
letters. PicoBalze’s instructions have five formats:

op sX, sY: register-register format. The op term specifies the operation. The SX
and SY terms are the two operands and SX also serves as the destination register. It
performs the SX + SX op SY operation.
op sX, KK: register-constant format. This format is similar to the register-register
format except that the second operand is replaced by an immediate constant. It
performs the SX + SX op KK operation.
op sX: single-register format. This format is used in shift and rotate instructions,
which involve only one operand. It performs the SX t op SX operation.
op AAA: single-address format. This format is used in jump and call instructions.
The AAA term is an address of the instruction memory. If the specified condition is
met, AAA is loaded into the program counter.

0 op: zero-operand format. This format is used in some miscellaneous instructions
that do not involve any operand.

There are two assembler programs for PicoBlaze: KCPSM3 from Xilinx and PBlazeZDE
from Mediatronix. The two programs use different mnemonics for several instructions.
In the following subsections, the alternative mnemonics used in PBlazeIDE are shown in
round brackets.

14.5.3 Logical instructions

There are six logical instructions, which support the and, or, and xor operations. An
instruction performs bitwise logical operation between two registers or one register and a
constant. The carry flag, c, is always cleared. The zero flag, z, reflects the result of the
operation. The mnemonics, brief descriptions, and pseudo operations of these instructions
are:

and sX, SY
- bitwise and operation
- pseudo operation:

S X +- sX and sY;
c +- 0 ;

and sX, KK
- bitwise and operation
- pseudo operation:

SX + sX and KK;
c + 0;

0 or sx, SY
- bitwise or operation
- pseudo operation:

S X c sX o r sY;
c + 0;

or sX, KK
- bitwise or operation

INSTRUCTION SET 333

- pseudo operation:
sX t sX or KK;
c t 0;

0 xor s X , SY

- bitwise xor operation
- pseudo operation:

sX t sX xor sY;
c + 0;

0 xor s X , KK

- bitwise xor operation
- pseudo operation:

SX t sX xor KK;
c 4- 0;

14.5.4 Arithmetic instructions

There are eight arithmetic instructions, n ..ich support addition and subtraction with or
without the carry flag. The carry flag, c, and the zero flag, z, reflect the result of operation.
The mnemonics, brief descriptions, and pseudo operations of these instructions are:

0 add s X , SY

- add without the carry flag
- pseudo operation:

sx + sx + sY;

0 add s X , KK

- add without the carry flag
- pseudo operation:

sX t sX + KK;

0 addcy s X , SY (addc s X , s Y)

- add with the carry flag
- pseudo operation:

0 addcy s X , KK (addc s X , KK)
- add with the carry flag
- pseudo operation:

sx + sx + SY + c ;

sX t sX + KK + c;

0 s u b s X , s Y
- subtract without the carry flag
- pseudo operation:

sx t sx - sY;

0 s u b s X , K K

- subtract without the carry flag
- pseudo operation:

S X t SX - KK;

334 PICOBLAZE OVERVIEW

subcy sX, sY (subc sX, sY)
- subtract with the carry flag (flag functioning as a borrow bit)
- pseudo operation:

0 subcy sX, KK (subc sX, KK)
- subtract with the carry flag (flag functioning as a borrow bit)
- pseudo operation:

sx +- s x - S Y - c ;

S X t SX - K K - C ;

14.5.5 Compare and test instructions

The compare and test instructions examine two registers or one register and constant, and
set the carry and zero flags accordingly. The contents of the registers remain intact. These
instructions are usually used in conjunction with a conditional jump or call instruction,
whose operation is based on the values of the flags.

A compare instruction performs subtraction operation. The result is used to set the carry
and zero flags and not stored to any register. The mnemonics, brief descriptions, and pseudo
operations of the two instructions are:

0 compare sX, SY (comp sX, sY)
- compare two registers and set the flags
- pseudo operation:

if s X = s Y t h e n z t 1 e l s e z t 0 ;
if s Y > s X t h e n c t 1 e l s e c t 0 ;

0 compare sX, KK (comp sX, KK)
- compare a register and a constant and set the flags
- pseudo operation:

if s X = K K t h e n z t 1 e l s e z t 0 ;
if K K > s X t h e n c t 1 e l s e c t 0 ;

A test instruction performs an and operation. The result is used to set the flags and not
stored in any register. If the result is 0, the zero flag is set to 1. The result is also fed to an
eight-input xor circuit to obtain the odd panty. If there are odd number of 1’s in the result,
the carry flag is set to 1. The mnemonics, brief descriptions, and pseudo operations of the
two instructions are shown below. The t is the 8-bit temporary result and will be discarded.

0 test sX, SY
- test two registers and set the flags
- pseudo operation:

t t s X and s Y ;
if t = O t h e n z c 1 e l s e z +- 0 ;
c t t (7) x o r t (6) xor . . . xor t (0) ;

0 test sX, KK
- test a register and a constant and set the flags
- pseudo operation:

t t sX and K K ;
if t = O t h e n z t 1 e l s e z t 0 ;
c c t (7) xor t (6) x o r . . . x o r t (0) ;

INSTRUCTION SET 335

7 6 5 4 1 3 1 2 1 1 0 7 6 5 4 3 2 1 0

slx

1 6 5 4 3 2 1 0

sla

rr 7 6 5 4 3 2 1 0

srx

sra

1 6 5 4 3 2 1 0

Figure 14.6 Illustration of shift and rotate instructions.

14.5.6 Shift and rotate instructions

There are four shift-left instructions, four shift-right instructions, and two rotate instructions.
These instructions use the single-register format and have only one operand. The graphical
representations of these instructions are shown in Figure 14.6. The mnemonics, brief
descriptions, and pseudo operations of these instructions are shown below. The & symbol
means to concatenate two operands.

0 s10 sx
- shift a register left 1 bit and shift 0 into the LSB
- pseudo operation:

S X +- s X (6 . . 0) & 0 ;
c + s X (7) ;

0 sll sx
- shift a register left 1 bit and shift 1 into the LSB
- pseudo operation:

s X t s X (6 . . 0) & 1 ;
c + s X (7) ;

0 SIX sx

- shift a register left 1 bit and shift SX (0) into the LSB
- pseudo operation:

S X + s X (6 . . O) & s X (0) ;
c + s X (7) ;

sla sx
- shift a register left 1 bit and shift c into the LSB
- pseudo operation:

S X t s X (6 . . O) & c ;
c t s X (7) ;

336 PICOBLAZE OVERVIEW

0 srOsX
- shift a register right 1 bit and shift 0 into the MSB
- pseudo operation:

s x +- 0 & sX(7..1);
c t sX(0);

0 srl s X

- shift a register right 1 bit and shift 1 into the MSB
- pseudo operation:

sx c 1 & sX(7..1);
c c sX(0);

0 srx s X

- shift a register right 1 bit and shift sX(7) into the MSB
- pseudo operation:

sx + sX(7) & SX(7.. 1) ;
c c sX(0);

a sra S X
- shift a register right 1 bit and shift c into the MSB
- pseudo operation:

sx t c & sX(7..1);
c i-- sX(0);

0 rlsX
- rotate a register left 1 bit
- pseudo operation:

SX + sX(6..0) & sX(7);
c t sX(7);

0 rr sX
- rotate a register right 1 bit
- pseudo operation:

sx +- sX(0) & sX(7..1);
c +- sX(0);

14.5.7 Data movement instructions

In PicoBlaze, the computation is done via the registers and ALU. The data RAM supplies
additional storage and the I/O ports provide paths to peripherals. There are several instruc-
tions to move data between the registers, data RAM, and I/O ports. The instructions can be
divided into three categories:

0 Between registers: the load instruction
0 Between a register and data RAM: the fetch and store instructions
0 Between a register and an I/O port: the input and output instructions

The mnemonics, brief descriptions, and pseudo operations of the data movement instruc-
tions are shown below. The RAM [] notation represents the content of the data RAM. Note
that in some instructions, the indirect address notation, as in (sY), is used in mnemonic to
emphasize that the content of the sY register is used.

INSTRUCTION SET 337

0 l o a d s X , s Y
- move data between two registers
- pseudo operation:

sx + sY;

0 load s X , KK

- move a constant to a register
- pseudo operation:

sX + K K ;

0 fetch sX, (s Y > (fetch sX, sY)
- move data from the data RAM to a register
- pseudo operation:

sX + R A M [(s Y) I ;

0 fetch s X , SS
- move data from the data RAM to a register
- pseudo operation:

a store s X , (sY> (store s X , s Y)
- move data from a register to the data RAM
- pseudo operation:

sX + R A M C S S I ;

R A M C (s Y) l t sX;

0 store sX, SS
- move data from a register to the data RAM
- pseudo operation:

0 input sX, (s Y > (in sX, sY)

- move data from the input port to a register
- pseudo operation:

R A M C S S] t sX;

p o r t - i d + s Y ;
sX + i n - p o r t ;

0 input sX, KK (in sX, KK)

- move data from the input port to a register
- pseudo operation:

p o r t - i d t K K ;
sX t i n - p o r t ;

0 output sx, (S Y) (out sx, S Y)
- move data from a register to the output port
- pseudo operation:

p o r t - i d +- s Y ;
o u t - p o r t t sX;

0 output s X , KK (out sX, KK)

- move data from a register to the output port
- pseudo operation:

p o r t - i d t K K ;
o u t - p o r t +- sX;

338 PICOBLAZE OVERVIEW

There is no explicit instruction to move data to or from the instruction memory. However,
many instructions include a field for an immediate constant. Since the constant is part of
the instruction and stored in the instruction memory, it can be considered as data that is
implicitly moved from the instruction memory to a register.

14.5.8 Program flow control instructions

In PicoBlaze, the program counter indicates where to fetch the instruction. By default, the
execution proceeds to the next address in the instruction memory and the program counter
is implicitly incremented (i.e,, pc t pc + I). The jump, call and return instructions
can explicitly load a value to the program counter and modify the program flow. These
instructions can be executed unconditionally or conditionally based on the values of the
carry and zero flags.

A jump instruction loads new value to the program counter if the corresponding condition
is met. The program execution changes the regular flow and branches to the new address.
The program flow continues normally after this point. The mnemonics, brief descriptions,
and pseudo operations of these instructions are shown below. Recall that AAA is for the
10-bit instruction memory address and pc is for the program counter.

0 jump AAA

- unconditionally jump
- pseudo operation:

pc + A A A ;

0 jump c, AAA

- jump if the carry flag is set
- pseudo operation:

if c = l then p c t A A A else p c +- p c + 1;

0 jump nc, AAA

- jump if the carry flag is not set
- pseudo operation:

if c=O then p c + A A A else pc t pc + 1;

0 jumpz,AAA
- jump if the zero flag is set
- pseudo operation:

if z=1 then p c + A A A else p c + p c + 1;

0 jump nz, AAA

- jump if the zero flag is not set
- pseudo operation:

if z=O then p c t A A A else p c + p c + 1;

The call and return instructions are used to implement a software function. When
a function is called, the processor suspends the current execution and branches to the
corresponding routine. When the routine computation is completed, the processor returns to
the suspended point and continues the execution. Like a jump instruction, a call instruction
loads a new value to the program counter if the corresponding condition is met. In addition,
it also saves the current value of the program counter in a special buffer, known as the stack.
The new address represents the starting point of a routine. The routine should include a
return instruction in the end. The return instruction obtains the saved value from the

INSTRUCTION SET 339

Figure 14.7 Representative flow of a subroutine call.

stack, increments the value by 1, and loads it to the program counter. This allows the
execution to return to the instruction that immediately follows the original call instruction.
A representative program flow is shown in Figure 14.7.

PicoBlaze allows nested function calls, which means that a function can be called within
another function. To support this feature, a stack, which is a last-in-first-out buffer, is used
to store the program counter’s values. In this buffer, the address of the newest call is pushed
to the top of the stack (i.e., the “last-in”). Assume that this routine does not contain other
function call inside. It will be completed first and the saved returned address is on the top
of the stack. It should be popped from the stack (i.e., “first-out”) to resume the previous
execution. PicoBlaze provides a 31-word stack for the nested call and return operations.

The mnemonics, brief descriptions, and pseudo operations of the call and return instruc-
tions are shown below. Recall that and t o s is for the top-of-stack pointer. The STACK [1
notation represents the content of the stack.

- unconditionally call subroutine
- pseudo operation:

0 call AAA

t o s + t o s + I;
STACK[tos] +- p c ;
p c + A A A ;

0 call c, AAA

- call subroutine if the carry flag is set
- pseudo operation:

i f c = l t h e n
t o s t t o s + 1;
STACK[tosl + p c ;
p c +- A A A ;

e l s e

340 PICOBLAZE OVERVIEW

p c + p c + 1;

0 call nc, AAA

- call subroutine if the carry flag is not set
- pseudo operation:

i f c=O t h e n
t o s t t o s + 1;
STACK"Cos1 t p c ;
p c +- A A A ;

e l s e
p c +- p c + 1;

0 call z, AAA

- call subroutine if the zero flag is set
- pseudo operation:

if z = 1 t h e n
t o s t t o s + 1;
STACK[tos] +- p c ;
p c t A A A ;

e l s e

0 call nz, AAA

p c t p c + 1;

- call subroutine if the zero flag is not set
- pseudo operation:

i f z=O t h e n
t o s +- t o s + 1;
STACKCtosI + p c ;
p c c A A A ;

e l s e

0 return (ret)

p c + p c + 1;

- unconditionally return
- pseudo operation:

p c t STACK[tos] + 1;
t o s +- t o s - 1;

0 return c (ret c)
- return if the carry flag is set
- pseudo operation:

if c = l t h e n
p c +- STACK[tos] + 1;
t o s t t o s - 1;

pc t p c + 1;

- return if the cany flag is not set
- pseudo operation:

e l s e

0 return nc (ret nc)

if c=O t h e n
p c t STACK[tos] + 1;
t o s t t o s - 1;

INSTRUCTION SET 341

else
pc + pc + 1

0 return z (ret z)
- return if the zero flag is set
- pseudo operation:

if z=1 then
pc +- STACKCtos] + 1;
tos + tos - 1;

pc +- pc + 1;

- return if the zero flag is not set
- pseudo operation:

else

0 return nz (ret nz)

if z=O then
pc + STACKCtos] + 1;
tos + tos - 1;

pc +- pc + 1;
else

14.5.9 Interrupt related instructions

Interrupt is another mechanism to alter program execution and its detail is discussed in
Chapter 17. Unlike the jump and call instructions, it is initiated from an external request.
When the interrupt flag is enabled and the interrupt request is asserted, PicoBlaze completes
execution of the current instruction, saves the address of the next instruction in the call/return
stack, preserves the carry and zero flags, disables the interrupt flag, and loads the program
counter with 3FF, which is the starting address of the interrupt service routine. PicoBlaze
has two return-from-interrupt instructions, which resume the operation from the interrupted
location. It also has two instructions that enable and disable the interrupt request by setting
or clearing the interrupt flag, i. The mnemonics, brief descriptions and pseudo operations
of these instructions are:

0 returni disable (reti disable)
- return from interrupt service routine and keep the interrupt flag disabled
- pseudo operation:

pc + STACKCtosl;
tos +-- tos - 1;
i +- 0;
c t preserved c;
z +- preserved z ;

0 returni enable (reti enable)
- return from interrupt service routine and keep the interrupt flag enabled
- pseudo operation:

pc + STACKCtosI;
tos + tos - 1;
i t 1;
c +-- preserved c;
z + preserved z ;

342 PICOBLAZE OVERVIEW

0 enable interrupt (eint)
- enable interrupt request
- pseudo operation:

i +- 1;

0 disable interrupt (dint)
- disable interrupt request
- pseudo operation:

i + 0 ;

Note that the interrupt mechanism saves the address of the next instruction. When a returni
instruction is executed, the address saved on the top of the stack (i.e., STACK [tos]) is
restored. This is different from a regular return instruction, in which the incremented
address (i.e., STACK [tos] +1) is restored.

14.6 ASSEMBLER DIRECTIVES

An assembler directive looks like an instruction in an assembly program. However, it is
not part of the microcontroller’s instruction set but is used to help program development.
As its name suggests, a directive “directs” the assembler to perform a specific task, such
as defining a constant or reserving data space. The KCPSM3 and PBlazeIDE assemblers
have somewhat different directives and they are discussed in the following subsections.

14.6.1 The KCPSM3 directives

The mnemonics, descriptions, and examples of key directives used in the KCPSM3 assem-
bler are:

address
- The directive specifies the subsequent code to be put to a specific address in the

- Example:
instruction ROM.

a d d r e s s 3FF

0 namereg

tive.
- The directive gives a symbolic name for a register. It makes code more descrip-

- Example:
namereg s 5 , index

0 constant
- The directive gives a symbolic name for a constant. It makes code more de-

scriptive.
- Example:

c o n s t a n t m a x , FO

14.6.2 The PBlazelDE directives

The mnemonics, descriptions, and examples of key directives used in the PBlazeIDE as-
sembler are shown below. Note that a $ sign is needed for a number in hexadecimal format.

BIBLIOGRAPHIC NOTES 343

org
- The directive specifies the subsequent code to be put to a specific address in the

- Example:
instruction ROM (i.e., “originate” from this address).

org $3FF

equ
- The directive “equates” a symbol to a value or register. It gives a symbolic

- Example:
name for a constant or a register.

max equ 1 2 8 / 8
i n d e x equ s5

0 dsin, dsout, dsio
- These directives equate a symbolic name for an I/O port id. The corresponding

port can be defined as input, output, or both input and output. The difference
between these directives and equ is that PBlazeIDE generates “port indicators”
for these directives on the simulation screen. The I/O activities can be displayed
and simulated via these indicators.

- Example:
k e y b o a r d d s i n $OE
s w i t c h d s i n $OF
l e d dsout $15

vhdl
- This directive generates instruction ROM in VHDL format. The detail is dis-

- Example:
cussed in Chapter 15.

vhdl ” t e m p l a t e . v h d ” , “ t a r g e t . v h d ” , “ R O M ”

14.7 BIBLIOGRAPHIC NOTES

The PicoBlaze’s manual from Xilinx, PicoBlaze 8-bit Embedded Microcontroller User
Guide, provides detailed information about this microcontroller, including the hardware
organization, instruction set, development process, and the KCPSM3 and PBlazeIDE as-
semblers. Ken Chapman, the designer of PicoBlaze, describes the derivation of this mi-
crocontroller in article “Creating Embedded Microcontrollers,” which is available in the
TechXclusives section of Xilinx Web site.

The KCPSM3 assembler, PicoBlaze HDL code, and instruction ROM HDL template
can be downloaded from the Xilinx Web site. Searching with the “PicoBlaze” keyword
will lead to the downloading page. The PBlazeIDE assembler can be downloaded from
the Mediatronix Web site, h t t p : //www . mediatronix. com. The site also provides more
detailed information about the software.

