
CHAPTER 10

EXTERNAL SRAM

10.1 INTRODUCTION

Random access memory (RAM) is used for massive storage in a digital system since a RAM
cell is much simpler than an FF cell. A commonly used type of RAM is the asynchronous
static RAM (SRAM). Unlike a register, in which the data is sampled and stored at an edge
of a clock signal, accessing data from an asynchronous SRAM is more complicated. A
read or write operation requires that the data, address, and control signals be asserted in
a specific order, and these signals must be stable for a certain amount of time during the
operation.

It is difficult for a synchronous system to access an SRAM directly. We usually use
a memory controller as the interface, which takes commands from the main system syn-
chronously and then generates properly timed signals to access the SRAM. The controller
shields the main system from the detailed timing and makes the memory access appears
like a synchronous operation. The performance of a memory controller is measured by the
number of memory accesses that can be completed in a given period. While designing a
simple memory controller is straightforward, achieving optimal performance involves many
timing issues and is quite difficult.

The S3 board has two 256K-by-16 asynchronous SRAM devices, which total 1M bytes.
In this chapter, we demonstrate the construction of a memory controller for these devices.
Since the timing characteristics of each RAM device are different, the controller is applicable
only to this particular device. However, the same design principle can be used for similar

FPGA Prototjping bj. VHDL Examples. By Pang F? Chu
Copyright @ 2008 John Wiley & Sons, Inc.

21 5

216 EXTERNAL SRAM

SRAM devices. The Xilinx Spartan-3 device also contains smaller embedded memory
blocks. The use of this memory is discussed in Chapter 11.

10.2 SPECIFICATION OF THE IS61 LV25616AL SRAM

10.2.1 Block diagram and I/O signals

The S3 board has two IS61LV25616AL devices, which are 256K-by-16 SRAM manufac-
tured by Integrated Silicon Solution, Inc. (ISSI). A simplified block diagram is shown in
Figure lO.l(a). This device has an 18-bit address bus, ad, a bidirectional 16-bit data bus,
d io , and five control signals. The data bus is divided into upper and lower bytes, which
can be accessed individually. The five control signals are:

0 c e n (chip enable): disables or enables the chip
0 w e n (write enable): disables or enables the write operation
0 o e n (output enable): disables or enables the output
0 l b n (lower byte enable): disables or enables the lower byte of the data bus
0 u b n (upper byte enable): disables or enables the upper byte of the data bus

All these signals are active low and the n suffix is used to emphasize this property. The
functional table is shown in Figure lO.l(b). The c e n signal can be used to accommodate
memory expansion, and the w e n and o e n signals are used for write and read operations.
The l b n and u b n signals are used to facilitate the byte-oriented configuration.

In the remainder of the chapter, we illustrate the design and timing issues of a memory
controller. For clarity, we use one SRAM device and access the SRAM in 16-bit word
format. This means that the c e n , l b n , and u b n signals should always be activated (i.e.,
tied to '0 ') . The simplified functional table is shown in Figure lO.l(c).

10.2.2 Timing parameters

The timing characteristics of an asynchronous SRAM are quite complex and involve more
than two dozen parameters. We concentrate only on a few key parameters that are relevant
to our design.

The simplified timing diagrams for two types of read operations are shown in Fig-
ure 10.2(a) and (b). The relevant timing parameters are:

0 ~ R C : read cycle time, the minimal elapsed time between two read operations. It is
about the same as t A A for SRAM.

0 ~ A A : address access time, the time required to obtain stable output data after an
address change.

0 t o H A : output hold time, the time that the output data remains valid after the address
changes. This should not be confused with the hold time of an edge-triggered FF,
which is a constraint for the d input.
t D O E : output enable access time, the time required to obtain valid data after o e n is
activated.

0 t H Z O E : output enable to high-Z time, the time for the tri-state buffer to enter the
high-impedance state after o e n is deactivated.

0 t L Z O E : output enable to low-Z time, the time for the tri-state buffer to leave the
high-impedance state after o e n is activated. Note that even when the output is no
longer in the high-impedance state, the data is still invalid.

Values of these parameters for the IS61LV25616AL device are shown in Figure 10.2(c).

SPECIFICATION OF THE 1561LV25616AL SRAM 217

, ad / t

18

256K-by-16
cell array

decoder/
multiplexer +

Operation c e n wen o e n l b n u b n dio(1ower) dio(upper)

ce-n b
we-n
oe-n :
Ib-n b

ub-n -

disabled 1
0 1 1
0 1 1

control circuit

Z
Z
Z

Z
Z
Z

read 0 1 0 0 1 data out Z
0 1 0 1 0 Z data out
0 1 0 0 0 data out data out

write 0 0 0 1 data in
0 0 1 0 Z
0 0 0 0 data in

Z
data in
data in

(b) Functional table

Operation wen o e n d i o (16 bits)

output disabled 1 1 Z
read 16-bit word 1 0 data out
write 16-bit word 0 data in

(c) Simplified functional table

Figure 10.1 Block diagram and functional table of the ISSI 256K-by-16 SRAM.

218 EXTERNAL SRAM

(b) Timing diagram of an oen-controlled read cycle

parameter min max

tRC read cycle time 10 -
~ A A address access time - 10
~ O H A output hold time 2 -
 DOE output enable access time - 4
~ H Z O E output enable to high-Z time - 4
~ L Z O E output enable to low-Z time 0 -

(c) Timing parameters (in ns)

Figure 10.2 Timing diagrams and parameters of a read operation.

SPECIFICATION OF THE IS61LV25616AL SRAM 219

(a) Timing diagram of a write cycle

parameter min max

twc write cycle time 10 -
t S A address setup time 0 -
 HA address hold time 0 -
t P W E l w e n pulse width 8 -
t S D data setup time 6 -
~ H D data hold time 0 -

(b) Timing parameter (in ns)

Figure 10.3 Timing diagram and parameters of a write operation.

The simplified timing diagram for a wen-controlled write operation is shown in Fig-
ure 10.3(a). The relevant timing parameters are:

twc: write cycle time, the minimal elapsed time between two write operations.
t S A : address setup time, the minimal time that the address must be stable before w e n
is activated.
t H A : address hold time, the minimal time that the address must be stable after w e n
is deactivated.
t p W E 1 : w e n pulse width, the minimal time that w e n must be asserted.
t s ~ : data setup time, the minimal time that data must be stable before the latching
edge (the edge in which w e n moves from '0' to '1').
t H D : data hold time, the minimal time that data must be stable after the latching
edge.

The values of these parameters for the IS61LV25616AL device are shown in Figure 10.3(b).
The complete timing information can be found in the data sheet of the IS61LV25616AL
device.

220 EXTERNAL SRAM

Figure 10.4 Role of an SRAM memory controller.

10.3 BASIC MEMORY CONTROLLER

10.3.1 Block diagram

The role of a memory controller and its I/O signals are shown in Figure 10.4. The signals
to the SRAM side are discussed in Section 10.2.1. The signals to the main system side are:

mem: is asserted to ’ 1 ’ to initiate a memory operation.
0 rw: specifies whether the operation is a read (’1’) or write (’0’) operation.

addr: is the 18-bit address.
0 data-f 2s: is the 16-bit data to be written to the SRAM (the -f 2s suffix stands for

FPGA to SRAM).
0 data-s2f -r: is the 16-bit registered data retrieved from the SRAM (the s 2 f suffix

stands for SRAM to FPGA).
0 d a t a s 2 f -ur: is the 16-bit unregistered data retrieved from SRAM.
0 ready: is a status signal indicating whether the controller is ready to accept a new

command. This signal is needed since a memory operation may take more than one
clock cycle.

The memory controller basically provides a “synchronous wrap” around the SRAM.
When the main system wants to access the memory, it places the address and data (for a
write operation) on the bus and activates the command (i.e., the mem and rw signals). At the
rising edge of the clock, all signals are sampled by the memory controller and the desired
operation is performed accordingly. For a read operation, the data becomes available after
one or two clock cycles.

The block diagram of a memory controller is shown in Figure 10.5. Its data path contains
one address register, which stores the address, and two data registers, which store the data
from each direction. Since the data bus, dio, is a bidirectional signal, a tri-state buffer is
needed. The control path is an FSM, which follows the timing diagrams and specifications
in Figures 10.2 and 10.3 to generate a proper control sequence.

BASIC MEMORY CONTROLLER 221

raddr

addr ad

4
data-f2s

+ data-s2f-ur

+ data-s2f-r

m e m q J l wr

T-'
+

+

ri-n

we-n I

I Oe-"

ready I

Figure 10.5 Block diagram of a memory controller.

10.3.2 Timing requirement

Although the timing diagrams appear to be complicated at first glance, the control sequences
are fairly simple. Let us first consider a read cycle. The w e n should be deactivated during
the entire operation. Its basic operation sequence is:

1. Place the address on the ad bus and activate the o e n signal. These two signals must

2. Wait for at least t A A . The data from the SRAM becomes available after this interval.
3. Retrieve the data from dio and deactivate the o e n signal.
We use the wen-controlled write cycle in our design, as shown in Figure 10.3(a). The

1. Place the address on the ad bus and data on the dio bus and activate the w e n signal.

2. Wait for at least ~ P W E I .

3. Deactivate the w e n signal, The data is latched to the SRAM at the '0'-to-' 1 ' transition
edge.

4. Remove the data from the dio bus.

Note that t H D (data hold time after write ends) is 0 ns for this SRAM, which implies that
it is theoretically possible to remove the data and deactivate w e n simultaneously. However,
because of the variations in propagation delays, this condition cannot be guaranteed in a

be stable for the entire operation.

basic operation sequence is:

These signals must be stable for the entire operation.

222 EXTERNAL SRAM

real circuit. To achieve proper latching, we need to ensure that the wen signal is always
deactivated first.

10.3.3 Register file versus SRAM

We discuss the design of a register file in Section 4.2.3. Its basic storage elements are D FFs
and thus it is completely synchronous. Although a memory controller wraps the SRAM in
a synchronous interface, there are several differences:

0 A register file usually has one write port and multiple read ports.
0 The read and write ports of a register file can be accessed at the same time (i.e., the

0 Writing to a register takes only one clock cycle.
0 Data from a register’s read ports is always available and the read operation involves

In summary, a register file is faster and more flexible. However, due to the circuit size of
an FF, a register file is feasible only for small storage.

read and write operations can be done at the same time).

no clock or additional control signals.

10.4 A SAFE DESIGN

With the block diagram of Figure 10.5, the remaining task is to derive the controller. Our
first scheme uses a “safe” design, which means that the design provides large timing margins
and does not impose any stringent timing constraints. The control signals are generated
directly from the FSM. The controller uses two clock cycles (i.e., 40 ns) to complete memory
access and requires three clock cycles (i.e., 60 ns) for back-to-back operations.

10.4.1 ASMD chart

The ASMD chart for this controller is shown in Figure 10.6. The FSM has five states and is
initially in the i d l e state. It starts the memory operation when the mem signal is activated.
The r w signal determines whether it is a read or write operation.

For a read operation, the FSM moves to the r d l state. The memory address, addr, is
sampled and stored in the addr-reg register at the transition. The o e n signal is activated
in the r d l and rd2 states. At the end of the read cycle, the FSM returns to the i d l e state.
The retrieved data is stored in the data-s2f -reg register at the transition, and the o e n
signal is deactivated afterward. Note that the block diagram of Figure 10.5 has two read
ports. The d a t a s 2 f -r signal is a registered output and becomes available after the FSM
exits the r 2 state. The data remains unchanged until the end of the next read cycle. The
data-s2f -ur signal is connected directly to the SRAM’s d io bus. Its data should become
valid at the end of the rd2 state but will be removed after the FSM enters the i d l e state.
In some applications, the main system samples and stores the memory readout in its own
register, and the unregistered output allows this action to be completed one clock cycle
earlier.

For a write operation, the FSM moves to the w r l state. The memory address, addr, and
data, data-f 2s, are sampled and stored in the addr-reg and data-f 2s-reg registers at
the transition. The wen and t r in signals are both activated in the w r i state. The latter
enables the tri-state buffer to put the data over the SRAM’s d io bus. When the FSM moves
to the wr2 state, wen is deactivated but t r in remains asserted. This ensures that the data
is properly latched to the SRAM when wen changes from’0’ to ’1’. At the end of the write

A SAFE DESIGN 223

Default: oe-n <= 1; we-n <= 1; tri-n <= 1; ready <= 0

- I 4

raddr t addr a ..

1 1

t r i g <= 0

.t............

Figure 10.6 ASMD chart of a safe SRAM controller.

cycle, the FSM returns to the i d l e state and t r in is deactivated to remove data from the
d i o bus.

10.4.2 Timing analysis

To ensure correct operation of a memory controller, we must verify that the design meets
various timing requirements. Recall that the FSM is controlled by a 50-MHz clock signal
and thus stays in each state for 20 ns.

During the read cycle, o e n is asserted for two states, totaling 40 ns, which provides
a 30-ns margin over the 10-ns tAA. Although it appears that o e n can be deasserted in
the rd2 state, this imposes a more stringent timing constraint. This issue is explained in
Section 10.5.3. The data is stored in the data-s2f register when the FSM moves from the
rd2 state to the i d l e state. Although o e n is deasserted at the transition, the data remains
valid for a small interval because of the FPGA’s pad delay and the t H Z o E delay of the
SRAM chip. It can be sampled properly by the clock edge.

During the write cycle, w e n is asserted in the w r l state, and the 20-11s interval exceeds
the 8-ns t p W E l requirement. The t r in signal remains asserted in the wr2 state and thus
ensures that the data is still stable during the ’0’-to-’1’ transition edge of the wen signal.

224 EXTERNAL SRAM

In terms of performance, both read and write operations take two clock cycles to com-
plete. During the read operation, the unregistered data (i.e., data-s2f -ur) is available
at the end of the second clock cycle (i.e., just before the rising edge of the second clock
cycle) and the registered data (i.e., data-s2f -r) is available right after the rising edge of
the second clock cycle. Although a memory operation can be done in two clocks, the main
system cannot access memory at this rate. Both read and write operations must return to the
i d l e state after completion. The main system must wait for another clock cycle to issue a
new memory operation, and thus the back-to-back memory access takes three clock cycles.

10.4.3 HDL implementation

The HDL code can be derived by following the block diagram in Figure 10.5 and the
ASMD chart in Figure 10.6. The memory controller must generate fast, glitch-free control
signals. One method is to modify the output logic to include look-ahead output buffers for
the Moore output signals. This scheme adds a buffer (i.e., D FF) for each output signal to
remove glitches and reduce clock-to-output delay. To compensate the one clock cycle delay
introduced by the buffer, we “look ahead” at the state’s future value (i.e., the s t a t e n e x t
signal) and use it to replace the state’s current value (i.e., the s t a t e - r eg signal) in the
FSM’s output logic.

The complete HDL code is shown in Listing 10.1. To facilitate future expansion, we
label the S3 board’s two SRAM chips as a and b and add an -a suffix to the SRAM’s I/O
signals in port declaration. Note that tri-state buffers are required for the bidirectional data
signal dio-a.

10

15

Listing 10.1 SRAM controller with three-cycle back-to-back operation

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y sram-ctrl i s

por t (
5 clk, reset: in std-logic;

__ t o / f r o m main s y s t e m
mem: in std-logic;
rw: i n std-logic;
addr : in std-logic-vector (17 downto 0) ;
data-f2s : in std-logic-vector (1 5 downto 0) ;
ready : out std-logic ;
data-s2f -r , data-s2f -ur :

__ t o / f r o m c h i p
ad: out std-logic-vector (17 downto 0) ;
we-n, oe-n: out std-logic;
-- SRAM c h i p a
dio-a: i n o u t std-logic-vector (1 5 downto 0) ;
ce-a-n, ub-a-n, lb-a-n: out std-logic

out std-logic-vector (1 5 downto 0) ;

20) ;
end sram-ctrl;

a r c h i t e c t u r e arch of sram-ctrl i s
type state-type i s (idle, rdl, rd2, wrl, wr2);

s i g n a l data-f2s_reg, data-f2s_next :
25 s i g n a l state-reg , state-next : state-type;

A SAFE DESIGN 225

40

45

50

60

65

70

75

s t d - l o g i c - v e c t o r (1 5 downto 0) ;

s t d - l o g i c - v e c t o r (15 downto 0) ;
s i g n a l d a t a - s 2 f _ r e g , d a t a - s 2 f _ n e x t :

30 s i g n a l a d d r - r e g , a d d r - n e x t : s t d - l o g i c - v e c t o r (17 downto 0) ;
s i g n a l we-buf , oe-buf , t r i - b u f : s t d - l o g i c ;
s i g n a l we-reg , o e - r e g , t r i - r e g : s t d - l o g i c ;

__ s t a t e & d a t a r e g i s t e r s

begin

begin

35 p r o c e s s (c l k , r e s e t)

i f (r e s e t = ’ l ’) then
s t a t e - r e g <= i d l e ;
a d d r - r e g <= (o t h e r s = > ’ O ’) ;
d a t a - f 2 s _ r e g <= (o t h e r s = > ’ O ’) ;
d a t a - s 2 f _ r e g <= (o t h e r s = > ’ O ’) ;
t r i - r e g <= ’1 ’ ;
we-reg <= ’1 ’ ;
o e - r e g <= ’ 1 ’ ;

s t a t e - r e g <= s t a t e - n e x t ;
a d d r - r e g <= a d d r - n e x t ;
d a t a - f 2 s _ r e g <= d a t a - f 2 s _ n e x t ;
d a t a - s 2 f _ r e g <= d a t a - s 2 f _ n e x t ;
t r i - r e g <= t r i - b u f ;
we-reg <= we-buf ;
o e - r e g <= o e - b u f ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;

p r o c e s s (s t a t e - r e g ,mem , rw , d i o - a , a d d r , d a t a - f 2 s ,

begin

55 -- n e x t - s t a t e l o g i c

d a t a - f 2 s _ r e g , d a t a - s 2 f - r e g , a d d r - r e g)

a d d r - n e x t <= a d d r - r e g ;
d a t a - f 2 s - n e x t <= d a t a - f 2 s - r e g ;
d a t a _ s 2 f _ n e x t <= d a t a - s 2 f _ r e g ;
r e a d y <= ’ 0 ’ ;
case s t a t e - r e g i s

when i d l e = >
i f m e m = ’ O ’ then

e l s e
s t a t e - n e x t <= i d l e ;

a d d r - n e x t <= a d d r ;
i f r w = ’ O ’ then - - w r i t e

s t a t e - n e x t <= wrl;
d a t a _ f 2 s _ n e x t <= d a t a - f 2 s ;

s t a t e - n e x t <= r d l ;
e l s e -- r e a d

end i f ;
end i f ;
r e a d y <= ’ 1 ’ ;

s t a t e - n e x t <= wr2 ;
when w r l =>

when wr2 = >

EXTERNAL SRAM 226

80

85

90

95

IW

state-next <= idle;

state-next <= r d 2 ;

data-s2f_next <= dio-a;
state-next <= idle;

when rdl = >

when rd2=>

end c a s e ;
end p r o c e s s ;
_- ‘I l o o k - a h e a d I‘ o u t p u t l o g i c
p r o c e s s (state-next 1
b e g i n

tri-buf <= ’ 1 ’ ; -- d e f a u 1 t
we-buf <= ’ 1 ’ ;
oe-buf <= ’ 1) ;
c a s e state-next is

when idle =>
when wrl =>

tri-buf <= ’ 0 ’ ;
we-buf <= ’ 0) ;

tri-buf <= ’ 0 ’ ;

oe-buf <= ’ 0) ;

oe-buf <=) O) ;

when wr2 = >

when rdl = >

when rd2=>

end c a s e ;
end p r o c e s s ;
__ t o m a i n s y s t e m
data-s2f -r <= data-s2f - r e g ;
data-s2f -ur <= dio-a ;
-_ t o SRAM
we-n <= we-reg;
oe-n <= oe-reg;
ad <= addr-reg;
--i/o f o r SRAM c h i p a
ce-a-n < =) O ’ ;
ub-a-n < = ’ O ’ ;
lb-a-n <= 0 ’ ;
dio-a <= data-f2s_reg when tri-reg=’O’ e l s e (o t h e r s = > ’ Z ’) ;

end arch;

To minimize the off-chip pad delay (discussed in Section 10.5.1), the corresponding
FPGA’s I/O pins should be configured properly. This can be done by adding additional
information in the constraint file. A typical line is

NET “ a d < l 7 > “ LOC = “L3“ I IOSTANDARD = LVCMOS33 I SLEW=FAST ;

10.4.4 Basic testing circuit

We use two circuits to verify operation of the SRAM controller. The first one is a basic
testing circuit that allows us manually to perform a single read or write operation. In
addition to the SRAM chip I/O signals, the circuit has the following signals:

sw. It is 8 bits wide and used as data or address input.

A SAFE DESIGN 227

0 led. It is 8 bits wide and used to display the retrieved data.
0 btn (0). When it is asserted, the current value of sw is loaded to a data register. The

0 btn (1 1. When it is asserted, the controller uses the value of sw as a memory address

0 btn (2) . When it is asserted, the controller uses the value of s w as a memory address

During a write operation, we first specify the data value and load it to the internal register
and then specify the address and initiate the write operation. During a read operation, we
specify the address and initiate the read operation. The retrieved data is displayed in eight
discrete LEDs. The complete HDL code is shown in Listing 10.2.

output of the register is used as the data input for the write operation.

and performs a write operation.

and performs a read operation. The readout is routed to the l ed signal.

Listing 10.2 Basic SRAM testing circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y ram-ctrl-test i s

5 p o r t (
clk, reset: in std-logic;
sw: in std-logic-vector (7 downto 0) ;
btn: in std-logic-vector (2 downto 0) ;
led: out std-logic-vector (7 downto 0) ;

we-n, oe-n: out std-logic;
dio-a: i n o u t std-logic-vector (15 downto 0) ;
ce-a-n, ub-a-n, lb-a-n: out std-logic

10 ad: out std-logic-vector (17 downto 0) ;

1 ;
I S end ram-ctrl-test;

a r c h i t e c t u r e arch of ram-ctrl-test i s
c o n s t a n t ADDR-W: integer :=18;
c o n s t a n t DATA-W: integer :=16;

s i g n a l data-f2sI data-s2f:

s i g n a l mem, rw: std-logic;
s i g n a l data-reg : std-logic-vector (7 downto 0) ;

20 s i g n a l addr : std-logic-vector (ADDR-W -1 downto 0) ;

std-logic-vector (DATA-W -1 downto 0) ;

25 s i g n a l db-btn: std-logic-vector (2 downto 0) ;

begin
ctrl-unit : e n t i t y work. sram-ctrl

port map(
30 clk=>clk, reset=>reset ,

mem=>mem, rw =>rw, addr=>addr , data-f2s=>data-f2s,
ready=>open , data-s2f -r=>data-s2f ,
data-s2f -ur=>open, ad=>ad,
we-n=>we-n, oe-n=>oe-n, dio-a=>dio-a,

3s ce-a-n=>ce-a-n, ub-a-n=>ub-a-n, lb-a-n=>lb-a-n);

debounce-unit0 : e n t i t y work. debounce
port map(

clk=>clk, reset=>reset , sw=>btn(O) ,

228 EXTERNAL SRAM

40 d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (0)) ;
d e b o u n c e - u n i t l : e n t i t y w o r k . d e b o u n c e

p o r t m a p (
c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (l) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (l)) ;

45 d e b o u n c e - u n i t 2 : e n t i t y w o r k . d e b o u n c e
p o r t map(

c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (2) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (2)) ;

55

7Cl

75

50 - - d a t a r e g i s t e r s
p r o c e s s (c l k)
b e g i n

i f (c l k ’ e v e n t a n d c l k = ’ 1 ’ t h e n
i f (d b - b t n (O) = ’ 1)) t h e n

e n d i f ;
d a t a - r e g <= s w ;

e n d i f ;
e n d p r o c e s s ;
-- a d d r e s s

-- command
p r o c e s s (d b - b t n , d a t a - r e g)
b e g i n

60 a d d r <= “ 0 0 0 0 0 0 0 0 0 0 ’ ‘ & s w ;

d a t a - f 2 s <= (o t h e r s = >) O)) ;
65 i f d b - b t n (l) = ’ l ’ t h e n -- w r i t e

m e m <= ’ 1 ’ ;
r w <= ’ 0 ’ ;
d a t a - f z s <= “ 0 0 0 0 0 0 0 0 ’ ’ & d a t a - r e g ;

mem <= ’ 1 ’ ;
r w <= ’1);

m e m <=) O) ;
r w <= ’1);

e l s i f d b _ b t n (2) = ’ 1) t h e n -- r e a d

e l s e

e n d i f ;
e n d p r o c e s s ;
-_ o u t p u t
l e d <= d a t a - s 2 f (7 d o w n t o 0) ;

e n d a r c h ;

10.4.5 Comprehensive SRAM testing circuit

The second circuit performs comprehensive testing. It verifies operation of the SRAM con-
troller and checks the integrity of the SRAM chip as well. This circuit has three functions:

0 Write testing data patterns to the entire SRAM at the maximal rate.
0 Read the entire SRAM at the maximal rate, check the retrieved data against the

original patterns, and record the number of erroneous readouts.
0 Inject erroneous data.

These functions can be initiated by three debounced pushbuttons.
The ASMD chart is shown in Figure 10.7. It contains three branches, corresponding to

A SAFE DESIGN 229

ready <=I

...............I

............. I....

I rd-clk2

L

............. 1
c t c+ l

T

T
...........I....... !

-
, 1

............................
1 ,wr-dk2: , ~

........................... ,.............I...

, r - c l k 3 ,
~ c t c + l

j <-> c-next.0 F.

T
.............. t------------

addr t O..O & sw

Figure 10.7 ASMD chart of a comprehensive SRAM testing circuit.

230 EXTERNAL SRAM

three functions. The middle branch writes the test patterns to the SRAM. The wr-clkl,
wr-clk2, and wr-clk3 states correspond to the i d l e , wrl, and wr2 states of the SRAM
controller. The FSMD uses the 18-bit c register as a counter to loop through this branch
2lS times. The content of the c register is used as an address and the reversed 16 LSBs
are used as data during a write operation. The FSMD writes all memory locations while
looping through this branch. The left branch reads data from the SRAM. The three states
correspond to the i d l e , r d i , and rd2 states of the SRAM controller. The FSMD again
loops through the branch 2lS times. The retrieved data is compared with the original test
patterns, and the e r r register is used to keep track of the number of mismatches. The right
branch performs a single write operation. It uses the 8-bit switch to form a memory address
and writes an erroneous pattern to that address. The i n j counter is used to keep track of
the number of injected errors. The complete HDL code is shown in Listing 10.3.

Listing 10.3 Comprehensive SRAM testing circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y sram-test i s

5 p o r t (
clk, reset: in std-logic;
sw: in std-logic-vector (7 downto 0) ;
btn: in std-logic-vector (2 downto 0) ;
led: out std-logic-vector (7 downto 0) ;
an: out std-logic-vector (3 downto 0) ;
sseg : out std-logic-vector (7 downto 0) ;
ad: out std-logic-vector (17 downto 0) ;
we-n, oe-n: out std-logic;
dio-a: i n o u t std-logic-vector (15 downto 0) ;

10

15 ce-a-n, ub-a-n, lb-a-n: out std-logic

) ;
end sram-test;

a r c h i t e c t u r e arch of sram-test i s
20 c o n s t a n t A D D R - W : integer : =18;

c o n s t a n t D A T A - W : integer :=16;
s i g n a l addr : std-logic-vector (ADDR-W -1 downto
s i g n a l data-f 2s , data-s2f :

25 s i g n a l mem, rw: std-logic;
std-logic-vector (D A T A - W -1 downto 0) ;

type state-type i s (test-init , rd-clkl , rd-clk2, rd-clk3,

s i g n a l state-reg , state-next : state-type;
s i g n a l c-next , c-reg : unsigned (ADDR-W -1 downto 0) ;

30 s i g n a l c-std: std-logic-vector (ADDR-W -1 downto 0) ;
s i g n a l inj-next , inj-reg: unsigned(7 downto 0) ;
s i g n a l err-next , err-reg : unsigned (15 downto 0) ;
s i g n a l db-btn: std-logic-vector (2 downto 0) ;

wr-err , wr-clkl , wr-clk2 , wr-clk3) ;

35 beg in

__ c o m p o n e n t i n s t a n t i a t i o n
__

A SAFE DESIGN 231

c t r l - u n i t : e n t i t y work . s r a m - c t r l
40 p o r t map(

c l k = > c l k , r e s e t = > r e s e t ,
mem=>mem, r w = > r w , a d d r = > a d d r ,
d a t a - f 2 s = > d a t a - f 2 s , r e a d y = > o p e n ,
d a t a - s 2 f -r =>open , d a t a - s2 f - u r => d a t a - s2 f ,
a d = > a d , d i o - a = > d i o - a ,
we-n=>we-n, o e - n = > o e - n ,
c e - a - n = > ce-a-n , ub-a-n=>ub-a-n , l b - a - n = > l b - a - n) ;

15

55

h5

d e b o u n c e - u n i t 0 : e n t i t y work , debounce
50 p o r t map(

c l k = > c l k , r e s e t = > r e s e t , sw=>btn (O) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b _ b t n (O)) ;

d e b o u n c e - u n i t 1 : e n t i t y work . debounce
p o r t map(

c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (l) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (1)) ;

d e b o u n c e - u n i t 2 : e n t i t y work , debounce
p o r t map(

c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (2) ,
60 d b - l e v e l = > o p e n , d b - t i c k = > d b m b t n (2)) ;

d i s p - u n i t : e n t i t y work . d i sp-hex-mux
p o r t map(

c l k = > c l k , r e s e t = > ’ O ’ , d p - i n = > ” l l l l ” ,
h e x 3 = > s t d _ l o g i c _ v e c t o r (e r r - r e g (1 5 downto 12)) ,
h e x 2 = > s t d _ l o g i c _ v e c t o r (e r r - r e g (11 downto 8)) ,
h e x l = > s t d - l o g i c - v e c t o r (e r r - r e g (7 downto 4)) ,
h e x O = > s t d - l o g i c - v e c t o r (e r r - r e g (3 downto 0)) ,
a n = > a n , s s e g = > s s e g) ;

80

85

70 --
-- FSMD
-_

__ s t a t e & d a t a r e g i s t e r s
p r o c e s s (c l k , r e s e t)

75 beg in
i f (r e s e t = ’ l ’) t h e n

s t a t e - r e g <= t e s t - i n i t ;
c - r e g <= (o t h e r s = > ’ O ’) ;
i n j - r e g <= (o t h e r s = > ’ O ’) ;
e r r - r e g <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
c - r e g <= c - n e x t ;
i n j - r e g <= i n j - n e x t ;
e r r - r e g <= e r r - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) t h e n

end i f ;
end p r o c e s s ;
c - s t d <= std-logic-vector(c-reg);
-- f s m d n e x t - s t a t e l o g i c / d a t a p a t h o p e r a t i o n s
p r o c e s s (s t a t e - r e g ,sw , d b - b t n , c - r e g , c - s t d ,

c -nex t , i n j - r e g , e r r - r e g , d a t a - s 2 f)
9u

232 EXTERNAL SRAM

b e g i n
c - n e x t <= c - r e g ;
i n j - n e x t <= i n j - r e g ;
e r r - n e x t <= e r r - r e g ;
a d d r <= (o t h e r s = > ’ O ’) ;
r w <= ’ 1 ’ ;
mem <= ’ 0 ’ ;
d a t a - f 2 s <= (o t h e r s = > ’ O ’) ;
c a s e s t a t e - r e g i s

when t e s t - i n i t =>
i f d b - b t n (O) = ’ l ’ t h e n

s t a t e - n e x t <= r d - c l k l ;
c - n e x t < = (o t h e r s = > ’ O ’) ;
e r r - n e x t < = (o t h e r s = > ’ O ’) ;

s t a t e - n e x t <= w r - c l k l ;
c - n e x t < = (o t h e r s = > ’ O ’) ;
i n j - n e x t < = (o t h e r s = > ’ O ’) ; -- c l e a r i n j e c t e d e r r

e l s i f d b - b t n (2) = ’ 1 ’ t h e n
s t a t e - n e x t <= w r - e r r ;
i n j - n e x t <= i n j - r e g + 1 ;

s t a t e - n e x t <= t e s t - i n i t ;

e I s i f d b - b t n (1) = ’ 1 ’ t h e n

e l s e

end i f ;

s t a t e - n e x t <= t e s t - i n i t ;
m e m <= ’1’;
r w <= ’ 0 ’ ;
a d d r <= “ 0 0 0 0 0 0 0 0 0 0 “ & s w ;
d a t a - f 2 s <= (o t h e r s = > ’1 ’) ;

s t a t e - n e x t <= w r - c l k 2 ;
mern <= ’ 1 ’ ;
r w <= ’ 0 ’ ;
a d d r <= c - s t d ;
d a t a - f 2 s <= n o t c-std(DATA-W -1 downto 0) ;

when w r - c l k 2 => -- i n w r l s t a t e o f s r a r n - c t r l
s t a t e - n e x t <= w r - c l k 3 ;

when w r - c l k 3 = > -- i n wr2 s t a t e o f s r a r n - c t r l
c - n e x t <= c - r e g + 1;
i f c - n e x t =O t h e n

e l s e

end i f ;

s t a t e - n e x t <= r d - c l k 2 ;
m e m <= j l ’ ;

r w <= ’1’;
a d d r <= c - s t d ;

s t a t e - n e x t <= r d - c l k 3 ;

when wr-err => -- w r i t e 1 e r r ; d o n e i n n e x t 2 c l o c k s

when w r - c l k l = > -- i n i d l e s t a t e o f s r a m - c t r l

s t a t e - n e x t <= t e s t - i n i t ;

s t a t e - n e x t <= w r - c l k l ;

when r d - c l k l => -- i n i d l e s t a t e o f s r a m - c t r l

when r d - c l k 2 => -- i n r d l s t a t e o f s r a r n - c t r l

when r d - c l k 3 => -- i n r d 2 s t a t e o f s r a r n - c t r l

95

IW

105

I10

I20

125

I30

115

I40

MORE AGGRESSIVE DESIGN 233

14s

150

__ c o m p a r e r e a d o u t ; m u s t u s e u n r e g i s t e r e d o u t p u t
i f (n o t c-std(DATA-W-1 downto O)) / = d a t a - s 2 f then

end i f ;
c - n e x t <= c - r e g + 1;
i f c -nex t=O then

e l s e

end i f ;

e r r - n e x t <= e r r - r e g + 1 ;

s t a t e - n e x t <= t e s t - i n i t ;

s t a t e - n e x t <= r d - c l k l ;

I55 end c a s e ;
end p r o c e s s ;
l e d <= std-logic-vector(inj-reg);

end a r c h ;

Note that the number of write-read mismatches is connected to the seven-segment LED
display and shown as a four-digit hexadecimal number, and the number of injected errors
is connected to the eight discrete LEDs.

We can use this circuit as follows:
0 Perform the read function. Since the SRAM is not written yet, it is in the initial

“power-on” state. The seven-segment LED display should show a large number of
mismatches.

0 Perform the write function.
0 Perform the read function. The number of mismatches should be zero if both the

0 Inject error data a few times (to different memory locations).
0 Perform the read function again. The number of mismatches should be the same as

SRAM controller and the SRAM device work properly.

the number of injected errors.

10.5 MORE AGGRESSIVE DESIGN

Although the previous memory controller functions properly, it does not have optimal
performance. While both the read and write cycles are 10 ns of the SRAM device, the
back-to-back memory access of this controller takes 60 ns (i.e., three clock cycles). In
this section, we study the timing issue in more detail, examine several more aggressive
designs and their potential problems, and discuss some FPGA features that help to remedy
the problems.

10.5.1 Timing issues

Timing issues on asynchronous SRAM There are two subtle timing issues in de-
signing a high-performance asynchronous SRAM controller. The first issue is deactivation
of the w e n signal. The ’0’-to-’1’ transition of w e n functions somewhat like a clock edge
of an FF, in which the data is latched and stored to the internal memory element. Note
that the data hold time (~ H D) is zero for this SRAM. Although it appears that it is fine to
deactivate w e n and remove data at the same time, this approach is not reliable because of
the variations in propagation delays. We must ensure that w e n is deactivated before data
is removed from the bus.

The second issue is the potential conflict on the data bus, dio. Recall that the data bus is
a bidirectional bus. The controller places data on the bus during a write operation, and the

234 EXTERNAL SRAM

SRAM places data on the bus during a read operation. A condition known as f i gh t ing
occurs if the controller and SRAM place data on the bus at the same time. This condition
should be avoided to ensure reliable operation.

Estimation of propagation delay Designing a good memory controller requires hav-
ing a good understanding about the propagation delays of various signals. However, it is a
difficult task. First, during synthesis, an RT-level description is optimized and mapped to
logic cells and wire interconnects. The final implementation may not resemble the block
diagram depicted by the initial description, and thus it is difficult to estimate the propagation
delay from the initial description.

Second, a memory operation involves off-chip data access. Additional propagation delay
is introduced when a signal propagates through the FPGA’s I/O pads. The delay, sometimes
known as pad delay, is usually much larger than the internal wiring delay and its exact value
depends on a variety of factors, including the type of FPGA device, the location of the output
register (in LE or IOB), the I/O standards, the slew rate, the driver strength, and external
loading.

It requires intimate knowledge of the FPGA device and the synthesis software to perform
a good timing analysis and to estimate the propagation delays of various signals.

10.5.2 Alternative design I

The first alternative design is targeted to reduce the back-to-back operation overhead. In-
stead of always returning to the i d l e state, the memory controller can check the mem signal
at the end of current memory operation (i.e., in the rd2 or wr2 state) and determine what
to do next. It initiates a new memory operation immediately if there is a pending request.

The revised ASMD chart for this controller is shown in Figure 10.8. In the rd2 and wr2
states, the mem and r w signals are examined and the FSMD may move directly to the r d i
or w r l state if another memory operation is required.

Timing analysis Most of the original timing analysis in Section 10.4.2 can still be ap-
plied to this design. However, skipping the i d l e state introduces subtle new complications
when different types of back-to-back memory operations are performed. The issue is the
potential fighting on the data bus.

Let us consider a write operation performed immediately after a read operation. During
the read operation, the signal flows from the SRAM to the FPGA. To facilitate this operation,
the tri-state buffer of the SRAM should be “turned on” (i.e., passing signal) and the tri-
state buffer of the FPGA should be “turned off” (i.e., high impedance). During the write
operation, the signal flows from the FPGA to the SRAM, and the roles of the two tri-state
buffers are reversed. Note that a small delay is required to turn on or off a tri-state buffer.
In the SRAM chip, these delays are specified by t H Z o E (o e n to high-impedance time)
and t L Z o E (oen to low-impedance time) in Figure 10.2.

In the original SRAM controller, both tri-state buffers are turned off in the i d l e state.
The state provides enough time for the data bus to settle to the high-impedance condition.
The new design requires the two tristate buffers to reverse directions simultaneously during
back-to-back operations. For example, when moving from the rd2 state to the w r i state, the
FSMD generates signals to turn off the SRAM’s tri-state buffer and to turn on the FPGA’s
tri-state buffer. A problem may occur in this transition if the SRAM’s tri-state buffer is
turned off too slowly or the FPGA’s tri-state buffer is turned on too quickly. In a small
interval, both buffers may allow data to be placed on the bus and fighting occurs. Similarly,
fighting may occur when a read operation is performed immediately after a write operation.

MORE AGGRESSIVE DESIGN 235

Default: oe-n <= 1; we-n <= 1; tri-n <= 1; ready <= 0

,..........

raddr +- addr

.....I

,
; r l

oe-n <= 0

oe-n <= 0
rs2t + dio

4
F mem=l

..

I I

-4

...
-l

t r i g <= 0

OF- mem=l

T

rT<*>F,

raddr + addr

'i...........................i.............
I I

Figure 10.8 ASMD chart of SRAM controller design I.

236 EXTERNAL SRAM

Default: oe-n <= 1 ; we-n <= 1; tri-n <= 1; ready <= 0

L........ -..

1 I
tri-n <= 0

Figure 10.9 ASMD chart of SRAM controller design 11.

Since the interval tends to be very small, the fighting should not cause severe damage to
the devices but may introduce a large transient current which makes the design less reliable.
We must do a detailed timing analysis to examine whether fighting occurs, and may even
need to fine-tune the timing to fix the problem. As discussed in Section 10.5.1, it is a
difficult task.

10.5.3 Alternative design II

Timing analysis in Section 10.4.2 shows that the initial design provides a large safety margin.
In this controller, a memory operation takes two clock cycles, which amount to 40 ns. Since
the read and write cycles of the SRAM are each 10 ns, we naturally wonder whether it is
possible to reduce the operation time to a single 20-11s clock cycle. This can be done by
eliminating the rd2 and wr2 states in the ASMD chart. The second alternative design uses
this approach. The revised ASMD chart is shown in Figure 10.9. It takes one clock cycle
to complete the memory access and requires two clock cycles to complete the back-to-back
operations.

Timing analysis Reducing a state from the original controller imposes much tighter
timing constraints for both read and write operations. Let us first consider the read operation.
During operation, the address signal first propagates through the FPGAs I/O pads to the
SRAM's address bus, and the retrieved data then propagates back through the I/O pads
to FPGA's internal logic. All of this must be completed within a 20-11s clock cycle. In
addition to the 10-ns SRAM address access time (i.e., ~ A A) , the cycle must accommodate

MORE AGGRESSIVE DESIGN 237

two pad delays. The pad delay of a Spartan-3 device can range from 4 ns to more than
10 ns. Therefore, we need to “fine-tune” the synthesis to achieve this margin.

Unlike the read operation, a write operation is “one-way” and only needs to propagate
the address, data, and control signals to the SRAM chip. If we assume that the signals
experience similar pad delays, the absolute value of the delay is a lesser issue. Instead, the
key is the order of signals being activated and deactivated. As discussed in Section 10.5.1,
w e n must be deactivated before data to latch the data properly to the SRAM. In the original
design, this is achieved by including the second state in the write operation, w r 2 , in which
w e n is deactivated but the data is still available (i.e., t r in is still active). In the revised
controller, the w e n and t r i n signals are deactivated simultaneously at the end of the w r l
state. Due to the variations in the internal logic and pad delays, normal synthesis cannot
guarantee that w e n is deactivated before the data is removed from the external data bus.
Again, for a reliable design, we need to fine-tune the synthesis to satisfy this goal.

10.5.4 Alternative design 111

We can combine the features from the two preceding revisions to derive the third alternative
design. This new controller eliminates the second clock cycle in the read and write oper-
ations and allows back-to-back operation without first returning to the i d l e state. This is
the most aggressive design. The revised ASMD chart is shown in Figure 10.10. It com-
bines the modifications from the previous two ASMD charts. The revised design takes one
clock cycle to complete the memory access and one clock cycle to complete back-to-back
operations.

Note that the w e n signal must be asserted for a fraction of the clock period and cannot
be shown in the ASMD chart. We use the w e - t m p in the w r l state and later derive w e n
from this signal.

Timing analysis Since the new design combines the features of the two previous de-
signs, all the timing issues discussed in the two preceding subsections must be considered
for this design as well. One additional issue is generation of the w e n signal. During back-
to-back write operations, the ASMD stays on the w r l state. In the original design, the w e n
signal is a Moore output. It will be asserted to ’0’ continuously in this case. The controller
does not function properly since the data is latched to the SRAM at the ’0’-to-’ 1’ transition
of the w e n signal. To solve the problem, the w e n signal must be asserted in only a fraction
of the clock period.

One possible way to solve the problem is to assert the signal only at the first half of the
clock, which is 10 ns and can satisfy the t ~ p ~ l requirement in theory. Intuitively, we are
tempted to do this by gating the w e - t m p signal with the clock signal, clk:

we-n <= we-tmp or (n o t c l k) ;

However, this is not a reliable solution because of the potential glitches and delay variation.
A better alternative is discussed in the next subsection.

10.5.5 Advanced FPGA featuresxizinx ‘peeif ic

The memory controller examples in this section illustrate the limitations of the FSM-based
controller and synchronous design methodology. Basically, an FSM cannot generate a
control sequence that is “finer” than the period of its clock signal. The operation of these
alternative designs relies on factors that cannot be specified by an RT-level HDL description.

238 EXTERNAL SRAM

Default: oe-n <= 1; we-n <= 1; tri-n <= 1; ready <= 0

, ...
idle

ready < = I

T

rT-<;"'>F7 I
'@; ~

raddr +- addr 0 raddr t addr , c-), -
rr2f t dio

ladr t addr

.. -?-- we-tmp <= 0

mem=l F-

T r.<;'>.1

Figure 10.10 ASMD chart of SRAM controller design 111.

MORE AGGRESSIVE DESIGN 239

Due to the variations in propagation delays, the synthesized circuits are not reliable and
may or may not work.

There are some ad hoc features to obtain better control. These features are usually
device and software dependent. For example, the digital clock manager (DCM) circuit and
input/output block (IOB) of the Spartan-3 device can help to remedy some of the previously
discussed problems. Detailed discussion of DCM and IOB is beyond the scope of this book.
In this subsection, we sketch a few ideas and illustrate how to apply these features to obtain
a more reliable controller.

DCM A Spartan-3 FPGA device contains up to eight digital clock managers (DCMs).
As its name indicates, a DCM is a circuit that manipulates the system clock signal. It can
multiply or divide the frequency or shift the phase of the incoming clock signal to generate
new clock signals.

One way to obtain a “finer” control sequence is to use a faster clock. Since implemen-
tation of a memory controller is fairly simple, the circuit itself can operate at a faster clock
rate. For example, we can isolate the memory controller and drive it with a DCM-generated
200-MHz clock signal, whose period is only 5 ns. Consider the write operation of the
ASMD chart in Figure 10.6. In the new controller, each state lasts only 5 ns. To satisfy the
10-ns w e n requirement, we need to expand the w r l state to two states and assert the w e n
signal in these states. The complete write operation now requires four states. However,
because of the faster clock rate, the four clock cycles amount to only 20 ns, which is much
better than the original 60-11s design.

A simple application of clock phase shift is discussed in the next subsection.

IOB An input/output block (IOB) of a Spartan-3 FPGA device provides a programmable
interface between an I/O pin and the device’s internal logic. It contains several storage
registers and tri-state buffers as well as analog driver circuits that can be configured to
provide different slew rates and driver strength and to support a variety of I/O standards.

To minimize the off-chip pad delay discussed in Section 10.5.3, we can put the output
registers of the memory controller to the FFs inside the IOBs and configure the driver with
the proper slew rate and strength. This can be done by specifying the desired condition and
configuration in the constraint file.

An IOB also contains a double data rate (DDR) register, which has two clocks and two
inputs. Conceptually, we can think that the two inputs are sampled independently by the two
clocks and the sampled values are stored in the same register. The DDR register and DCM
can be combined to generate a control signal whose width is a fraction of a clock signal, as
the w e n signal discussed in Section 10.5.4. The block diagram is shown in Figure 10.1 l(a).
The regular output register is replaced with a DDR register. The top portion of the DDR
consists of the we-tmp signal and the original clock signals, clk. The bottom input of the
DDR is tied to ’ 1 ’ and the clock is connected to the out-of-phase clock signal, clk180,
which is generated by a DCM. The ’1’ is always loaded at the rising edge of the clk180
signal, which corresponds to the falling edge of the clk signal. It essentially deactivates
the second half of the w e n signal. The timing diagram is shown in Figure 10.1 l(b). This
approach generates a clean half-cycle signal and is far more reliable than the clock gating
scheme discussed in Section 10.5.4.

240 EXTERNAL SRAM

dk rn
clk180

Figure 10.11 Generating a half-cycle signal with DDR.

10.6 BIBLIOGRAPHIC NOTES

The data sheet published by ISSI provides detailed information for the IS61LV25616AL
SRAM device. The Xilinx application note, XAPP462 Using Digital Clock Managers
(DCMs) in Spartan-3 FPGAs, discusses the use of DCM, and the data sheet, DS099 Spartan-
3 FPGA Family: Complete Data Sheet, explains the architecture and configuration of the
IOB and the DDR register.

10.7 SUGGESTED EXPERIMENTS

10.7.1 Memory with a 512K-by16 configuration

There are two 256K-by-16 SRAM chips, and their I/O connections are shown in the manual
of the S3 board. We can expand them to form a 512K-by-16 SRAM.

1. Derive a scheme to combine the two chips.
2. Follow the procedure in Section 10.4 to design a memory controller for the 512K-

by- 16 SRAM. Derive the HDL description.
3. Modify the testing circuit in Section 10.4.5 for the new controller and derive the HDL

description.
4. Synthesize the testing circuit and verify operation of the controller and SRAM chips.

10.7.2 Memory with a 1M-by8 configuration

Repeat Experiment 10.7.1 but configure the two chips as a 1M-by-8 SRAM. The l b n and
u b n signals can be used for this purpose.

10.7.3 Memory with an 8M-by1 configuration

A single bit of the 256K-by-16 SRAM can be written as follows:
Read a 16-bit word.
Modify the designated bit in the word.
Write the 16-bit word back.

Repeat Experiment 10.7.1 but configure the two chips as an 8M-by-1 SRAM.

SUGGESTED EXPERIMENTS 241

10.7.4 Expanded memory testing circuit

The memory testing circuit in Section 10.4.5 conducts exhaustive back-to-back read and
back-to-back write tests. We can expand the circuit to include an exhaustive “read-after-
write” test, in which the testing circuit issues write and read operations alternately for the
entire memory space. To make the test more effective, the writing and reading addresses
should be different. For example, we can make the read operation retrieve the data written
16 positions earlier (i.e., if the current writing address is c, the reading address will be
c-16). Create a modified ASMD chart, derive an HDL description, synthesize the circuit,
and verify its operation.

10.7.5 Memory controller and testing circuit for alternative design I

Derive the HDL code for alternative design I in Section 10.5.2 and create an expanded
testing circuit similar to the one in Experiment 10.7.4. Synthesize the testing circuit and
examine whether any error occurs during operation.

10.7.6 Memory controller and testing circuit for alternative design II

Repeat the process in Experiment 10.7.5 for alternative design I1 discussedin Section 10.5.3.

10.7.7 Memory controller and testing circuit for alternative design 111

Repeat the process in Experiment 10.7.5 for alternative design I11 discussed in Section 10.5.4.

10.7.8 Memory controller with DCM

Study the application note on DCM and follow the discussion in Section 10.5.5 to drive
the safe memory controller discussed in Section 10.4 with a higher clock rate (150 MH or
even 200 MHz). Derive an ASMD chart and HDL code, and create a new testing circuit.
Synthesize the circuit and verify operation of the memory controller and the SRAM.

10.7.9 High-performance memory controller

Study the documentation of the DCM and the IOB, and apply these features to reconstruct
alternative design I11 discussed in Section 10.5.4. Create a new testing circuit. Synthesize
the circuit and verify operation of the memory controller and the SRAM.

