
CHAPTER 12 

VGA CONTROLLER I: GRAPHIC 

12.1 INTRODUCTION 

VGA (video graphics array) is a video display standard introduced in the late 1980s in 
IBM PCs and is widely supported by PC graphics hardware and monitors. We discuss the 
design of a basic eight-color 640-by-480 resolution interface for CRT (cathode ray tube) 
monitors in this book. CRT synchronization and basic graphic processing are examined in 
this chapter, and text generation is discussed in Chapter 13. 

12.1.1 Basic operation of a CRT 

The conceptual sketch of a monochrome CRT monitor is shown in Figure 12.1. The 
electron gun (cathode) generates a focused electron beam, which traverses a vacuum tube 
and eventually hits the phosphorescent screen, Light is emitted at the instant that electrons 
hit a phosphor dot on the screen. The intensity of the electron beam and the brightness of 
the dot are determined by the voltage level of the external video input signal, labeled mono 
in Figure 12.1. The mono signal is an analog signal whose voltage level is between 0 and 
0.7 V. 

A vertical deflection coil and a horizontal deflection coil outside the tube produce mag- 
netic fields to control how the electron beam travels and to determine where on the screen 
the electrons hit. In today’s monitors, the electron beam traverses (i.e., scans) the screen 
systematically in a fixed pattern, from left to right and from top to bottom, as shown in 
Figure 12.2. 
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Figure 12.1 Conceptual diagram of a CRT monitor. 
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Figure 12.2 CRT scanning pattern. 
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Table 12.1 Three-bit VGA color combinations 

Red (R) Green (G) Blue (B) Resulting color 

0 0 
0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 

black 
blue 
green 
cyan 
red 

magenta 
yellow 
white 

The monitor's internal oscillators and amplifiers generate sawtooth waveforms to control 
the two deflection coils. For example, the electron beam moves from the left edge to the 
right edge as the voltage applied to the horizontal deflection coil gradually increases. After 
reaching the right edge, the beam returns rapidly to the left edge (i.e., retraces) when the 
voltage changes to 0. The relationship between the sawtooth waveform and the scan is 
shown in Figure 12.4. Two external synchronization signals, hsync and vsync, control 
generation of the sawtooth waveforms. These signals are digital signals. The relationship 
between the hsync signal and the horizontal sawtooth is also shown in Figure 12.4. Note 
that the I' 1 and "0" periods of the hsync signal correspond to the rising and falling ramps 
of the sawtooth waveform. 

The basic operation of a color CRT is similar except that it has three electron beams, 
which are projected to the red, green, and blue phosphor dots on the screen. The three dots 
are combined to form a pixel. We can adjust the voltage levels of the three video input 
signals to obtain the desired pixel color. 

12.1.2 VGA port of the S3 board 

The VGA port has five active signals, including the horizontal and vertical synchronization 
signals, hsync and vsync, and three video signals for the red, green, and blue beams. It 
is physically connected to a 15-pin D-subminiature connector. A video signal is an analog 
signal and the video controller uses a digital-to-analog converter to convert the digital output 
to the desired analog level. If a video signal is represented by an N-bit word, it can be 
converted to 2 N  analog levels. The three video signals can generate 23N different colors. 
This is also known as 3N-bit color since a color is defined by 3N bits. In the S3 board, 1-bit 
word is used for each video signal, and this leads to only eight (i.e., 23) possible colors. 
The possible color combinations are shown in Table 12.1. If we use the same 1-bit signal 
to drive the video signals, they become either "000" or "1 11" and the monitor functions as 
a black-and-white monochrome monitor. 

12.1.3 Video controller 

A video controller generates the synchronization signals and outputs data pixels serially. 
A simplified block diagram of a VGA controller is shown in Figure 12.3. It contains a 
synchronization circuit, labeled vga-sync, and a pixel generation circuit. 
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Figure 12.3 Simplified block diagram of a VGA controller. 
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The vga-sync circuit generates the timing and synchronization signals. The hsync and 
vsync signals are connected to the VGA port to control the horizontal and vertical scans 
of the monitor. The two signals are decoded from the internal counters, whose outputs 
are the pixel-x and pixel-y signals. The p i x e l x  and pixel-y signals indicate the 
relative positions of the scans and essentially specify the location of the current pixel. The 
vga-sync circuit also generates the video-on signal to indicate whether to enable or disable 
the display. The design of this circuit is discussed in Section 12.2. 

The pixel generation circuit generates the three video signals, which are collectively 
referred to as the rgb signal. A color value is obtained according to the current coordinates of 
the pixel (the pixel-x and pixel-y signals) and the external control and data signals. This 
circuit is more involved and is discussed in the second half of this chapter and Chapter 13. 

VGA 
monitor 

hsync 
vsync 

vga-sync 

> 

12.2 VGA SYNCHRONIZATION 

The video synchronization circuit generates the hsync signal, which specifies the required 
time to traverse (scan) a row, and the vsync signal, which specifies the required time to 
traverse (scan) the entire screen. Subsequent discussions are based on a 640-by-480 VGA 
screen with a 25-MHz pixel rate, which means that 25M pixels are processed in a second. 
Note that this resolution is also know as the VGA mode. 

The screen of a CRT monitor usually includes a small black border, as shown at the top 
of Figure 12.4. The middle rectangle is the visible portion. Note that the coordinate of the 
vertical axis increases downward. The coordinates of the top-left and bottom-right corners 
are (0,O) and (639,479), respectively. 

12.2.1 Horizontal synchronization 

A detailed timing diagram of one horizontal scan is shown in Figure 12.4. A period of the 
hsync signal contains 800 pixels and can be divided into four regions: 
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Figure 12.4 Timing diagram of a horizontal scan. 
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480 horizontal scan lines 

,#, 

Figure 12.5 Timing diagram of a vertical scan. 

0 Display: region where the pixels are actually displayed on the screen. The length of 
this region is 640 pixels. 
Retrace: region in which the electron beams return to the left edge. The video signal 
should be disabled (i.e., black), and the length of this region is 96 pixels. 

0 Right border: region that forms the right border of the display region. It is also know 
as the front porch (i.e., porch before retrace). The video signal should be disabled, 
and the length of this region is 16 pixels. 

0 Left border: region that forms the left border of the display region. It is also know 
as the backporch (i.e., porch after retrace). The video signal should be disabled, and 
the length of this region is 48 pixels. 

Note that the lengths of the right and left borders may vary for different brands of monitors. 
The hsync signal can be obtained by a special mod-800 counter and a decoding circuit. 

The counts are marked on the top of the hsync signal in Figure 12.4. We intentionally start 
the counting from the beginning of the display region. This allows us to use the counter 
output as the horizontal (x-axis) coordinate. This output constitutes the pixel-x signal. 
The hsync signal goes low when the counter’s output is between 656 and 75 1. 

Note that the CRT monitor should be black in the right and left borders and during retrace. 
We use the h-video-on signal to indicate whether the current horizontal coordinate is in 
the displayable region. It is asserted only when the pixel count is smaller than 640. 

12.2.2 Vertical synchronization 

During the vertical scan, the electron beams move gradually from top to bottom and then 
return to the top. This corresponds to the time required to refresh the entire screen. The 
format of the vsync signal is similar to that of the hsync signal, as shown in Figure 12.5. 
The time unit of the movement is represented in terms of horizontal scan lines. A period 
of the vsync signal is 525 lines and can be divided into four regions: 

0 Display: region where the horizontal lines are actually displayed on the screen. The 
length of this region is 480 lines. 
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0 Retrace: region that the electron beams return to the top of the screen. The video 
signal should be disabled, and the length of this region is 2 lines. 

0 Bottom border: region that forms the bottom border of the display region. It is 
also know as thefrontporch (i.e., porch before retrace). The video signal should be 
disabled, and the length of this region is 10 lines. 

0 Top border: region that forms the top border of the display region. It is also know 
as the backporch (i,e,, porch after retrace). The video signal should be disabled, and 
the length of this region is 33 lines. 

As in the horizontal scan, the lengths of the top and bottom borders may vary for different 
brands of monitors. 

The vsync signal can be obtained by a special mod-525 counter and a decoding circuit. 
Again, we intentionally start counting from the beginning of the display region. This allows 
us to use the counter output as the vertical (y-axis) coordinate. This output constitutes the 
pixel-y signal. The vsync signal goes low when the line count is 490 or 491. 

As in the horizontal scan, we use the v-video-on signal to indicate whether the current 
vertical coordinate is in the displayable region. It is asserted only when the line count is 
smaller than 480. 

12.2.3 Timing calculation of VGA synchronization signals 

As mentioned earlier, we assume that the pixel rate is 25 MHz. It is determined by three 
parameters: 

0 p :  the number of pixels in a horizontal scan line. For 640-by-480 resolution, it is 

pixels 
line 

p = 800 ~ 

0 1: the number of lines in a screen (i.e., a vertical scan). For 640-by-480 resolution, it 
is 

l ines 
1 = 525  - 

screen 
0 s: the number of screens per second. For flickering-free operation, we can set it to 

screens 
second 

~ ~ 6 0 -  

The s parameter specifies how fast the screen should be refreshed. For a human eye, 
the refresh rate must be at least 30 screens per second to make the motion appear to be 
continuous. To reduce flickering, the monitor usually has a much higher rate , such as the 
60 screens per second specification above. The pixel rate can be calculated by the three 
parameters : 

pixels 
pixel rate = p * 1 * s zz 2512.1 - 

second 
The pixel rate for other resolutions and refresh rates can be calculated in a similar fashion. 
Clearly, the rate increases as the resolution and refresh rate grow. 

12.2.4 HDL implementation 

The function of the vga-sync circuit is discussed in Section 12.1.3. If the frequency of 
the system clock is 25 MHz, the circuit can be implemented by two special counters: a 
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mod-800 counter to keep track of the horizontal scan and a mod-525 counter to keep track 
of the vertical scan. 

Since our designs generally use the 50-MHz oscillator of the prototyping board, the 
system clock rate is twice the pixel rate. Instead of creating a separate 25-MHz clock 
domain and violating the synchronous design methodology, we can generate a 25-MHz 
enable tick to enable or pause the counting. The tick is also routed to the p-tick port as 
an output signal to coordinate operation of the pixel generation circuit. 

The HDL code is shown in Listing 12.1. It consists of a mod-2 counter to generate the 
25-MHz enable tick and two counters for the horizontal and vertical scans. We use two 
status signals, h-end and v-end, to indicate completion of the horizontal and vertical scans. 
The values of various regions of the horizontal and vertical scans are defined as constants. 
They can be easily modified if a different resolution or refresh rate is used. To remove 
potential glitches, output buffers are inserted for the hsync and vsync signals. This leads 
to a one-clock-cycle delay. We should add a similar buffer for the rgb signal in the pixel 
generation circuit to compensate for the delay. 

Listing 12.1 VGA synchronization circuit 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee . numeric-std. a l l  ; 
e n t i t y  vga-sync i s  

c p o r t (  
clk, reset: in std-logic; 
hsync , vsync : out  std-logic ; 
video-on, p-tick: out  std-logic; 
pixel-x , pixel-y : out  std-logic-vector (9 downto 0)  

10 1 ;  
end vga- s ync ; 

a r c h i t e c t u r e  arch of vga-sync i s  
-- VGA 6 4 0 - b y  - 4 8 0  s y n c  p a r a m e t e r s  

c o n s t a n t  HF: integer:=16 ; --h.  f r o n t  p o r c h  
c o n s t a n t  HB: integer:=48 ; --h. b a c k  p o r c h  
c o n s t a n t  HR: integer:=96 ; --h.  r e t r a c e  
c o n s t a n t  V D :  integer :=480; - - v e r t i c a l  d i s p l a y  a r e a  

20 c o n s t a n t  V F :  integer:=lO; -- v .  f r o n t  p o r c h  
c o n s t a n t  VB: integer :=33; -- v .  b a c k  p o r c h  
c o n s t a n t  V R :  integer : = 2 ;  -- v .  r e t r a c e  
-- mod-2  c o u n t e r  
s i g n a l  mod2_reg, mod2-next : std-logic; 

25 -- s y n c  c o u n t e r s  
s i g n a l  v-count-reg , v-count-next : unsigned(9 downto 0)  ; 
s i g n a l  h-count-reg , h-count-next : unsigned (9 downto 0 )  ; 
_- o u t p u t  b u f f e r  
s i g n a l  v-sync-reg , h-sync-reg : std-logic ; 

30 s i g n a l  v-sync-next , h-sync-next : std-logic; 
__ s t a t u s  s i g n a l  
s i g n a l  h-end , v-end , pixel-tick: std-logic; 

-- r e g i s t e r s  

I S  c o n s t a n t  HD: integer :=640; - - h o r i z o n t a l  d i s p l a y  a r e a  

beg in  

35 p r o c e s s  (clk , reset) 
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40 

45 

beg in  
i f  reset=’l’ t h e n  

mod2-reg <= ’ 0 ’ ;  
v-count-reg <= ( o t h e r s = > ’ O ’ ) ;  
h-count-reg <= ( o t h e r s = > ’ O ’ ) ;  
v-sync-reg <= ’ 0 ’ ;  
h-sync-reg <= ’ 0 ’ ;  

e l s i f  (clk’event and clk=’l’) t h e n  
mod2-reg <= mod2-next ; 
v-count-reg <= v-count-next; 
h-count-reg <= h-count-next; 
v-sync-reg <= v-sync-next ; 
h-sync-reg <= h-sync-next ; 

end i f  ; 
so end p r o c e s s ;  

-- mod-2 c i r c u i t  t o  g e n e r a t e  2 5  MHz e n a b l e  t i c k  
mod2-next <= n o t  mod2-reg; 
-- 2 5  MHz p i x e l  t i c k  
pixel-tick <= ’1’  when mod2_reg=’l’ e l s e  ’ 0 ’ ;  

h-end <= -- end of h o r i z o n t a l  c o u n t e r  
5s -- s t a t u s  

’ 1 ’  when h-count-reg=(HD+HF+HB+HR-l) e l s e  --799 
’ 0 ’ ;  

v-end <= -- end of v e r t i c a l  c o u n t e r  
tQ ’1’ when v-count-reg=(VD+VF+VB+VR-l) e l s e  --524 

’ 0 ’ ;  
-- mod-800  h o r i z o n t a l  s y n c  c o u n t e r  
p r o c e s s  (h_count-reg,h-end,pixel-tick) 
beg in  

65 i f  pixel-tick=’l’ t h e n  -- 2 5  MHz t i c k  
i f  h-end=’l’ t h e n  

70 

h-count-next <= ( o t h e r s = > ’ O ’ ) ;  

h-count-next <= h-count-reg + 1 ;  
e l s e  

end i f  ; 

h-count-next <= h-count-reg; 
e l s e  

end i f  ; 
end p r o c e s s ;  

p r o c e s s  (v-count-reg,h-end,v-end,pixel-tick) 
beg in  

7s -- mod-525  v e r t i c a l  s y n c  c o u n t e r  

80 

i f  pixel-tick=’l’ and h-end=’l’ t h e n  

v-count-next <= ( o t h e r s = > ’ O ’ ) ;  

v-count-next <= v-count-reg + 1 ;  

i f  (v-end=’l’) t h e n  

e l s e  

end i f  ; 

v-count-next <= v-count-reg; 
e l s e  

end i f  ; 
end p r o c e s s ;  
-- h o r i z o n t a l  and v e r t i c a l  s y n c ,  b u f f e r e d  t o  a v o i d  g l i t c h  



266 VGA CONTROLLER I: GRAPHIC 

h-sync-next <= 
YO ’ 1 ’ when (h-count-reg >=(HD+HF)) --656 

and (h-count_reg<=(HD+HF+HR-l)) else --751 
’ 0 ’ .  

’ 1 ’ when ( v- count -reg >= ( VD+VF ) ) --490 

’ 0 ’ ;  
-- v i d e o  o n / o f f  
video-on <= 

v-sync-next <= 

95 and (v-count-reg<=(VD+VF+VR-l)) else --491 

’1’ when (h-count-reg<HD) and (v-count-reg<VD) else 
I00 ’ 0 ’ ;  

_- o u t p u t  s i g n a l  
hsync <= h-sync-reg ; 
vsync <= v-sync-reg ; 
pixel-x <= std-logic-vector(h-count-reg); 

I o j  pixel-y <= s t d - l o g i c - v e c t o r ( v - c o u n t _ r e g ) ;  
p-tick <= pixel-tick; 

end arch; 

12.2.5 Testing circuit 

To verify operation of the synchronization circuit, we can connect the rgb signal to three 
switches. The entire visible region should be turned on with a single color. We can go 
through the eight possible combinations and check the colors defined in Table 12.1. The 
HDL code is shown in Listing 12.2. As mentioned in Section 12.2.4, an output buffer is 
added for the rgb signal. 

Listing 12.2 VGA synchronization testing circuit 

library ieee; 
use ieee. std-logic-1164. all ; 
entity vga-test is 

port ( 
5 clk, reset: in std-logic; 

sw: in std-logic-vector ( 2  downto 0 )  ; 
hsync , vsync : out std-logic; 
rgb : out std-logic-vector ( 2  downto 0 )  

) ;  
1 0  end vga-test ; 

architecture arch o f  vga-test is 
signal rgb-reg: std-logic-vector ( 2  downto 0)  ; 
signal video-on: std-logic ; 

-- i n s t a n t i a t e  VGA s y n c  c i r c u i t  
vga-sync-unit : entity work. vga-sync 

I 5  begin 

port map(clk=>clk, reset=>reset , hsync=>hsync , 

20 p-tick=>open, pixel-x=>open, pixel-y=>open); 
vsync=>vsync, video-on=>video-on, 

-- r g b  b u f f e r  
process (clk , reset) 
begin 
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5 

i f  reset=’lJ then 

e l s i f  (clk’event and clk=’l’) then 

end i f ;  
end p r o c e s s  ; 

rgb-reg <= ( o t h e r s = > ’ O ’ ) ;  

rgb-reg <= s w ;  

10 rgb <= rgb-reg when video-on=’l’ e l s e  “000”; 
end arch; 

12.3 OVERVIEW OF THE PIXEL GENERATION CIRCUIT 

The pixel generation circuit generates the 3-bit rgb signal for the VGA port. The external 
control and data signals specify the content of the screen, and the p ixe l -x  and pixel-y 
signals from the vga-sync circuit provide the current coordinates of the pixel. For our 
discussion purposes, we divided this circuit into three broad categories: 

0 Bit-mapped scheme 
0 Tile-mapped scheme 
0 Object-mapped scheme 

In a bit-mapped scheme, a video memory is used to store the data to be displayed on the 
screen. Each pixel of the screen is mapped directly to a memory word, and the p ixe l -x  
and pixel-y signals form the address. A graphics processing circuit continuously updates 
the screen and writes relevant data to the video memory. A retrieval circuit continuously 
reads the video memory and routes the data to the r g b  signal. This is the scheme used in 
today’s high-performance video controller. For 640-by-480 resolution, there are about 3 10k 
(i.e., 640*480) pixels on a screen. This translates to 310k memory bits for a monochrome 
display and 930k memory bits (i.e., 3 bits per pixel) for a 3-bit color display. A bit-mapped 
example is discussed in Section 12.5. 

To reduce the memory requirement, one alternative is to use a tile-mapped scheme. In 
this scheme, we group a collection of bits to form a tile and treat each tile as a display 
unit. For example. we can define an 8-by-8 square of pixels (i.e., 64 pixels) as a tile. 
The 640-by-480 pixel-oriented screen becomes an 80-by-60 tile-oriented screen. Only 
4800 (i.e., 8060) words are needed for the tile memory. The number of bits in a word 
depends on the number of tile patterns. For example, if there are 32 tile patterns, each word 
should contain 5 bits, and the size of the tile memory is about 24k bits (i.e., 5*4800). The 
tile-mapped scheme usually requires a ROM to store the tile patterns. We call it pattern 
memory. Assume that monochrome patterns are used in the previous example. Each 8-by- 
8 tile pattern requires 64 bits, and the entire 32 patterns need 2K (i.e., 8*8*32) bits. The 
overall memory requirement is about 26k bits, which is much smaller than the 310k bits of 
the bit-mapped scheme. The text display discussed in Chapter 13 is based on this scheme. 

For some applications, the video display can be very simple and contains only a few 
objects. Instead of wasting memory to store a mostly blank screen, we can generate these 
objects using simple object generation circuits. We call this approach an object-mapped 
scheme. An object-mapped example is discussed in Section 12.4. 

The three schemes can be mixed together to generate a full screen. For example, we can 
use a bit-mapped scheme to generate the background and use an object-mapped scheme to 
produce the main objects. We can also use a bit-mapped scheme for one portion of a screen 
and tile-mapped text for another part of the screen. 
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Figure 12.6 Conceptual diagram of object-mapped pixel generation. 

12.4 GRAPHIC GENERATION WITH AN OBJECT-MAPPED SCHEME 

The conceptual diagram of an object-mapped pixel generation circuit that contains three 
objects is shown in Figure 12.6. The diagram consists of three object generation circuits 
and a special selecting and routing circuit, labeled rgb mux. An object generation circuit 
performs the following tasks: 

0 It keeps the coordinates of the current object and compares it with the current scan 
location provided by the p ixe l -x  and p ixe l -y  signals. 

0 If the current scan location falls within the region, it asserts the obj-i-on signal to 
indicate that the current scan location is within the region of the ith object and the 
object should be “turned on.” 

0 It specifies the desired color in the ob j -i-rgb signal. 
The rgb mux circuit performs multiplexing according to an internal prioritizing scheme. 

It examines various obj-Lon signals and determines which obj-i-rgb signal is to be 
routed to the rgb  output. The prioritizing scheme prioritizes the order of the displays when 
multiple ob j i - o n  signals are asserted at the same time. It corresponds to selecting an 
object for the foreground. 

We use a simplified ping-pong-like game to illustrate the various graphic generation 
schemes. The design is constructed as follows: 

1. Create a simple still screen with rectangular objects. 
2. Add a round object. 
3. Introduce animation. 
4. Add text for scores and information. 
5. Create a top-level control circuit. 

The first three steps are discussed in this section, and the last two steps are discussed in 
Chapter 13. 
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Figure 12.7 Still screen of the pong game. 

12.4.1 Rectangular objects 

A rectangular object can be described by its boundary coordinates on the screen. The still 
screen of the game is shown in Figure 12.7. It has three objects: a wall, which is shown as 
a narrow stripe on the left; a paddle, which is shown as a short vertical bar on the right; and 
a square ball. The coordinates of the displayable area of the screen is also shown. Note 
that the y-axis increases downward. 

Let us first examine generation of the wall stripe. For clarity, we define constants for the 
relevant boundaries and sizes in code. The code segment for the wall is 

c o n s t a n t  WALL-X-L : i n t e g e r  : = 3 2 ;  
c o n s t a n t  WALL-X-R: i n t e g e r  : = 3 5 ;  

__ p i x e l  w i t h i n  w a l l  
w a l l - o n  <= 

'1 ' when (WALL-X-L < = p i x - x )  and (pix-x<=WALL-X-R) e l s e  
' 0 ' ;  

__ w a l l  r g b  o u t p u t  
w a l l - r g b  <= " 0 0 1 " ;  -- b l u e  

The wall is a four-pixel-wide vertical stripe between columns 32 and 35, which as 
defined as WALL-X-L and WALL-X-R, representing the left and right x-coordinates of the 
wall, respectively. The object has two output signals, wall-on and wall-rgb. The wall-on 
signal, which indicates that the wall object should be turned on, is asserted when the current 
horizontal scan is within its region. Since the stripe covers the entire vertical column, there 
is no need for the y-axis boundaries. The wall-rgb signal indicates that the color of the 
wall is "001" (blue). 

The code segment for the bar (paddle) is 

-- b a r  left , r i g h t  b o u n d a r y  
c o n s t a n t  BAR-X-L: i n t e g e r  : = 6 0 0 ;  
c o n s t a n t  B A R - X - R :  i n t e g e r  : = 6 0 3 ;  
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-- b a r  t o p ,  b o t t o m  b o u n d a r y  
c o n s t a n t  B A R - Y - S I Z E :  integer:=72; 
c o n s t a n t  BAR-Y-T : integer : = M A X - Y / 2 - B A R - Y - S I Z E / 2 ;  --204 
c o n s t a n t  B A R - Y - B :  integer:=BAR-Y-T+BAR-Y-SIZE-l; 

-- p i x e l  w i t h i n  b a r  
bar-on <= 

’ 1’ when ( B A R - X - L  <=pix-x) and (pix-x < = B A R - X - R )  and 

’ 0 ’ ;  
(BAR-Y-T<=pix-y) and (pix-y<=BAR-Y-B) e l s e  

-- b a r  r g b  o u t p u t  
bar-rgb <= ”010”; - - g r e e n  

The code is similar to that of the wall segment except that it includes the y-axis boundaries. 
The desired vertical length of the bar is 72 pixels, which is defined by BAR-Y-SIZE. Since 
we wish to place the bar in the middle, the top boundary of the bar, which is BAR-Y-T, is 
one half of the maximal y-value (i.e., 480/2) minus one half of the bar length. The bottom 
boundary of the bar is the top boundary plus the bar length. Generation of the bar-on signal 
is similar to that of the wall-on signal except that the vertical scan must be within the bar’s 
y-axis boundaries as well. 

The code for the ball can be constructed in a similar fashion. The final code segment is 
the selection and multiplexing circuit, which examines the on signals of three objects and 
routes the corresponding rgb signal to output. The code is 

p r o c e s s  (video-on, wall-on, bar-on, sq-ball-on, 
wall-rgb,bar-rgb,ball-rgb) 

beg in  
i f  video-on=’O’ then 

e l s e  
graph-rgb <= ” 0 0 0 ”  ; - -b lank  

i f  wall-on=’l’ then 
graph-rgb <= wall-rgb; 

e 1 s i f bar-on= ’ 1 ’ then 
graph-rgb <= bar-rgb; 

e l s i f  sq-ball-on=’l’ then 
graph-rgb <= ball-rgb ; 

e l s e  
graph-rgb <= ”110”; -- y e l l o w  b a c k g r o u n d  

end i f  ; 
end i f  ; 

end p r o c e s s ;  

The circuit first checks whether the video-on is asserted, and if this is the case, examines 
the three on signals in turn. When an on signal is asserted, it indicates that the scan is within 
its region, and the corresponding rgb signal is passed to the output. If no signal is asserted, 
the scan is in the “background” and the output is assigned to be “1 10” (yellow). 

The complete HDL code is shown in Listing 12.3. 

Listing 12.3 Pixel-generation circuit for the pong game screen 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
e n t i t y  pong-graph-st i s  
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5 p o r t (  
v i d e o - o n :  i n  s t d - l o g i c ;  
p i x e l - x  , p i x e l - y  : in  s t d - l o g i c - v e c t o r  ( 9  downto 0)  ; 
g r a p h - r g b  : out  s t d - l o g i c - v e c t o r  ( 2  downto 0)  

1 ;  
10 end p o n g - g r a p h - s t  ; 

a r c h i t e c t u r e  s q - b a l l - a r c h  of  p o n g - g r a p h - s t  i s  
-- x ,  y c o o r d i n a t e s  ( 0 , O )  t o  ( 6 3 9 , 4 7 9 )  
s i g n a l  p ix -x  , p i x - y  : u n s i g n e d  ( 9  downto 0) ; 

15 c o n s t a n t  MAX-X: i n t e g e r  : =640 ;  
c o n s t a n t  MAX-Y: i n t e g e r  : =480; 

__ v e r t i c a l  s t r i p e  a s  a w a l l  

20 -- w a l l  l e f t  , r i g h t  b o u n d a r y  
c o n s t a n t  WALL-X-L: i n t e g e r  : =32;  
c o n s t a n t  W A L L - X - R :  i n t e g e r  : =35;  

_- r i g h t  v e r t i c a l  b a r  

-- b u r  l e f t ,  r i g h t  b o u n d a r y  
c o n s t a n t  BAR-X-L: i n t e g e r  :=600;  
c o n s t a n t  B A R - X - R :  i n t e g e r  :=603;  
-- b a r  t o p ,  b o t t o m  b o u n d a r y  

c o n s t a n t  BAR-Y-T : i n t e g e r  :=MAX-Y/2-BAR-Y-SIZE/2; --204 
c o n s t a n t  BAR-Y-B : i n t e g e r  :=BAR-Y_T+BAR-Y-SIZE-l; 

25 - 

30 c o n s t a n t  BAR-Y-SIZE: i n t e g e r  : = 7 2 ;  

__ s q u a r e  b a l l  

c o n s t a n t  BALL-SIZE: i n t e g e r  : =8 ;  
-_ b u l l  l e f t  , r i g h t  b o u n d a r y  
c o n s t a n t  B A L L - X - L :  i n t e g e r  :=580;  
c o n s t a n t  BALL-X-R : i n t e g e r  : =BALL-X-L+BALL-SIZE -1; 

c o n s t a n t  BALL-Y-T: i n t e g e r  :=238;  
c o n s t a n t  B A L L - Y - B  : i n t e g e r  :=BALL-Y-T+BALL-SIZE-l; 

35 - 

40 -- b a l l  t o p ,  b o t t o m  b o u n d a r y  

-_ o b j e c t  o u t p u t  s i g n a l s  

s i g n a l  w a l l - o n ,  b a r - o n ,  s q - b a l l - o n :  s t d - l o g i c ;  
s i g n a l  w a l l - r g b  , b a r - r g b  , b a l l - r g b :  

45 - 

s t d - l o g i c - v e c t o r  ( 2  downto 0 )  ; 

-- ( w a l l )  l e f t  v e r t i c a l  s t r i p e  

-- p i x e l  w i t h i n  w a l l  
w a l l - o n  <= 

S5 - 

50 b e g i n  
pix-x <= unsigned(pixe1-x); 
pix-y <= unsigned(pixe1-y); 
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’1’ when (WALL-X-L<=pix-x) and (pix-x<=WALL-X-R) e l s e  
’ 0 ’ ;  

_- w a l l  r g b  o u t p u t  
wall-rgb <= “ 0 0 1 ” ;  -- b l u e  

_- r i g h t  v e r t i c a l  b a r  

-- p i x e l  w i t h i n  b a r  
bar-on <= 

’1’ when (BAR-X-L<=pix-x) and (pix-x<=BAR-X-R) and 

’ 0 ’ ;  
(BAR-Y-T<=pix-y) and (pix-y<=BAR-Y-B) e l s e  

-- b a r  r g b  o u t p u t  
bar-rgb <= “ 0 1 0 ”  ; - -green  

s q u a r e  b a l l  -- 

-- p i x e l  w i t h i n  s q u a r e d  b a l l  
sq-ball-on <= 

’ 1 ’ when (BALL-X-L <=pix-x) and (pix-x <=BALL-X-R) and 

’ 0 ’ ;  
(BALL-Y-T <=pix-y) and (pix-y<=BALL-Y-B) e l s e  

ball-rgb <= “100”; -- r e d  

-- r g b  m u l t i p l e x i n g  c i r c u i t  

- 

process(video-on,wall-on,bar-on,sq-ball-on, 
wall-rgb, bar-rgb, ball-rgb) 

beg in  
i f  video-on=’O’ then 

e l s e  
graph-rgb <= “ 0 0 0 ”  ; - - b l a n k  

i f  wall-on=’l’ then 
graph-rgb <= wall-rgb; 

e l s i f  bar-on=’l’ then 
graph-rgb <= bar-rgb ; 

e l s i f  sq-ball-on=’l’ then 
graph-rgb <= ball-rgb; 

e l s e  
graph-rgb <= ”110” ; -- y e l l o w  b a c k g r o u n d  

end i f ;  
end i f  ; 

end p r o c e s s ;  
end sq-ball-arch ; 

After deriving the pixel generation circuit, we can combine it with the VGA synchro- 
nization circuit to construct the complete video interface. The top-level HDL code is shown 
in Listing 12.4. Note that the graph-rgb signal is routed to output through an output buffer. 
It is loaded when the p ixe l - t ick  signal is asserted. This synchronizes the rgb output with 
the buffered hsync and vsync signals. 

Listing 12.4 Complete circuit for a still pong game screen 

l i b r a r y  ieee; 
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20 

25 

use  ieee. std-logic-1164, a l l  ; 
e n t i t y  pong-top-st i s  

port  ( 
5 clk ,reset : in  std-logic ; 

hsync , vsync : out  std-logic; 
rgb: out  std-logic-vector (2 downto 0)  

1 ;  
end pong-top-st ; 

a r c h i t e c t u r e  arch of  pong-top-st i s  
10 

s i g n a l  pixel-x , pixel-y : std-logic-vector (9 downto 0 )  ; 
s i g n a l  video-on , pixel-tick: std-logic; 
s i g n a l  rgb-reg , rgb-next : std-logic-vector ( 2  downto 0)  ; 

__ i n s t a n t i a t e  VGA s y n c  
vga-sync-unit : e n t i t y  work. vga-sync 

port  map(clk=>clk, reset=>reset , 

I S  begin  

video-on=>video-on, p-tick=>pixel-tick, 
hsync=>hsync, vsync=>vsync, 
pixel-x=>pixel-x, pixel-y=>pixel-y); 

__ i n  s t a n t i a t e g r a p h i c  g e n e r a  t o r  
pong-grf-st-unit: e n t i t y  work.pong-graph-st(sq-ball-arch) 

port  map (video-on=>video-on, 
pixel-x=>pixel-x, pixel-y=>pixel-y, 
graph-rgb=>rgb-next); 

__ r g b  b u f f e r  
p r o c e s s  (clk) 
beg in  

30 i f  (clk event and clk= ’ 1 ’ ) then 
i f  (pixel-tick=’l’) then 

end i f ;  
rgb-reg <= rgb-next ; 

end i f  ; 
3 5  end p r o c e s s ;  

rgb <= rgb-reg; 
end arch; 

12.4.2 Non-rectangular object 

Direct checking of the boundaries of a non-rectangular object is very difficult. An alternative 
is to specify the object pattern in a bit map and generate the rgb and on signals according 
to the map. This can best be explained by an example. Assume that we want to have a 
round ball in the pong game screen. The bit map of a circle within an 8-by-8 pixel square 
is shown in Figure 12.8. The circle object can be generated as follows: 

0 Check whether the scan coordinates are within the 8-by-8 pixel square. 
0 If this is the case, obtain the corresponding pixel from the bit map. 
0 Use the retrieved bit to generate the rgb and on signals for the circle object. 

To implement this scheme, we need to include a pattern ROM to store the bit map and an 
address mapping circuit to convert the scan coordinates to the ROM’s row and column. 

To accommodate the change, the ball portion from Listing 12.3 must be modified. First, 
we define a pattern ROM for the circle. It can be done by declaring a two-dimensional 
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Figure 12.8 Bit map of a circle. 

constant, as in the ROM template of Listing 11.5. To facilitate future animation, we also 
use signals to replace constants for the square ball boundaries. The revised architecture 
declaration portion becomes 

c o n s t a n t  BALL-SIZE: i n t e g e r  :=8; 
-- b a l l  l e f t ,  r i g h t  b o u n d a r y  
s i g n a l  ball-x-l , b a l l - x - r  : u n s i g n e d  ( 9  downto 0)  ; 
-_ b a l l  t o p  , b o t t o m  b o u n d a r y  
s i g n a l  b a l l - y - t  , b a l l - y - b  : u n s i g n e d  ( 9  downto 0 )  ; 

-- round b a l l  image  ROM 

type  r o m - t y p e  i s  array ( 0  to  7 )  of s t d - l o g i c - v e c t o r ( 0  to 7 ) ;  
-- ROM d e f i n i t i o n  
c o n s t a n t  BALL-ROM: r o m - t y p e  : =  

----___--------_____------------------------- ........................................... 

__------------------------------------------- 

I 

"00111100" ,  -- * * * *  
" 0 1 1 1 1 1 1 0 " ,  -- * * * * * *  
"11111111", -- * * * * * * * *  
" 1 1 1 1 1 1 1 1 " ,  -- * * * * * * * * 
"11111111", -- * * * * * * * *  
"11111111", -- * * * * * * * *  
" 0 1 1 1 1 1 1 0 " ,  -- * * * * * *  
I'  0 0  11 1 1  00 " -- * * * *  

) ;  
s i g n a l  rom-addr  , r o m - c o l  : u n s i g n e d  ( 2  downto 0)  ; 
s i g n a l  r o m - d a t a :  s t d - l o g i c - v e c t o r  ( 7  downto 0)  ; 
s i g n a l  r o m - b i t  : s t d - l o g i c  ; 
-- new s i g n a l  t o  i n d i c a t e  w h e t h e r  t h e  s c a n  c o o r d i n a t e s  
-- a r e  w i t h i n  t h e  round b a l l  r e g i o n  
s i g n a l  r d - b a l l - o n  : s t d - l o g i c ;  

Second, we expand the ball generation segment to include the mapping of the circle bit 
map: 

-- p i x e l  w i t h i n  s q u a r e  b a l l  
s q - b a l l - o n  <= 

'1' when ( b a l l - x - l < = p i x - x )  and ( p i x - x < = b a l l - x - r )  and 

' 0 ' ;  
( b a l l - y - t  < = p i x - y )  and ( p i x - y < = b a l l - y - b )  e l s e  

_- map c u r r e n t  p i x e l  l o c a t i o n  t o  ROM a d d r / c o l  
r o m - a d d r  <= p i x - y ( 2  downto 0) - b a l l - y - t ( 2  downto 0 ) ;  
r o m - c o l  <= p i x - x ( 2  downto 0)  - b a l l - x - l ( 2  downto 0 ) ;  
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rom-data <= BALL-ROM(to-integer(rom-addr)); 
rom-bit <= rom-data(to-integer(rom-co1)); 
rd-ball-on <= 

’1’ when (sq-ball-on=’l’) and (rom-bit=’l’) e l s e  
’ 0 ’ ;  

_- b a l l  r g b  o u t p u t  
ball-rgb <= “100“; -- r e d  

The first statement checks whether the current scan coordinates are within the square ball 
region and asserts the sq-ball-on signal accordingly. This part is the same as Listing 12.3 
except that signals are used for boundaries. The second part obtains the corresponding ROM 
bit according to the current scan coordinates. If the scan coordinates are within the square 
ball region, subtracting the three LSBs from the top boundary (i.e., bal l -y- t )  provides 
the corresponding ROM row (i.e., rom-addr), and subtracting the three LSBs from the left 
boundary (i.e., b a l l x - 1 )  provides the corresponding ROM column (i.e., rom-col). The bit 
can then be retrieved by two indexing operations. It is then combined with the sq-ball-on 
signal to generate the rd-ball-on signal. This design just assigns a monochrome color 
(i.e., “100” red) for the round ball region. We can duplicate the pattern ROM three times to 
store the rgb value for each pixel and generate a multiple-color ball. 

Finally, we need to make a minor modification in the multiplexing circuit to substitute 
the sq-ball-on signal with the rd-ball-on signal: 

p r o c e s s  . . . 
. . .  

e l s i f  rd-ball-on=’l’ then 
graph-rgb <= ball-rgb; 

. . .  
end p r o c e s s ;  

These modifications are incorporated into the animated graph in the next subsection. 

12.4.3 Animated object 

When an object changes its location gradually in each scan, it creates the illusion of motion 
and becomes animated. To achieve this, we can use registers to store the boundaries of an 
object and update its value in each scan. In the pong game, the paddle is controlled by two 
pushbuttons and can move up and down, and the ball can move and bounce in all directions. 
We illustrate how to create animation for these two objects in this subsection. 

While the VGA controller is driven by a 25-MHz pixel rate, the screen of the VGA 
monitor is refreshed only 60 times per second. The boundary registers only need to be 
updated at this rate. We create a 60-Hz enable tick, r e f  r - t i c k ,  which is asserted one clock 
cycle every & second. 

Let us first examine the design of the paddle. To accommodate the changing y-axis 
coordinates, we replace the constants with two signals, bar-y-t and bar-y-b, to represent 
the top and bottom boundaries, and create a register, bar-y-reg, to store the current y- 
axis location of the top boundary. If one of the pushbuttons is pressed, bar-y-reg either 
increases or decreases a fixed amount when the r e f  r - t i c k  signal is asserted. The amount 
is defined by a constant, BAR-V, which stands for the bar velocity. We assume that assertion 
of the b tn(1)  and b tn(0)  signals causes the paddle to move up and down, respectively, 
and that the paddle stops moving when it reaches the top or the bottom of the screen. The 
code segment for updating bar-y-reg is 
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-- new b a r  y - p o s i t i o n  
p r o c e s s  ( b a r - y - r e g ,  b a r - y - b ,  b a r - y - t  , r e f r - t i c k ,  b t n )  
beg in  

b a r - y - n e x t  <= b a r - y - r e g ;  -- d e f a u l t ,  no move 
i f  r e f r - t i c k = ’ l J  then 

i f  b t n ( l ) = ’ l ’  and bar-y-b<(MAX-Y-l-BAR-V) then 
-- b u t t o n  1 a s s e r t e d  and bar  n o t  r e a c h  b o t t o m  y e t  

e l s i f  b t n ( 0 ) = ’ 1 ’  and b a r - y - t  > B A R - V  then 
-- b u t t o n  0 a s s e r t e d  and b a r  n o t  r e a c h  t o p  y e t  

b a r - y - n e x t  <= b a r - y - r e g  - BAR-V; -- move up 
end i f ;  

b a r - y - n e x t  <= b a r - y - r e g  + BAR-V; -- move down 

end i f  ; 
end p r o c e s s ;  

The design of the ball is more involved. We have to replace the four boundary constants 
with four signals and create two registers, ball-x-reg and ball-y-reg, to store the current 
x- and y-axis coordinates of the left and top boundaries. The ball usually moves at a constant 
velocity (i.e., at a constant speed and in the same direction). It may change direction when 
hitting the wall, the paddle, or the bottom or top of the screen. We decompose the velocity 
into an x-component and a y-component, whose values can be either a positive constant 
value, BALL-V-P, or a negative constant value, BALL-V-N. The current values of the two 
components are stored in the x-delta-reg and y-delta-reg registers. The code segment 
for updating ball-x-reg and ball-y-reg is 

-- new b a l l  p o s i t i o n  
b a l l - x - n e x t  <= 

b a l l - x - r e g  + x - d e l t a - r e g  when r e f r - t i c k = ’ l  ’ e l s e  
b a l l - x - r e g  ; 

b a l l - y - r e g  + y - d e l t a - r e g  when r e f r - t i c k = ’ l ’  e l s e  
b a l l - y - r e g  ; 

b a l l - y - n e x t  <= 

and the code segment for updating x-delta-reg and y-delta-reg is 

-- new b a l l  v e l o c i t y  
p r o c e s s  ( x - d e l t a - r e g  , y - d e l t a - r e g  , b a l l - y - t  , b a l l - x - 1  , b a l l - x - r  , 

beg in  
ball-y-t,ball-y-b,bar-y-t,bar-y-b) 

x - d e l t a - n e x t  <= x - d e l t a - r e g ;  - - d e f a u l t  , no change  
y - d e l t a - n e x t  <= y - d e l t a - r e g ;  - - d e f a u l t  , no change  
i f  b a l l - y - t  < 1 then -- r e a c h  t o p  

y - d e l t a - n e x t  <= BALL-V-P ; --down 
e l s i f  b a l l - y - b  > ( M A X - Y  -1)  then - -reach b o t t o m  

y - d e l t a - n e x t  <= BALL-V-N; --up 
e l s i f  b a l l - x - 1  <= WALL-X-R then - -reach w a l l  

x - d e l t a - n e x t  <= B A L L - V - P ;  --bounce back  ( t o  r i g h t )  
e l s i f  (BAR-X-L < = b a l l - x - r )  and ( b a l l - x - r  <=BAR-X-R) then 

-- r e a c h  x - c o o r d i n a t e  of  b a r  
i f  ( b a r - y - t  < = b a l l - y - b )  and ( b a l l - y - t  < = b a r - y - b )  then 

-- w i t h i n  y -range  of b a r ,  h i t  
x - d e l t a - n e x t  <= BALL-V-N; --bounce back  ( t o  l e f t  ) 

end i f  ; 
end i f  ; 

end p r o c e s s ;  
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Note that if the paddle bar misses the ball, the ball continues moving to right and eventually 
wraps around. 

The complete code is shown in Listing 12.5. 

Listing 12.5 Pixel-generation circuit for the animated pong game 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  pong-graph-animat e i s  

5 p o r t (  
clk, reset : std-logic ; 
btn: std-logic-vector (1 downto 0 )  ; 
video-on: in  std-logic; 
pixel-x , pixel-y : in std-logic-vector ( 9  downto 0)  ; 

10 graph-rgb : out  std-logic-vector (2 downto 0)  

) ;  
end pong-graph-animate ; 

a r c h i t e c t u r e  arch of pong-graph-animate i s  
I5 s i g n a l  refr-tick : std-logic; 

-_ x ,  y c o o r d i n a t e s  (0,O) t o  ( 6 3 9 , 4 7 9 )  
s i g n a l  pix-x , pix-y : unsigned ( 9  downto 0)  ; 
c o n s t a n t  MAX-X: integer :=640; 
c o n s t a n t  MAX-Y: integer:=480; 

-- v e r t i c a l  s t r i p e  a s  a w a l l  
20 - 

_- w a l l  l e f t  , r i g h t  b o u n d a r y  
c o n s t a n t  WALL-X-L : integer : =32 ; 

25 c o n s t a n t  WALL-X-R: integer :=35; 

__ r i g h t  p a d d l e  b a r  

-- b a r  l e f t  , r i g h t  b o u n d a r y  
30 c o n s t a n t  BAR-X-L: integer : = 6 0 0 ;  

c o n s t a n t  BAR-X-R: integer :=603; 
__ b a r  t o p ,  b o t t o m  b o u n d a r y  
s i g n a l  bar-y-t , bar-y-b : unsigned ( 9  downto 0)  ; 
c o n s t a n t  BAR-Y-SIZE: integer :=72; 

35 -- r e g  t o  t r a c k  t o p  b o u n d a r y  ( x  p o s i t i o n  is f i x e d )  
s i g n a l  bar-y-reg , bar-y-next : unsigned ( 9  downto 0)  ; 
-- b a r  m o v i n g  v e l o c i t y  when  a b u t t o n  i s  p r e s s e d  
c o n s t a n t  BAR-V: integer:=4; 

40 -- s q u a r e  b a l l  

c o n s t a n t  BALL-SIZE: integer:=8; -- 8 
-- b a l l  l e f t ,  r i g h t  b o u n d a r y  
s i g n a l  ball-x-1 , ball-x-r : unsigned ( 9  downto 0)  ; 

15 -- b a l l  t o p  , b o t t o m  b o u n d a r y  
s i g n a l  ball-y-t , ball-y-b : unsigned (9 downto 0)  ; 

_- r e g  t o  t r a c k  l e f t  , t o p  b o u n d a r y  
s i g n a l  ball-x-reg , ball-x-next : unsigned ( 9  downto 0)  ; 
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s i g n a l  b a l l - y - r e g  , b a l l - y - n e x t  : u n s i g n e d  ( 9  downto 0)  ; 

-_ r e g  t o  t r a c k  b a l l  s p e e d  
s i g n a l  x - d e l t a - r e g  , x-delta-next : u n s i g n e d ( 9  downto 0 )  ; 
s i g n a l  y - d e l t a - r e g  , y - d e l t a - n e x t  : u n s i g n e d ( 9  downto 0 )  ; 
-- b a l l  v e l o c i t y  c a n  b e  p o s  o r  neg  
c o n s t a n t  BALL-V-P : u n s i g n e d  ( 9  downto 0 )  

: = t o - u n s i g n e d  ( 2 , 1 0 1  ; 
c o n s t a n t  BALL-V-N : u n s i g n e d  ( 9  downto 0)  

: = u n s i g n e d  ( t o - s i g n e d  (-2,lO) ; 
~~ 

-- r o u n d  b a l l  i m a g e  ROM 

type rom- type  i s  array  (0 t o  7 )  

-- ROM d e f i n i t i o n  
c o n s t a n t  BALL-RUM: rom- type  : = 

( 

of  s t d - l o g i c - v e c t o r ( 0  to  7 ) ;  

" 0 0 1 1 1 1 0 0 " ,  -- * * * *  
" 0 1 1 1 1 1 1 0 " ,  -- * * * * * *  
"11111111", -- * * * * * * * * 
"11111111", -- * * * * * * * *  
"11111111", -- * * * * * * * *  
"11111111", -- * * * * * * * *  
" 0 1 1 1 1 1 1 0 " ,  -- * * * * * *  
" 0 0 1 1 1 100 '1 -- * * * *  

) ;  
s i g n a l  rom-addr  , rom-co l  : u n s i g n e d  ( 2  downto 0 )  ; 
s i g n a l  r o m - d a t a :  s t d - l o g i c - v e c t o r  ( 7  downto 0)  ; 
s i g n a l  r o m - b i t  : s t d - l o g i c ;  

-- o b j e c t  o u t p u t  s i g n a l s  

s i g n a l  w a l l - o n ,  b a r - o n ,  s q - b a l l - o n ,  r d - b a l l - o n :  s t d - l o g i c ;  
s i g n a l  w a l l - r g b  , b a r - r g b  , b a l l - r g b  : 

s t d - l o g i c - v e c t o r  ( 2  downto 0)  ; 
begin  

85 -- r e g i s t e r s  

90 

9s 

p r o c e s s  ( c l k  , r e s e t  1 
begin  

i f  r e s e t = ' l '  then 
b a r - y - r e g  <= ( o t h e r s = > ' O ' ) ;  
b a l l - x - r e g  <= C o t h e r s = > ' O ' ) ;  
b a l l - y - r e g  <= ( o t h e r s = > ' O ' ) ;  
x - d e l t a - r e g  <= ( " 0 0 0 0 0 0 0 1 0 0 ' ' )  ; 
y - d e l t a - r e g  <= ( " 0 0 0 0 0 0 0 1 0 0 ' ' )  ; 

b a r - y - r e g  <= b a r - y - n e x t  ; 
b a l l - x - r e g  <= b a l l - x - n e x t  ; 
b a l l - y - r e g  <= b a l l - y - n e x t  ; 
x - d e l t a - r e g  <= x - d e l t a - n e x t  ; 

e 1 s i f  ( c l k  ' e v e n t  and c l k =  ' 1 ' ) then 

y - d e l t a - r e g  <= y - d e l t a - n e x t  ; 
IW end i f  ; 

end p r o c e s s ;  
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ins 

I10 

115 

i 20 

I25 

I30 

I35 

p i x - x  <= u n s i g n e d ( p i x e 1 - x ) ;  
p i x - y  <= u n s i g n e d ( p i x e 1 - y ) ;  
__ r e f r - t i c k :  1 - c l o c k  t i c k  a s s e r t e d  a t  s t a r t  o f  v - s y n c  
__ i . e . ,  when  t h e  s c r e e n  i s  r e f r e s h e d  ( 6 0  H z )  
r e f r - t i c k  <= ’ 1 ’  when ( p i x - y = 4 8 1 )  and (p ix -x=O)  e l s e  

’ 0 ’ .  

-- ( w a l l )  l e f t  v e r t i c a l  s t r i p e  

-- p i x e l  w i t h i n  w a l l  
w a l l - o n  <= 

’1 ’ when (WALL-X-L < = p i x - x )  and (pix-x<=WALL-X-R) e l s e  
’ 0 ’ ;  

_- w a l l  r g b  o u t p u t  
w a l l - r g b  <= “ 0 0 1 “ ;  -- b l u e  

-_ r i g h t  v e r t i c a l  b a r  

-- b o u n d a r y  
b a r - y - t  <= b a r - y - r e g ;  
b a r - y - b  <= b a r - y - t  + BAR-Y-SIZE - 1; 
-- p i x e l  w i t h i n  b a r  
b a r - o n  <= 

’1 ’ when (BAR-X-L<=pix-x) and (pix-x<=BAR-X-R) and 

’ 0 ’ ;  
( b a r - y - t  < = p i x - y )  and ( p i x - y < = b a r - y - b )  e l s e  

-- b a r  r g b  o u t p u t  
b a r - r g b  <= “ 0 1 0 ”  ; - -green  
-- new b a r  y - p o s i t i o n  
p r o c e s s  ( b a r - y - r e g  , b a r - y - b ,  b a r - y - t  , r e f r - t i c k  , b t n )  
beg in  

b a r - y - n e x t  <= b a r - y - r e g  ; -- no move  
i f  r e f r - t i c k = ’ l ’  then 

i f  b t n ( l ) = ’ l ’  and bar-y-b<(MAX-Y-l-BAR-V) then 

e l s i f  b t n ( O ) = ’ l ’  and b a r - y - t  > BAR-V then 

end i f ;  

b a r - y - n e x t  <= b a r - y - r e g  + B A R - V ;  -- move  down 

b a r - y - n e x t  <= b a r - y - r e g  - B A R - V ;  -- move  up 

end i f  ; 
end p r o c e s s ;  

-- s q u a r e  b a l l  

-- b o u n d a  r y  
b a l l - x - 1  <= b a l l - x - r e g ;  
b a l l - y - t  <= b a l l - y - r e g ;  
b a l l - x - r  <= b a l l - x - 1  + BALL-SIZE - 1; 
b a l l - y - b  <= b a l l - y - t  + BALL-SIZE - 1;  
-- p i x e l  w i t h i n  b a l l  
s q - b a l l - o n  <= 

’ 1 ’ when ( b a l l - x - 1  < = p i x - x )  and ( p i x - x < = b a l l - x - r )  and 
( b a l l - y - t  < = p i x - y )  and ( p i x - y < = b a l l - y - b )  e l s e  
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I55 

I M I  

I65 

I70 

175 

I80 

185 

190 

195 

ZW 

205 

’ 0 ’ ;  
-- map c u r r e n t  p i x e l  l o c a t i o n  t o  ROM a d d r / c o l  
rom-addr <= pix-y(2 downto 0)  - ball-y-t(2 d o w n t o ’ 0 ) ;  
rom-col <= pix-x(2 downto 0 )  - ball-x-l(2 downto 0 ) ;  
rom-data <= BALL-ROM(to_integer(rom-addr)); 
rom-bit <= rom-data(to-integer(rom-co1)); 
-- p i x e l  w i t h i n  b a l l  
rd-ball-on <= 

’ 1 ’ when 
J O ’ ;  

__ b a l l  r g b  
ball-rgb <= 
-- new b a l l  
ball-x-next 

ball-y-next 

-- new b a l l  

(sq-ball-on=’l’) and (rom-bit=’l’) e l s e  

o u t p u t  
” 1 0 0 ” ;  -- red 
p o s i t i o n  
<= ball-x-reg + x-delta-reg 

when refr-tick=’l’ e l s e  
ball-x-reg ; 

<= ball-y-reg + y-delta-reg 
when refr-tick=’l’ e l s e  

ball-y-reg ; 
v e l o c i t y  

p r o c e s s  (x-delta-reg , y-delta-reg , ball-y-t , ball-x-1 , ball-x-r , 

beg in  
ball-y-t,ball-y-b,bar-y-t,bar-y-b) 

x-delta-next <= x-delta-reg; 
y-delta-next <= y-delta-reg ; 
i f  ball-y-t < 1 then -- r e a c h  t o p  

y-delta-next <= BALL-V-P ; 
e l s i f  ball-y-b > (MAX-Y-1) then -- r e a c h  b o t t o m  

y-delta-next <= BALL-V-N; 
e l s i f  ball-x-1 <= WALL-X-R then -- r e a c h  w a l l  

x-delta-next <= BALL-V-P ; -- bounce  back  
e l s i f  (BAR-X-L<=ball-x-r) and (ball-x-r <=BAR-X-R) then 

__ r e a c h  x o f  r i g h t  b a r  
i f  (bar-y-t <=ball-y-b) and (ball-y-t <=bar-y-b) then 

end i f  ; 
x-delta-next <= BALL-V-N ; --hit , bounce  back 

end i f  ; 
end p r o c e s s ;  

__ rgb  m u l t i p l e x i n g  c i r c u i t  

process(vide0-on,wall-on,bar-on,rd-ball-on, 
wall-rgb, bar-rgb, ball-rgb) 

beg in  
i f  video-on=’O’ then 

e l s e  
graph-rgb <= “000“ ; - -blank 

i f  wall-on=’l’ then 
graph-rgb <= wall-rgb; 

e 1 s i f bar-on= ’ 1 then 
graph-rgb <= bar-rgb ; 

e l s i f  rd-ball-on=’l’ then 
graph-rgb <= ball-rgb; 
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e l s e  
graph-rgb <= “110”; -- y e l l o w  b a c k g r o u n d  

110 end i f  ; 
end i f  ; 

end p r o c e s s ;  
end arch; 

As in the still screen, we can combine the synchronization circuit and create the top-level 
description. The HDL code is shown in Listing 12.6. 

Listing 12.6 Complete circuit for the animated pong game screen 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  pong-top-an i s  

p o r t  ( 
5 clk, reset : i n  std-logic ; 

btn: i n  std-logic-vector (1 downto 0); 
hsync , vsync : o u t  std-logic ; 
rgb: o u t  std-logic-vector ( 2  downto 0) 

) ;  
10 end pong-top-an; 

a r c h i t e c t u r e  arch of pong-top-an i s  
s i g n a l  pixel-x , pixel-y : std-logic-vector (9 downto 0) ; 
s i g n a l  video-on , pixel-tick: std-logic; 

I S  s i g n a l  rgb-reg , rgb-next : std-logic-vector ( 2  downto 0 )  ; 
beg in  

-_ i n s t a n t i a t e  VGA s y n c  
vga-sync-unit : e n t i t y  work. vga-sync 

p o r t  map(clk=>clk, reset=>reset , 
video-on=>video-on, p-tick=>pixel-tick, 
hsync=>hsync, vsync=>vsync, 
pixel-x=>pixel-x, pixel-y=>pixel-y); 

10 

__ i n s t a n t i a t e  g r a p h i c  g e n e r a t o r  
pong-graph-an-unit : e n t i t y  work. pong-graph-animate 

25 p o r t  map (clk=>clk, reset=>reset , 
btn=>btn , video-on=>video-on , 
pixel-x=>pixel-x, pixel-y=>pixel-y, 
graph-rgb=>rgb-next); 

-- rgb  b u f f e r  
30 p r o c e s s  (clk) 

beg in  
i f  (clk’event and clk=’l’) t h e n  

i f  (pixel-tick=’l’) t h e n  

15 

rgb-reg <= rgb-next ; 
end i f  ; 

end i f  ; 
end p r o c e s s ;  
rgb <= rgb-reg; 

end arch; 

Note that there is no other control mechanism is this code. The ball simply moves and 
bounces continuously. A top-level control circuit is discussed in Chapter 13. 
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Figure 12.9 Dot trace shown in a 128-by-128 bit map. 

12.5 GRAPHIC GENERATION WITH A BIT-MAPPED SCHEME 

The bit-mapped scheme maps each pixel to a word in video memory. There are about 
3 10k pixels in a 640-by-480 screen. This translates to 3 10k and 930k bits for monochrome 
and color displays, respectively. The actual size of the video memory can be much larger 
since the memory address must be properly aligned for fast access. For example, to map 
the pixel’s current coordinates to a memory location, we can concatenate the pixel’s x- 
coordinate, which is 10 bits (i.e., rlog,(640)1), and the pixel’s y-coordinate, which is 9 bits 
(Le., [log, (48O)l). This approach requires no additional circuit to translating the pixel’s 
coordinates to a memory address but introduces some unused “holes” in memory. The 
memory size is increased from 310k words to 512K (i.e., 21°+’) words. 

For the S3 board, memory is available from the external SRAM chips and FPGAs 
embedded block RAMs, as discussed in Chapters 10 and 11. Recall that the total capacity 
of the Spartan 3S200 device’s block RAM is only about 192K bits. It is not large enough 
for a full-screen bit-mapped display. We must use the external SRAM, which is 8M bits, 
for this purpose. 

In this section, we use a small 128-by-128 (27-by-27) area of the screen to illustrate the 
design of the bit-mapped scheme. The screen has 16K pixels in this area and requires 
a 16K-by-3 video memory for color display. This can be implemented by three embedded 
block RAMs. The small area is at the top-left comer of the screen and displays the trace 
of a bouncing one-pixel dot, as shown in Figure 12.9. The circuit uses a 3-bit switch to 
specify the color of the trace and a pushbutton switch to randomly select the origin of the 
trace. When the pushbutton switch is pressed, the dot starts to move, like the bouncing ball 
in Section 12.4.3. The trace forms a rectangle after the dot hits the four sides of the small 
area. A new trace is generated each time the pushbutton switch is pressed. 

12.5.1 Dual-port RAM implementation 

A conceptual block diagram of this circuit is shown in Figure 12.10. The video memory is a 
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Figure 12.10 Conceptual block diagram of a dot trace circuit. 

+- din dout - 7 

synchronous 16K-by-3 (i.e., 214-by-3) dual-port RAM. The dual-port module discussed in 
Listing 1 1.4 can be used for this purpose. The seven LSBs of the pixel’s y-coordinate form 
the seven MSBs of the memory address, and the seven LSBs of the pixel’s x-coordinate 
form the seven LSBs of the memory address. The d o t x y  circuit keeps track of the current 
location of the dot and generates its current y- and x-coordinates, which are concatenated as 
the write address. The 3-bit external switch input, sw, is the rgb value, which is connected 
to the memory’s din-a port. The seven LSBs of pixel-y and the seven LSBs of pixel-x 
form the read address. The data is retrieved continuously and the corresponding readout is 
routed to the rgb multiplexing circuit. 

The complete code of the dot trace pixel generation circuit is shown in Listing 12.7. 
We use two registers, do tx - reg  and dot-y-reg, to keep track of the dot’s current x- and 
y-coordinates and use two registers, v-x-reg and v-y-reg, to keep track of the current 
horizontal and vertical velocities. Computation of the dot’s coordinates and velocities is 
similar to that of the bouncing ball in Section 12.4.3. In addition to regular updates, the 
dot-xnext  and dot -ynext  signals obtain the values of the seven LSBs of pix-x and 
pix-y when the pushbutton switch is pressed. Since these signals change much faster than 
a human’s perception, the new origin appears to be random. 

Listing 12.7 Pixel-generation circuit for a 128-by-128 bit map 

l i b r a r y  i e e e ;  
use ieee.std-logic-ll64.all; 
use i e e e .  n u m e r i c - s t d .  a l l  ; 
e n t i t y  bitmap-gen i s  

5 p o r t (  
c l k  , r e s e t  : s t d - l o g i c ;  
b t n :  s t d - l o g i c - v e c t o r  ( I  downto 0 )  ; 
s w :  s t d - l o g i c - v e c t o r  ( 2  downto 0 )  ; 
v i d e o - o n :  in s t d - l o g i c ;  

b i t - r g b :  out  s t d - l o g i c - v e c t o r  ( 2  downto 0 )  
10 p i x e l - x  , p i x e l - y  : in  s t d - l o g i c - v e c t o r  ( 9  downto 0 )  ; 

) ;  
end b i tmap-gen ;  

btn we 

dot-xy 

> bitmap-on - 

sw 

rg b rgb - 
mux we 

dual-port 
video memory 

> 
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i j  a r c h i t e c t u r e  dual-port-ram-arch of bitmap-gen i s  
s i g n a l  pix-x , pix-y : unsigned ( 9  downto 0)  ; 
s i g n a l  refr-tick: std-logic; 
s i g n a l  load-tick: std-logic ; 

20 

25 

30 

35 

40 

45 

-- v i d e o  s r a m  

s i g n a l  we: std-logic; 
s i g n a l  addr-r , addr-w: std-logic-vector (13  downto 0 )  ; 
s i g n a l  din, dout : std-logic-vector ( 2  downto 0)  ; 

- 

-- d o t  l o c a t i o n  and  v e l o c i t y  

c o n s t a n t  MAX-X: integer : = 1 2 8 ;  
c o n s t a n t  MAX-Y: integer : = 1 2 8 ;  
__ d o t  v e l o c i t y  c a n  b e  p o s  o r  neg  
c o n s t a n t  DOT-V-P : unsigned (6 downto 0)  

:=to_unsigned(l,7); 
c o n s t a n t  DOT-V-N : unsigned ( 6  downto 0)  

:=unsigned(to-signed(-l ,711; 
__ r e g  t o  k e e p  t r a c k  of d o t  l o c a t i o n  
s i g n a l  dot-x-reg , dot-x-next : unsigned (6 downto 0)  ; 
s i g n a l  dot-y-reg , dot-y-next : unsigned (6 downto 0)  ; 
__ reg  t o  k e e p  t r a c k  of d o t  v e l o c i t y  
s i g n a l  v-x-reg , v-x-next : unsigned ( 6  downto 0 )  ; 
s i g n a l  v-y-reg , v-y-next : unsigned ( 6  downto 0 )  ; 

__ o b j e c t  o u t p u t  s i g n a l s  

s i g n a l  bitmap-on: std-logic ; 
s i g n a l  bitmap-rgb: std-logic-vector ( 2  downto 0 )  ; 

beg in  
__ i n s t a n t i a t e  d e b o u n c e  c i r c u i t  for a b u t t o n  
debounce-unit : e n t i t y  work. debounce 

so 

port  map(clk=>clk, reset=>reset , sw=>btn(O), 
db-level=>open, db-tick=>load-tick); 

__ i n s t a n t i a t e  d u a l - p o r t  v i d e o  RAM ( 2 ^ 1 2  - b y - 7 )  
video-ram: e n t i t y  work.xilinx-dual-port-ram-sync 

g e n e r i c map ( ADDR- W I DTH = > 14 , DATA - W I DTH = > 3 )  

port  map(clk=>clk, we=>we, 
( 5  addr-a=>addr-w, addr-b=>addr-r, 

din-a=>din , dout-a=>open , dout-b=>dout) ; 
-- v i d e o  ram i n t e r f a c e  
addr-w <= std-logic-vector(dot-y-reg & dot-x-reg); 
addr-r <= 

we <= ’1’; 
din <= sw; 
bitmap-rgb <= dout; 
__ r e g i s t e r s  

beg in  

60 std-logic-vector (pix-y (6 downto 0)  & pix-x ( 6  downto 0 ) )  ; 

65 p r o c e s s  (clk, reset 

i f  reset=’l’ then 
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70 

75 

dot-x-reg <= ( o t h e r s = > ’ O ’ ) ;  
dot-y-reg <= ( o t h e r s = > ’ O ’ ) ;  
v-x-reg <= DOT-V-P; 
v-y-reg <= DOT-V-P; 

dot-x-reg <= dot-x-next ; 
dot-y-reg <= dot-y-next ; 
v-x-reg <= v-x-next ; 
v-y-reg <= v-y-next ; 

e l s i f  (clk’event and clk=’lJ) then 

end i f ;  
end p r o c e s s ;  
__ m i s c .  s i g n a l s  

so pix-x <= unsigned(pixe1-x) ; 
pix-y <= unsigned(pixe1-y); 
refr-tick <= ’ 1 ’  when (pix-y=481) and (pix-x=O) e l s e  

__ p i x e l  w i t h i n  b i t  map a r e a  
’ O J ;  

85 bitmap-on <= 
’1 when (pix-x <=127) and (pix-y <=127) e l s e  
J O  J . , 

-- d o t  p o s i t i o n  
-- ” r a n d o m l y  ‘I l o a d  d o t  l o c a t i o n  when b t n  ( 0 )  p r e s s e d  

90 dot-x-next <= 
pix-x ( 6  downto 0 )  when load-tick= 1 e l s e  
dot-x-reg + v-x-reg when refr-tick=’l ’ e l s e  
dot-x-reg ; 

dot-y-next <= 
95 pix-y ( 6  downto 0)  when load-tick= ’1 e l s e  

dot-y-reg + v-y-reg when refr-tick= 1 e l s e  
dot-y-reg ; 
-- d o t  x v e l o c i t y  
p r o c e s s  (v-x-reg , dot-x-reg) 

v-x-next <= v-x-reg ; 
I W  begin  

I05 

i f  dot-x-reg =1 then -- r e a c h  l e f t  
v-x-next <= DOT-V-P ; -- b o u n c e  b a c k  

e l s i f  dot-x-reg=(MAX-X-2) then -- r e a c h  r i g h t  
v-x-next <= DOT-V-N ; -- b o u n c e  back  

end i f  ; 
end p r o c e s s ;  
-- d o t  y v e l o c i t y  
p r o c e s s  (v-y-reg , dot-y-reg) 

v-y-next <= v-y-reg; 
110 begin  

I I 5  

i f  dot-y-reg =l then -- r e a c h  t o p  

e l s i f  dot-y-reg = (MAX-Y-2) then -- r e a c h  b o t t o m  

end i f  ; 
end p r o c e s s ;  

v-y-next <= DOT-V-P ; 

v-y-next <= DOT-V-N ; 

-- rgb  m u l t i p l e x i n g  c i r c u i t  
p r o c e s s  (video-on , bitmap-on , bitmap-rgb) 

120 begin  
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I25 

i f  video-on=’O’ t h e n  

e l s e  
bit-rgb <= “ 0 0 0 “ ;  - -b lank  

i f  bitmap-on=’l’ t h e n  

e l s e  

end i f  ; 

bit-rgb <= bitmap-rgb ; 

bit-rgb <= ” 1 1 0 ” ;  -- y e l l o w  b a c k g r o u n d  

end i f  ; 
130 end p r o c e s s ;  

end dual-port-ram-arch; 

The HDL code for the top-level system is shown in Listing 12.8. 

Listing 12.8 Complete circuit for a bit-mapped screen 

l i b r a r y  ieee; 
use  ieee.std-logic-1164.all; 
e n t i t y  dot-top i s  

p o r t  ( 
5 clk, reset : i n  std-logic ; 

btn: i n  std-logic-vector (1 downto 0 ) ;  
sw: i n  std-logic-vector ( 2  downto 0 ) ;  
hsync , vsync : o u t  std-logic; 
rgb : o u t  std-logic-vector ( 2  downto 0)  

10 ) ; 
end dot-top; 

a r c h i t e c t u r e  arch of dot-top i s  
s i g n a l  pixel-x , pixel-y : std-logic-vector ( 9  downto 0 )  ; 

s i g n a l  rgb-reg , rgb-next : std-logic-vector ( 2  downto 0)  ; 

-_ i n s t a n t i a t e  VGA s y n c  c i r c u i t  
vga-sync-unit : e n t i t y  work. vga-sync 

20 p o r t  map(clk=>clk, reset=>reset , 

15 s i g n a l  video-on , pixel-tick: std-logic; 

beg in  

hsync=>hsync, vsync=>vsync, 
video-on=>video-on, p-tick=>pixel-tick, 
pixel-x=>pixel-x, pixel-y=>pixel-y); 

__ i n s t a n t i a t e bit -mapped p i x  e 1 g e n e r a  t o  r 

p o r t  map(clk=>clk , reset=>reset , btn=>btn, sw=>sw, 
25 bitmap-unit : e n t i t y  work. bitmap-gen 

video-on=>video-on, pixel-x=>pixel-x, 
pixel-y=>pixel-y , bit-rgb=>rgb-next 1 ; 

-- r g b  b u f f e r  
30 p r o c e s s  (clk) 

beg in  
i f  (clk ’ event and clk= ’ 1 ’ ) t h e n  

i f  (pixel-tick=’ 1’)  t h e n  
rgb-reg <= rgb-next ; 

35 end i f  ; 
end i f  ; 

end p r o c e s s ;  
rgb <= rgb-reg; 
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e n d  a r c h ;  

12.5.2 Single-port RAM implementation 

Although a dual-port memory is ideal, it is not always available. Using regular single-port 
memory, such as the S3 board’s external SRAM, for the video memory requires careful 
coordination between the write and read operations to avoid interruption on data retrieval. 
For demonstration purposes, we configure the embedded block RAM as a single-port syn- 
chronous SRAM and redesign the previous dot trace circuit. 

In the dot trace circuit, the dot’s coordinates are updated once every screen scan. Thus, 
the video memory can be written at this rate as well. We can do this during the vertical 
retrace since the video is off in this period and writing video memory does not interfere 
with the screen data retrieval. Note that the refr-tick signal is asserted when pixel-y 
is 48 1. The video is off in this location, and writing video memory will not interfere with 
the screen data retrieval. We use this signal as the write enable signal, we, for the single-port 
RAM. The single-port RAM module discussed in Listing 11.2 can be used for this purpose. 
The memory portion of Listing 12.7 now becomes 

__ i n s t a n t i a t e  v i d e o  sram 
v i d e o - r a m :  e n t i t y  work.xilinx-one-port-ram-sync 

g e n e r i c  map ( ADDR-W IDTH = > 14, DATA-W IDTH = >3) 
p o r t  m a p ( c l k = > c l k ,  we=>we,  a d d r = > a d d r  , 

d i n = > d i n  , d o u t = > d o u t )  ; 
__ v i d e o  ram i n t e r f a c e  
addr-w <=std-logic_vector(dot-y-reg & d o t - x - r e g ) ;  
a d d r - r  <= 

addr  <= addr-w when r e f r - t i c k = ’ l ’  e l s e  a d d r - r ;  
we <= r e f r - t i c k ;  
d i n  <= s w ;  
b i t m a p - r g b  <= d o u t ;  

s t d - l o g i c - v e c t o r  ( p i x - y  ( 6  d o w n t o  0 )  & p i x - x  ( 6  d o w n t o  0 )  ; 

The dot trace circuit updates one pixel in a screen scan. The required memory bandwidth 
for writing is 60*3 bits per second, which is rather low. Thus, the previous design is fairly 
straightforward. The design of memory interface becomes much more difficult when a 
large memory bandwidth is required (i.e., when a large portion of the screen is updated at 
a rapid rate). 

12.6 BIBLIOGRAPHIC NOTES 

Rapid Prototyping of Digital Systems by James 0. Hamblen et al. contains timing informa- 
tion for monitors with different resolutions and refresh rates. 

12.7 SUGGESTED EXPERIMENTS 

12.7.1 VGA test pattern generator 

A VGA test pattern generator produces two simple patterns to verify operation of a VGA 
monitor. The first pattern divides the screen evenly into eight vertical stripes, each displaying 
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a unique color. The second pattern is similar but the screen is divided into eight horizontal 
stripes. A 1-bit switch is used to select the pattern. 

Design a pixel generating circuit for this pattern generator and then combine it with the 
synchronization circuit in a top-level module. Synthesize and verify operation of the circuit. 

12.7.2 SVGA mode synchronization circuit 

The specification for the super VGA (SVGA) mode with 72-Hz refresh rate is 
resolution: 800-by-600 pixels 
pixel rate: 50 MHz 
horizontal display region: 800 pixels 
horizontal right border: 64 pixels 
horizontal left border: 56 pixels 
horizontal retrace: 120 pixels 
vertical display region: 600 lines 
vertical bottom border: 23 lines 
vertical top border: 37 lines 

a vertical retrace: 6 lines 
We wish to create a dual-mode synchronization circuit that can support both VGA and 

1. Modify the horizontal and vertical synchronization counters of Listing 12.1 to ac- 
commodate both modes. 

2. Design a pixel-generating circuit that draws a 100-pixel grid on the screen (i.e., draw 
a vertical line every 100 pixels and draw a horizontal line every 100 pixels). 

3. Derive a top-level module. Synthesize and verify operation of the two modes. 

SVGA modes. The mode can be selected by a switch. Construct the circuit as follows: 

12.7.3 Visible screen adjustment circuit 

Due to the internal timing error of a monitor, the visible portion of the screen may not 
always be centered. We can adjust the location of the visible portion by slightly modifying 
the widths surrounding black border areas. In a horizontal scan line, there are 64 pixels 
for the right and left border regions. To move the visible portion horizontally, we can add 
a certain number of pixels to one border region and subtract the same number from the 
opposite border region. We can adjust the visible portion vertically in a similar fashion. 
Design a screen adjustment circuit as follows: 

1. Expand the VGA synchronization circuit to include this feature. Use a switch to 
select the vertical or horizontal mode, and use two pushbuttons to move the visible 
screen to leftlup and nghtldown. 

2. Modify the testing circuit in Section 12.2.5 to incorporate the new synchronization 
circuit. 

3. Synthesize and verify operation of the circuit. 

12.7.4 Ball-in-a-box circuit 

The ball-in-a-box circuit displays a bouncing ball inside a square box. The square box 
is centered on the screen and its size is 256-by-256 pixels. The ball is an 8-by-8 round 
ball. When the ball hits the wall, the ball bounces back and the wall flashes (i.e., changes 
color briefly). The ball can travel at four different speeds, which are selected by two slide 
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Figure 12.11 Screen of the breakout game. 

switches, and its direction changes randomly when a pushbutton switch is pressed. Derive 
the HDL code and then synthesize and verify operation of the circuit. 

12.7.5 Two-balls-in-a-box circuit 

We can expand the circuit in Experiment 12.7.4 to include two balls inside the box. When 
two balls collide, the new directions of the two balls should follow the laws of physics. 
Derive the HDL code and then synthesize and verify operation of the circuit. 

12.7.6 Two-player pong game 

The two-player pong game replaces the left wall with another paddle, which is controlled by 
the second player. To better accommodate two players, we can use the keyboard interface 
of Section 8.4 as the input device. Four keys can be defined to control vertical movements 
of the two paddles. Derive the HDL code and then synthesize and verify operation of the 
circuit. 

12.7.7 Breakout game 

The breakout game is a somewhat like the pong game. In this game, the left wall is replaced 
by several layers of “bricks.” When the ball hits a brick, the ball bounces back and the brick 
disappears. The basic screen is shown in Figure 12.11. As in the code of Listing 12.5, we 
assume that the game runs continuously. Derive the HDL code and then synthesize and 
verify operation of the circuit. 

12.7.8 Full-screen dot trace 

We can implement the full-screen dot trace circuit of Section 12.5 using the external SRAM 
chip as follows: 

1. Modify the SRAM controller in Chapter 10 to configure the SRAM chip as a 2I9-by-8 
memory. 
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2. Follow the discussion in Section 12.5.2 to incorporate the new memory module in 

3. Synthesize and verify operation of the circuit. 
the circuit. Note that accessing the external memory requires two clock cycles. 

12.7.9 Mouse pointer circuit 

The mouse interface is discussed in Section 9.5. The mouse pointer circuit uses a mouse 
to control the movement of a small 16-by-16 square on the screen. It functions as follows: 

0 The square moves according to the movement of the mouse. 
0 The pointer wraps around when it reaches a border. 
0 The pointer changes color when the left button of the mouse is pressed. It circulates 

through the eight colors defined in Table 12.1. 
Synthesize and verify operation of the circuit. 

12.7.1 0 Small-screen mouse scribble circuit 

Mouse scribble circuit keeps track of the trace of the mouse movement in a 128-by-128 
screen, somewhat similar to the dot trace circuit discussed in Section 12.5. Its specification 
is as follows: 

0 The 3-bit switch determines the color of the trace. 
0 Clicking the left button of the mouse turns on and off the trace alternately. 
0 Clicking the right button of the mouse clears the screen. 

Synthesize and verify operation of the circuit. 

12.7.1 1 

Repeat Experiment 12.7.10, but use the full screen. An external SRAM module similar to 
that in Experiment 12.7.8 is needed for this circuit. 

Full-screen mouse scribble circuit 




