
PART I

BASIC DIGITAL CIRCUITS

CHAPTER 1

GATE-LEVEL COMBINATIONAL CIRCUIT

1.1 INTRODUCTION

VHDL stands for “VHSIC (very high-speed integrated circuit) hardware description lan-
guage.” It was originally sponsored by the U.S. Department of Defense and later transferred
to the IEEE (Institute of Electrical and Electronics Engineers). The language is formally de-
fined by IEEE Standard 1076. The standard was ratified in 1987 (referred to as VHDL 87),
and revised several times. This book mainly follows the revision in 1993 (referred to as
VHDL 93).

VHDL is intended for describing and modeling a digital system at various levels and
is an extremely complex language. The focus of this book is on hardware design rather
than the language. Instead of covering every aspect of VHDL, we introduce the key VHDL
synthesis constructs by examining a collection of examples. Detailed VHDL coverage may
be explored through the sources listed in the Bibliography.

In this chapter, we use a simple comparator to illustrate the skeleton of a VHDL pro-
gram. The description uses only logical operators and represents a gate-level combinational
circuit, which is composed of simple logic gates. In Chapter 3, we cover the more sophis-
ticated VHDL operators and constructs and examine module-level combinational circuits,
which are composed of intermediate-sized components, such as adders, comparators, and
multiplexers.

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

1

2 GATE-LEVEL COMBINATIONAL CIRCUIT

Table 1.1 Truth table of a 1-bit equality comparator

input output
iOil eq

0 0 1
0 1 0
1 0 0
1 1 1

1.2 GENERAL DESCRIPTION

Consider a 1-bit equality comparator with two inputs, i 0 and ii, and an output, eq. The
eq signal is asserted when i0 and il are equal. The truth table of this circuit is shown in
Table 1.1.

Assume that we want to use basic logic gates, which include not, and, or, and xor cells,
to implement the circuit. One way to describe the circuit is to use a sum-of-products format.
The logic expression is

eq = iO . il + iO’ . il’
One possible corresponding VHDL code is shown in Listing 1.1. We examine the language
constructs and statements of this code in the following subsections.

Listing 1.1 Gate-level implementation of a 1-bit comparator

l i b r a r y ieee;
use ieee.std-logic-ll64.all;
e n t i t y eql i s

p o r t (
5 i 0 , i l : in std-logic;

eq: o u t std-logic

1 ;
end eql;

10 a r c h i t e c t u r e sop-arch of eql i s
s i g n a l P O , p i : std-logic;

-- sum o f t w o p r o d u c t t e r m s
eq <= PO or pl;

1s -- p r o d u c t t e r m s
p0 <= (n o t i0) and (n o t il);
p l <= i 0 and il;

b e g i n

end sop-arch ;

1.2.1 Basic lexical rules

VHDL is case insensitive, which means that upper- and lowercase letters can be used
interchangeably, and free formatting, which means that spaces and blank lines can be
inserted freely. It is good practice to add proper spaces to make the code clear and to associate
special meaning with cases. In this book, we reserve uppercase letters for constants.

GENERAL DESCRIPTION 3

An identiJier is the name of an object and is composed of 26 letters, digits, and the
underscore (-), as in i0, i l , and data-busl-enable. The identifier must start with a letter.

The comments start with -- and the text after it is ignored. In this book, the VHDL
keywords are shown in boldface type, as in entity, and the comments are shown in italics
type, as in

__ t h i s is a comment

1.2.2 Library and package

The first two lines,

l i b r a r y ieee;
u s e ieee. std-logic-1164, a l l ;

invoke the std-logic-1164 package from the i e e e library. The package and library allow
us to add additional types, operators, functions, etc. to VHDL. The two statements are
needed because a special data type is used in the code.

1.2.3 Entity declaration

The entity declaration

e n t i t y eql i s
port (

i0, il: i n std-logic;
eq: out std-logic

) ;
end eql;

essentially outlines the I/O signals of the circuit. The first line indicates that the name of
the circuit is eq l , and the port section specifies the I/O signals. The basic format for an I/O
port declaration is

signal-namel, signal-name2, . . . : mode data-type;

The mode term can be in or out, which indicates that the corresponding signals flow “into”
or “out of” of the circuit. It can also be inout, for bidirectional signals.

1.2.4 Data type and operators

VHDL is a strongly typed language, which means that an object must have a data type and
only the defined values and operations can be applied to the object. Although VHDL is rich
in data types, our discussion is limited to a small set of predefined types that are suitable
for synthesis, mainly the s td- logic type and its variants.

std-logic type The s t d - l o g i c type is defined in the std-logic-I164 package and
consists of nine values. Three of the values, ’ 0 ’ , ’ I ’ , and ’ Z ’ , which stand for logical 0,
logical 1, and high impedance, can be synthesized. Two values, ’U’ and ’X’ , which stand
for “uninitialized” and “unknown” (e.g., when signals with ’ 0’ and ’ 1 ’ values are tied
together), may be encountered in simulation. The other four values, ’ - ’ , ’ H’ , ’ L ’ , and
’ W ’, are not used in this book.

4 GATE-LEVEL COMBINATIONAL CIRCUIT

A signal in a digital circuit frequently contains multiple bits. The std-logic-vector
data type, which is defined as an array with elements of std-logic, can be used for this
purpose. For example, let a be an 8-bit input port. It can be declared as

a : in std-logic-vector (7 downto 0) ;

We can use term like a (7 downto 4) to specify a desired range and term like a (1) to access
a single element of the array. The array can also be declared in ascending order:

a : in std-logic-vector(0 t o 7) ;

We generally avoid this format since it is more natural to associate the MSB with the leftmost
position.

Logical operators Several logical operators, including not, and, or, and xor, are de-
fined over the std-logic-vector and s td- logic data type. Bit-wise operation is used
when an operator is applied to an object with the std-logic-vector data type. Note that
the and, or, and xor operators have the same precedence and we need to use parentheses
to specify the desired order of evaluation, as in

(a and b) or (c and d)

1.2.5 Architecture body

The architecture body,

a r c h i t e c t u r e sop-arch of eql i s
s i g n a l PO, p l : std-logic;

begin
-- sum o f t w o p r o d u c t t e r m s
eq <= PO or p l ;
-- p r o d u c t t e r m s
PO <= (n o t i0) and (n o t il);
p l <= i0 and il;

end sop-arch ;

describes operation of the circuit. VHDL allows multiple bodies associated with an entity,
and thus the body is identified by the name sop-arch (“sum-of-products architecture”).

The architecture body may include an optional declaration section, which specifies con-
stants, internal signals, and so on. Two internal signals are declared in this program:

s i g n a l PO, p l : std-logic;

The main description, encompassed between begin and end, contains three concurrent
statements. Unlike a program in C language, in which the statements are executed sequen-
tially, concurrent statements are like circuit parts that operate in parallel. The signal on the
left-hand side of a statement can be considered as the output of that part, and the expression
specifies the circuit function and corresponding input signals. For example, consider the
statement

eq <= PO or p l ;

It is a circuit that performs the or operation. When PO or p i changes its value, this statement
is activated and the expression is evaluated. The new value is assigned to eq after the default
propagation delay.

GENERAL DESCRIPTION 5

(not i0) and (not i l)

PO or p l

Figure 1.1 Graphical representation of a comparator program.

The graphical representation of this program is shown in Figure 1.1. The three circuit
parts represent the three concurrent statements. The connections among these parts are
implicitly specified by the signal and port names. The order of the concurrent statements
is clearly irrelevant and the statements can be rearranged arbitrarily.

1.2.6 Code of a 2-bit comparator

We can expand the comparator to 2-bit inputs. Let the input be a and b and the output be
aeqb. The aeqb signal is asserted when both bits of a and b are equal. The code is shown
in Listing 1.2.

Listing 1.2 Gate-level implementation of a 2-bit comparator

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e q 2 i s

p o r t (
a , b : in s t d - l o g i c - v e c t o r (1 downto 0) ;
a e q b : o u t s t d - l o g i c

) ;
end e q 2 ;

1 0 a r c h i t e c t u r e s o p - a r c h of e q 2 i s
s i g n a l p O , p l , p 2 , p 3 : s t d - l o g i c ;

-- sum of p r o d u c t t e r m s
a e q b <= P O or p l o r p2 or p 3 ;

P O < = ((n o t a (1)) and (n o t b (1))) and

p l <= ((n o t a (1)) and (n o t b (1))) and (a (0) and b (0)) ;
p2 <= (a (1) and b (1)) and ((n o t a (0)) and (n o t b (0))) ;

b e g i n

I 5 -- p r o d u c t t e r m s

((n o t a (0)) and (n o t b (0))) ;

x p 3 <= (a (1) and b (1)) and (a (0) and b (0)) ;
end s o p - a r c h ;

The a and b ports are now declared as a two-element std-logic-vector. Derivation
of the architecture body is similar to that of a 1-bit comparator. The PO, p i , p2, and p3
signals represent the results of the four product terms, and the final result, aeqb, is the logic
expression in sum-of-products format.

6 GATE-LEVEL COMBINATIONAL CIRCUIT

Figure 1.2 Construction of a 2-bit comparator from 1-bit comparators.

1.3 STRUCTURAL DESCRIPTION

A digital system is frequently composed of several smaller subsystems. This allows us to
build a large system from simpler or predesigned components. VHDL provides a mecha-
nism, known as component instantiation, to perform this task. This type of code is called
structural description.

An alternative to the design of the 2-bit comparator of Section 1.2.6 is to utilize the
previously constructed 1-bit comparators as the building blocks. The diagram is shown in
Figure 1.2, in which two 1-bit comparators are used to check the two individual bits and
their results are fed to an and cell. The aeqb signal is asserted only when the two bits are
equal.

The corresponding code is shown in Listing 1.3. Note that the entity declaration is the
same and thus is not included.

Listing 1.3 Structural description of a 2-bit comparator

a r c h i t e c t u r e struc-arch of eq2 i s

b e g i n
s i g n a l eO, e l : std-logic;

_- i n s t a n t i a t e t w o 1 - b i t c o m p a r a t o r s
5 eq-bit0-unit : e n t i t y work. eql (sop-arch)

eq-bitl-unit : e n t i t y work. eql (sop-arch)

-- a and b a r e e q u a l i f i n d i v i d u a l b i t s a r e e q u a l

p o r t m a p (i O = > a (O) , il=>b(O), eq=>eO);

p o r t m a p (i O = > a (l) , il=>b(i), eq=>el);

KI aeqb <= eO and el;
end struc-arch;

The code includes two component instantiation statements, whose syntax is:

unit-label : e n t i t y lib-name. entity-name (arch-name)
p o r t map(

formal-signal=>actual-signal,
f ormal-s ignal=> actual-s ignal ,

) ;

The first portion of the statement specifies which component is used. The uni t - labe l term
gives a unique id for an instance, the l ibname term indicates where (i.e., which library) the
component resides, and the en t i tyname and archname terms indicate the names of the

STRUCTURAL DESCRIPTION 7

entity and architecture. The archname term is optional. If it is omitted, the last compiled
architecture body will be used. The second portion is port mapping, which indicates the
connection between formal signals, which are I/O ports declared in a component’s entity
declaration, and actual signals, which are the signals used in the architecture body.

The first component instantiation statement is

e q - b i t 0 - u n i t : e n t i t y work . e q l (s o p - a r c h)
p o r t m a p (i O = > a (O) , i l = > b (O) , eq=>eO) ;

The work library is the default library in which the compiled entity and architecture units
are stored, and eql and sop-arch are the names of the entity and architecture defined in
Listing 1.1. The port mapping reflects the connections shown in Figure 1.2. The compo-
nent instantiation statement is also a concurrent statement and represents a circuit that is
encompassed in a “black box” whose function is defined in another module.

This example demonstrates the close relationship between a block diagram and code.
The code is essentially a textual description of a schematic. Although it is a clumsy way for
humans to comprehend a diagram, it puts all representations into a single HDL framework.
The Xilinx ISE package includes a simple schematic editor utility that can perform schematic Xilinx
capture in graphic format and then convert the diagram into an HDL structural description. specific

The component instantiation statement is added in VHDL 93. Older codes may use the
mechanism in VHDL 87, in which a component must first be declared (i.e., made known)
and then used. The code in this format is shown in Listing 1.4.

Listing 1.4 Structural description with VHDL-87

a r c h i t e c t u r e vhd-87-a rch of eq2 i s
_- c o m p o n e n t d e c 1 a r a t i o n
component e q l

p o r t (
i 0 , i l : i n s t d - l o g i c ;
e q : o u t s t d - l o g i c

) ;
end component ;
s i g n a l e O , e l : s t d - l o g i c ;

__ i n s t a n t i a t e t w o 1 - b i t c o m p a r a t o r s
e q - b i t 0 - u n i t : e q l -- u s e t h e d e c l a r e d n a m e , e q l

e q - b i t l - u n i t : e q l -- u s e t h e d e c l a r e d n a m e , e q l

-- a and b a r e e q u a l if i n d i v i d u a l b i t s a r e e q u a l
aeqb <= eO and e l ;

10 beg in

p o r t m a p (i O = > a (O) , i l = > b (O) , e q = > e O) ;

I 5 p o r t m a p (i O = > a (l) , i l = > b (l) , e q = > e l) ;

end v h d - 8 7 - a r c h ;

Note that the original clause,

e q - b i t 0 - u n i t : e n t i t y work. e q l (s o p - a r c h)

is replaced by a clause with the declared component name

e q - b i t 0 - u n i t : e q l

8 GATE-LEVEL COMBINATIONAL CIRCUIT

test vector generator

test-out - test-in-0 aeqb a

b
test-in-l eq2 monitor

-

Figure 1.3 Testbench for a 2-bit comparator.

1.4 TESTBENCH

After code is developed, it can be simulated in a host computer to verify the correctness
of the circuit operation and can be synthesized to a physical device. Simulation is usually
performed within the same HDL framework. We create a special program, known as a
testbench, to mimic a physical lab bench. The sketch of a 2-bit comparator testbench
program is shown in Figure 1.3. The uut block is the unit under test, the t e s t vec tor
genera tor block generates testing input patterns, and the monitor block examines the
output responses.

A simple testbench for the 2-bit comparator is shown in Listing 1.5.

Listing 1.5 Testbench for a 2-bit comparator

l i b r a r y i e e e ;
u s e i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e q 2 - t e s t b e n c h i s
e n d e q 2 - t e s t b e n c h ;

a r c h i t e c t u r e t b- a r c h of e q 2 - t e s t b e n c h i s
5

s i g n a l t e s t - i n 0 , t e s t - i n 1 : s t d - l o g i c - v e c t o r (1 d o w n t o 0) ;
s i g n a l t e s t - o u t : s t d - l o g i c ;

b e g i n
10 -- i n s t a n t i a t e t h e c i r c u i t u n d e r t e s t

u u t : e n t i t y w o r k . e q 2 (s t r u c _ a r c h)

__ t e s t v e c t o r g e n e r a t o r
p r o c e s s

p o r t r n a p (a = > t e s t - i n O , b = > t e s t - i n 1 , a e q b = > t e s t - o u t) ;

15 b e g i n
t e s t v e c t o r I __

t e s t - i n 0 <= " 0 0 " ;

20

t e s t - i n 1 <= " 0 0 "
w a i t f o r 200 n s ;
__ t e s t v e c t o r 2
t e s t - i n 0 <= " 0 1 "
t e s t - i n 1 <= " 0 0 "
w a i t f o r 200 n s ;

t e s t v e c t o r 3
t e s t - i n 0 <= " 0 1 " ;
t e s t - i n 1 <= "11" ;
w a i t f o r 2 0 0 n s ;
__ t e s t v e c t o r 4

__

25

BIBLIOGRAPHIC NOTES 9

30

35

10

test-in0 <= "10"
test-in1 <= " 1 0 "
w a i t for 200 ns;

t e s t v e c t o r 5
test-in0 <= " 1 0 "
test-in1 <= "00"
w a i t for 200 ns;
__ t e s t v e c t o r 6
test-in0 <= " 1 1 "
test-in1 <= "11"
w a i t f o r 200 ns;
__ t e s t v e c t o r 7
test-in0 <= " 1 1 "

__

test-in1 <= "01";
w a i t f o r 200 ns;

end p r o c e s s ;
4s end tb-arch;

The code consists of a component instantiation statement, which creates an instance of a
2-bit comparator, and a process statement, which generates a sequence of test patterns.

The process statement is a special VHDL construct in which the operations are performed
sequentially. Each test pattern is generated by three statements. For example,

t e s t v e c t o r 2 __

test-in0 <= "01";
test-in1 <= "00";
w a i t for 200 ns;

The first two statements specify the values for the t e s t - in0 and t e s t - i n 1 signals, and
the third indicates that the two values will last for 200 ns.

The code has no monitor. We can observe the input and output waveforms on a simulator's
display, which can be treated as a "virtual logic analyzer." The simulated timing diagram
of this testbench is shown in Figure 2.16.

Writing code for a comprehensive test vector generator and a monitor requires detailed
knowledge of VHDL and is beyond the scope of this book. This listing can serve as a
testbench template for other combinational circuits. We can substitute the uut instance and
modify the test patterns according to the new circuit.

1.5 BIBLIOGRAPHIC NOTES

A short bibliographic section appears at the end of each chapter to provide some of the most
relevant references for further exploration. A comprehensive bibliography is included at
the end of the book.

VHDL is a complex language. The Designer's Guide to VHDL by P. J. Ashenden
provides detailed coverage of the language's syntax and constructs. The author's RTL
Hardware Design Using VHDL: Coding for EfJiciency, Portability, and Scalability provides
a comprehensive discussion on developing effective, synthesizable codes. The derivation of
the testbench for a large digital system is a difficult task. Writing Testbenches: Functional
VeriJication of HDL Models, 2nd edition, by J. Bergeron focuses on this topic.

10 GATE-LEVEL COMBINATIONAL CIRCUIl

1.6 SUGGESTED EXPERIMENTS

At the end of each chapter, some experiments are suggested as exercises. The experiments
help us to better understand the concepts and provide a hands-on opportunity to design and
debug actual circuits.

1.6.1

Develop the HDL codes in Experiment 2.9.1. The code can be simulated and synthesized
after we complete Chapter 2.

Code for gate-level greater-than circuit

1.6.2 Code for gate-level binary decoder

Develop the HDL codes in Experiment 2.9.2. The code can be simulated and synthesized
after we complete Chapter 2.

