Model Driven Embedded Systems

Ian Oliver

Nokia Research Center Helsinki, Finland

20 June 2003

ACCD02 Cuimarãos Dartural Juna 20.2002

Contents

UML

DSP Development

MDA

Top down
Embedded Concerns
Meta-modelling
Model Matrix
Model mappings

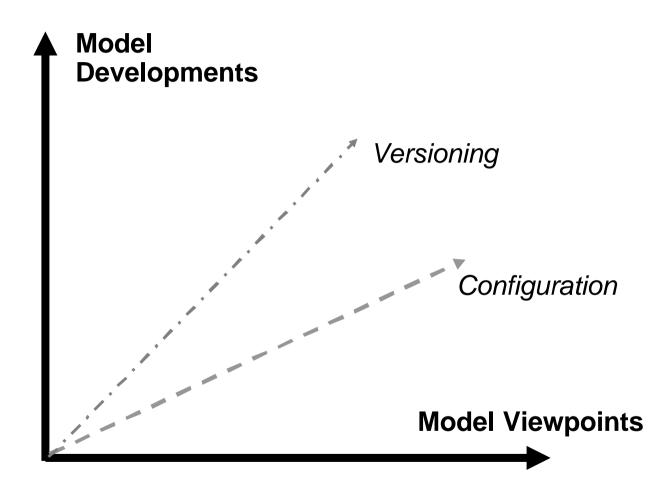
PUSSEE and proven design

Future work

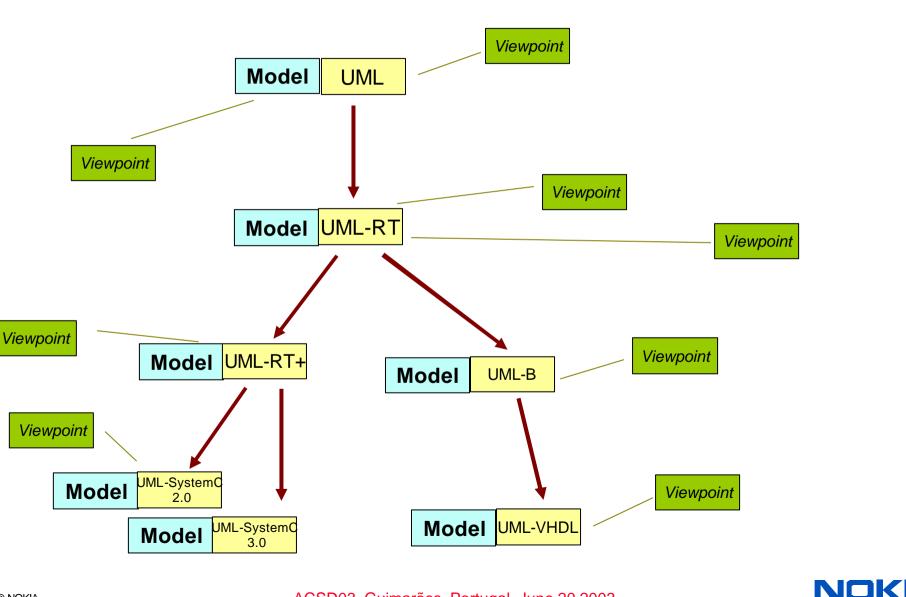
UML

- Unified Modelling Language(S)
- Standard representations of modelling elements for object oriented concepts:
 - Class, object, state etc
 - Action Language (action semantics)
 - Constraint Language (Object constraint language OCL)
- Weakest semantics
 - Eg: State diagrams, sequence diagrams (MSCs in the future)
- Stronger semantic support provided through profiling
 - UML-RT, SPEM, Copenhagen

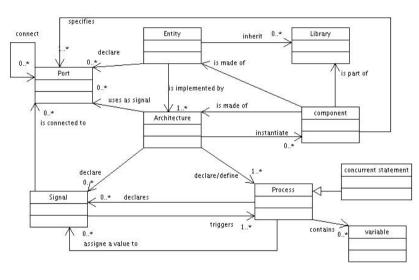
MDA

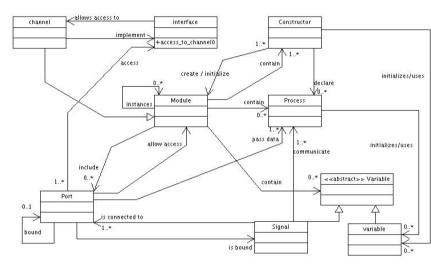

Model Driven Architecture

- OMG's new, great, "solves everything", idea.
- Basic idea:
 - Platform Independent Models (PIMs)
 - are mapped into
 - Platform Specific Models (PSMs)
- Relies heavily upon meta-models describing the various domains in which one works
- Mappings between the PIM and PSM domains
- Assumed to support (strictly?) top-down design...



Model Matrix




MDA Example

Meta-Modelling

VHDL

SystemC (2.0)

Mappings

Syntactic Mappings

- cf: UML Class =
 - C++ Class, Java Class, Eiffel Class, C-struct VHDL process
 - etc...

Semantic Mappings

- UML Class + State + Interaction =
 - configurable template structures
- Semantic equivalences between different languages
- Under MDA, Semantic Mappings will become more prevelant than traditional syntactic mappings

Issues

Top down development

modelling and configuration management become critical

Mappings become highly complex

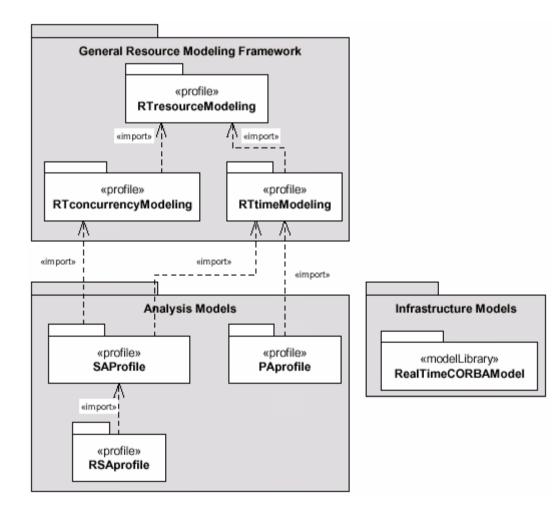
- Emphasis shifts from modelling to producing mappings
- Libraries of mappings need to be created
- Growth industry:
 - look out for mapping conferences, mapping patterns etc

Bottom-up modelling...

- especially in embedded systems:
 - hardware/software constraints
 - specific platforms
 - many semantics, esp: concurrency

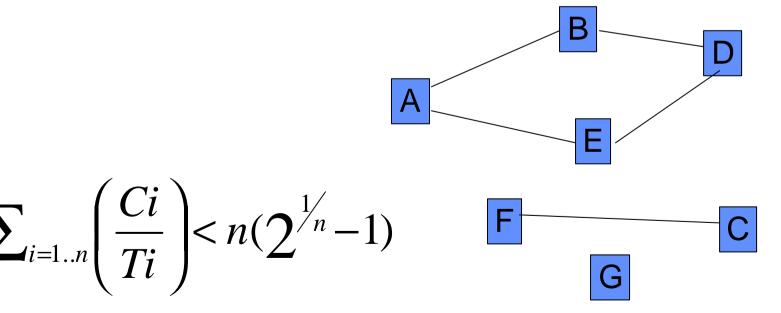
DSP Development with MDA

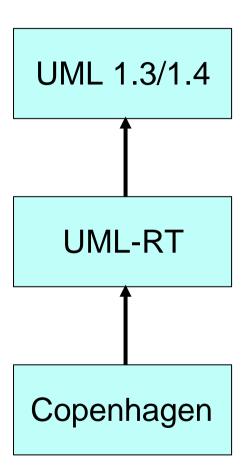
DSP in Mobile Devices


- mixture of Soft & Hard-real time
- Many concurrent processes
- Many functions •GSM •GPRS •CODECs •Audio •Mpeg •MIDI •Image procesing
- Close to hardware
 software vs ASIC
- Power consumption

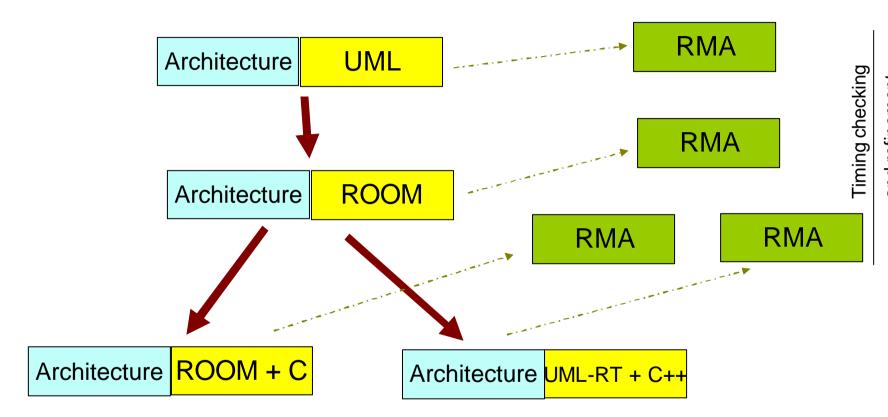
- Devices are (at present!) dual processor:
 MCU
 DSP
- Move towards custom ASIC in some devices
- Multiple DSPs

UML-RT


- A Profile based upon UML 1.3/UML 1.4
- Standard defintion of time
- Quality of Service
- Concurrency defintions
- Active/Passive classes
- Signals & Port


Rate Monotonic Analysis

- Formalism for estimating schedulability of a set of tasks with dependency graphs
- Worst Case Analysis
- Extended to take into consideration:
 - Different scheduling executives
 - Priorities
 - Priority Inversion


Copenhagen

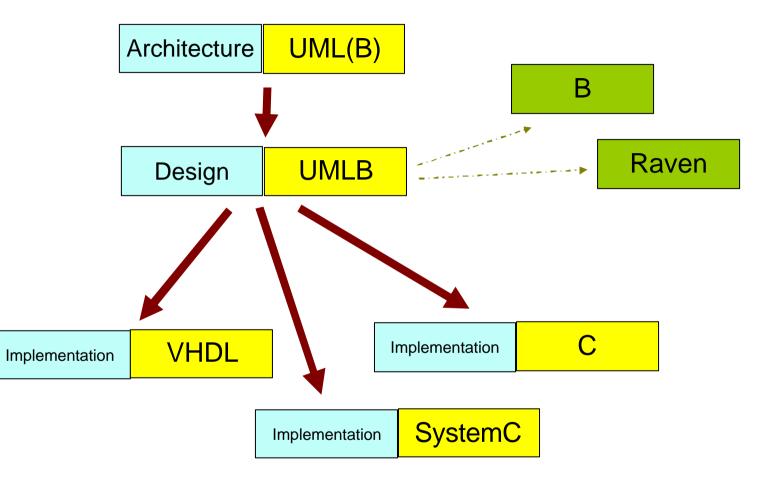
- Adds to the following
 - Class diagrams
 - Sequence
 - State
 - Deployment
- Includes
 - Threads
 - Modes
- Tool Support
 - Collaboration Diagrams

MDA in DSP Development

MDA first impressions

- MDA at this time (DSP development) was different but mappings, metamodels and experience lacking
- Tool support was non-existent
 - mappings by hand
 - XML/XMI doesn't work between tools
- We did get:
 - better ideas on how to perform MDA development
 - a much better set of models
 - much more tracability with regards to
 - structural properties
 - behavioural properties
 - timing properties

PUSSEE


PUSSEE

- Effort to integrate UML and B
- Formal design of software and hardware components
 generates libraries of proven components
- B to VHDL/System C mappings
- UML+B to RIL/Raven (model checker)

Fits well with the "MDA ethos"

PUSSEE MDA Development

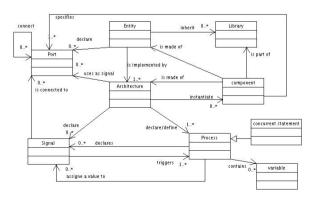
Development in PUSSEE

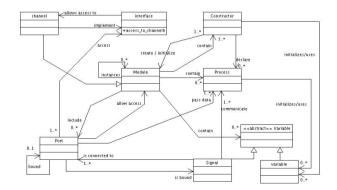
- As development proceeds the underlying language changes
 - •UML •UML-RT •UML-B •UML-Hardware Profile •UML-VHDL •UML-SystemC
- Each level builds upon the features of the previous level
- Mappings are developed between each pair of languages
 - •UML-B to VHDL •UML-B to SystemC

 UML is used as the carrier language supplimented with semantics and notation from

B (B-Method)VHDLSystemC

 B becomes a platform independent language to generate VHDL, SystemC C etc


Meta-Models support PUSSEE


Primarily VHDL and SystemC

suppliments UML with concepts from both VHDL and SystemC

UML Hardware profile

- set of UML profiles targetted towards software-hardware development
- a generic UML profile constructed from the commonalities between existing hardware description languages
 - VHDL, SystemC, Verilog etc

PUSSEE Conclusions

- Project still underway
- Process is a difficult point
 - B-Method employs strict refinment
 - UML suggests a more exploratory style
 - VHDL/SystemC ideas need to be incorporated earlier into the process
 - Purely syntactic mappings from B to VHDL/System C produce large pieces of hardware...

MDA Mappings are still informal

- Tool support for MDA is still poor
 - despite what the tool vendors say...

Conclusions

MDA's Future

- MDA will become the framework in which software is developed
- MDA requires much more formal work
 - mappings are still informal and relatively weak (syntactic in nature)
 - use of evolving underlying languages is difficult
 - use of platform independent models and differentiating between what is platform independent and what is platform specific is difficult
 - processes and methodologies are not ready for MDA
- Tool Support
 - does not exist

Integration

DSP

- UML-RT to C mappings
- UML-RT to RMA mappings

PUSSEE

- UML+B
- UML+B to B
- UML+B to VHDL/SystemC
- UML+B to Raven

Combination...

- UML+B to RMA mapping
- UML+B to Raven provides basis for
 - UML to SMV, UML to <<some model checker>>

and finally...

- MDA is to be driven by "real" concerns
- Progress only made through "real" use
 - libraries of mappings
 - meta-models => languages
 - experience
- "Everything" is MDA

