Test und Verlässlichkeit Grosse Übung zu Foliensatz 5: Überwachung, Fehlerbehandlung und Fehlertoleranz

Prof. G. Kemnitz

1. Juli 2020

Contents

2	Informationsredundanz	1
	2.1 Fehlererk. Codes	
	2.3 Prüfkennzeichen	
	2.5 Hamming-Codes	4
3	Formatüberwachung	5
	3.3 Invarianten, WB	5
	3.4 Syntax	5
4	Überwachung auf Richtigkeit	7
5	Fehlertoleranz	9
	5.1 Fehlerbehandlung	9
	5.2 Redundanz	10
	5.4 RAID und Backup	11

2 Informations redundanz

2.1 Fehlererk, Codes

Aufgabe 5.1: Arithmetischer Code

a) Bilden Sie für den Bitvektor

 $x = 110010001000011101_2$

das fehlererkennende Codewort durch Multiplikation seines Wertes als vorzeichenfreie ganze Binärzahl mit der Primzahl c=10313 (Bestimmung des Dezimalwerts, Multiplikation und Konvertierung des Produkts in einen Binärvektor).

- b) Mit welcher Wahrscheinlichkeit werden mit dem gewählten fehlererkennenden Code Datenverfälschungen des codierten Bitvektors $s = c \cdot x$ erkannt?
- c) Werden mit dem gewählten Code Verfälschung von s erkannt, die die Bitstellen 3 und 14 invertieren? Hinweis: Eine Verfälschung von s ist am Divisionsrest zu erkennen, wenn die Abweichung zum Sollwert $\Delta s = s s_{\rm soll}$ kein Vielefachses des Multiplikators c ist.

Eingabewert hexadezimal: 11.0010.0010.0001.1101 = 0x3221D

 \bullet Mit Octave (Matlab) Produkt als hexadezimal:

>> printf('CW=0x%x\n',0x3221D*10313) CW=0x7e394245 b) Erkennungswahrscheinlichkeit:

$$p_{\rm E} \approx 1 - \frac{1}{10313} = 99,990\%$$

c) Keine Maskierung, wenn Bit 3 und 14 invertiert ist:

$$\mathrm{Rest}(\frac{0\mathrm{b}100.0000.0000.1000}{10313}) \neq 0 \surd$$

Für Differenzen ungleich null, die kleiner als der Quotient sind, immer erfüllt.

2.3 Prüfkennzeichen

Aufgabe 5.2: Prüfsummen

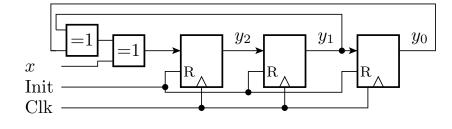
Bilden Sie für die Bytefolge

die Prüfsumme:

- a) durch byteweises Aufsummieren unter Vernachlässigung der Überträge.
- b) durch bitweise EXOR-Verknüpfung der Bytes.
- c) Welche der beiden Prüfsummen erkennt, dass die nachfolgenden Datenfolgen verfälscht sind?
- c) Welche der be

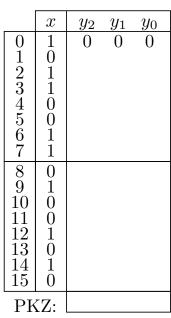
F1: 0x13, 0x33, 0xF2, 0xE6 F2: 0x13, 0xF2, 0x37, 0xE6 F3: 0x13, 0xF1, 0x90, 0x56

Wert unverf.	(Teil-) Prüfsum.	binär
0x13		
0xF2		
0x33		
0xE6		
	EXOR:	


Wert	(Teil-) Prüfsum.	binär
0x13	0x13	0001 0011
0xF2	0x05	1111 0010
0x33	0x38	0011 0011
0xE6	0x1E	1110 0110
	EXOR:	0011 0100

Wert unverf.	(Teil-) Prüfsum.	binär	Wert F1	(Teil-) Prüfsum.	binär
0x13			0x13		
0xF2			0x33		
0x33			0xF2		
0xE6			0xE6		
	EXOR:			EXOR:	
Wert F2	(Teil-) Prüfsum.	binär	Wert F3	(Teil-) Prüfsum.	binär
0x13			0x13		
0xF2			0xF1		
0x37			0x90		
0xE6			0x56		

Wert	(Teil-) Prüfsum.	binär	Wert	(Teil-) Prüfsum.	binär
0x13	0x13	0001 0011	0x13	0x13	0001 0011
0xF2	0x05	1111 0010	0x33	0x46	0011 0011
0x33	0x38	0011 0011	0xF2	0x38	1111 0010
0xE6	0x1E	1110 0110	0xE6	0x1E	1110 0110
	EXOR:	0011 0100		EXOR:	0011 0100
	(Teil-) binär Prüfsum.				
Wert	(Teil-) Prüfsum.	binär	Wert	(Teil-) Prüfsum.	binär
Wert 0x13	(Teil-) Prüfsum. 0x13	binär 0001 0011	Wert 0x13	(Teil-) Prüfsum. 0x13	binär 0001 0011
	Prüfsum.			Prüfsum.	
0x13	Prüfsúm. 0x13	0001 0011	0x13	Prüfsum. 0x13	0001 0011
0x13 0xF2	Prüfsum. 0x13 0x05	0001 0011 1111 0010	0x13 0xF1	Prüfsum. 0x13 0x04	0001 0011 1111 0001


Aufgabe 5.3: Prüfkennzeichen mit LFSR

Gegeben ist folgendes linear rückgekoppelte Schieberegister:

- a) Auf welches Prüfkennzeichen $\mathbf{y}=y_2y_1y_0$ wird die Datenfolge 1011 0011 0100 1010 beginnend mit dem linken Bit und Startwert 000 abgebildet? Füllen Sie dazu die Tabelle in der Abbildung aus.
- b) Wie hoch ist Fehlererkennungswahrscheinlichkeit?

$$p_{\rm E} \approx 1 - 2^{-3} = 87.5\%$$

 \boldsymbol{x}

Init

Clk

2.5 Hamming-Codes

Aufgabe 5.4: Kreuzparität

Längsparität \neg Längsparität \neg a) Ergänzen Sie Bitwerte für die Längs- und Querparität $10110010011010000 \square$ 10110010011101000 \square 1100001110010011 \square 1100001110010011 \square 1100001110010011 \square 11000100001100101 \square 110100100101101 \square 110100101101011 \square 1101001011110 \square 1101001011110 \square 11010010110101 \square 1101001010101 \square 1101001010011 \square 1101001010011 \square 1101001010011 \square 1101001010011 \square 1101001010011 \square 1101001100011 \square 110100110011 \square 110100110011 \square 110100110011 \square 110100110011 \square 1101001110011 \square 1101001110011 \square 1101001110011 \square 1101001110011 \square 1101001111 \square 110100111 \square 110100111 \square 110100111 \square 11010011 \square 1101001 \square

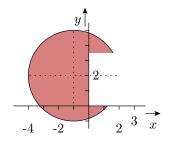
Aufgabe 5.5: (8,12)-Hamming-Code

b_{12}	b_{11}	b_{10}	b_9	b_8	b_7	b_6	b_5	b_4	b_3	b_2	b_1
x_7	x_6	x_5	x_4	q_3	x_3	x_2	x_1	q_2	x_0	q_1	q_0

 $q_0 = x_0 \oplus x_1 \oplus x_3 \oplus x_4 \oplus x_6$ $q_1 = x_0 \oplus x_2 \oplus x_3 \oplus x_5 \oplus x_6$ $q_2 = x_1 \oplus x_2 \oplus x_3 \oplus x_7$ $q_3 = x_4 \oplus x_5 \oplus x_6 \oplus x_7$

- a) Bilden Sie die Codeworte für die darzustellenden Werte: $w_1 = 0x73$, $w_2 = 0x1D$ und $w_3 = 0xD6$?
- b) Bestimmen Sie für die Codeworten $c_4 = 0$ xA24, $c_5 = 0$ x5D6 und $c_6 = 0$ x141, ob zulässig oder korrigierbar und wenn zulässig oder korrigierbar, den Wert?

Bitnummer	12	11	10	9	8	7	6	5	4	3	2	1
Zuordnung	x_7	x_6	x_5	x_4	q_3	x_3	x_2	x_1	q_2	x_0	q_1	q_0
Kontrollbits	_	Ξ	=	_	-	Ξ	=	=	_	=	_	1
$w_1 = 0x73$												
$w_2 = 0$ x1D												
$w_3 = 0 \times D6$												
$c_4 = 0 \text{xA} 24$												
$c_5 = 0 \times 5 D6$												
$c_6 = 0 \times 141$												


													-
Bitnummer	12	11	10	9	8	7	6	5	4	3	2	1	
Zuordnung	x_7	x_6	x_5	x_4	q_3	x_3	x_2	x_1	q_2	x_0	q_1	q_0	
Kontrollbits	_	=	=	_	_	=	=	=	_	=	_	_	
$w_1 = 0x73$	0	1	1	1	1	0	0	1	1	1	1	0	$c_1 = 0x79E$
$w_2 = 0$ x1D	0	0	0	1	1	1	1	0	0	1	1	1	$c_2 = 0$ x1E7
$w_3 = 0 \times D6$	1	1	0	1	1	0	1	1	1	0	0	1	$c_3 = 0$ xDB9
$c_4 = 0 \text{xA} 24$	1	0	1	0	0	0	1	0	0	1	0	0	$dq_4 = 3$
$c_5 = 0 \times 5 D6$	0	1	0	1	1	1	0	1	0	1	1	0	$dq_5 = 9$
$c_6 = 0 \times 141$	0	0	0	1	0	1	0	0	0	0	0	1	$dq_6 = 15$

3 Formatüberwachung

3.3 Invarianten, WB

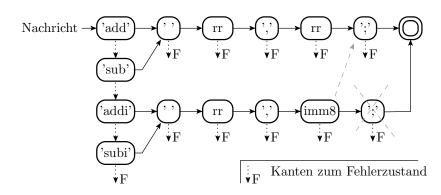
Aufgabe 5.6: Kontrollausdruck

Die Wertpaare (x,y) sollen Punkte der im nachfolgenden Bild eingezeichneten Kreisfläche mit dem Mittelpunkt (-1,2) und dem Radius 3 mit dem ausgeschnittenen rechteckigen Bereich sein.

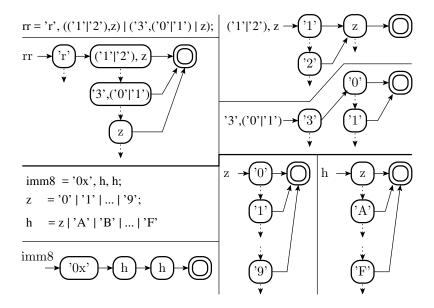
Entwickeln Sie einen Kontrollausdruck für die Wertebereichskontrolle, der genau dann wahr ist, wenn ein Punkt (x, y) im zulässigen Bereich liegt.

$$((x < 0) \lor (y < 0) \lor (y > 3.5)) \land ((x+1)^2 + (y-2)^2 < 3^2)$$

3.4 Syntax

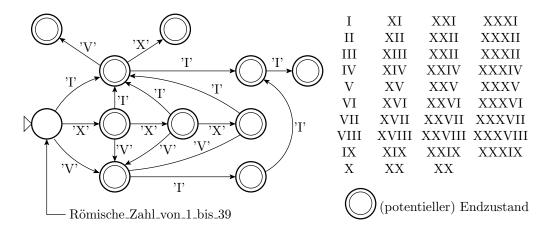

Aufgabe 5.7: Kontrollautomat

Ein (vereinfachter) Rechnerbefehlssatz besteht aus vier verschiedenen Befehlstypen


```
add⊔rr,rr;
addi⊔rr,imm8;
sub⊔rr,rr;
subi⊔rr,imm8;
```

 \sqcup – Leerzeichen; »rr« Bezeichner eines der 32 Register ("r0", "r1", ... "r31"); »imm8« für die Wert einer 8-Bit Hexzahl ("0x00", "0x01", ..., "0xFF"; "0x" gefolgt von zwei Hex.-Ziffern mit den Zifferenwerten '0' bis 'F').

- a) Beschreiben Sie das Befehlsformat in der EBNF mit den Ersetzungsregeln für Sequenz, Option, Wiederholung etc.
- b) Entwerfen Sie einen deterministischen Kontrollautomaten auf Syntaxfehler als Graph für einen Moore-Automaten.


Testautomaten für den Test der Sprachbestandteile:

Aufgabe 5.8: Syntaxtest für römische Zahlen

Entwerfen Sie einen Mealy-Kontrollautomaten¹ für einen Syntaxtest für römische Zahlen mit einem Wert von 1 bis 39.

Wert		Wert		Wert		Wert	
1	I	11	XI	21	XXI	31	XXXI
2	II	12	XII	22	XXII	32	XXXII
3	III	13	XIII	23	XXIII	33	XXXIII
4	IV	14	XIV	24	XXIV	34	XXXIV
5	V	15	XV	25	XXV	35	XXXV
6	VI	16	XVI	26	XXVI	36	XXXVI
7	VII	17	XVII	27	XXVII	37	XXXVII
8	VIII	18	XVIII	28	XXVIII	38	XXXVIII
9	IX	19	XIX	29	XXIX	39	XXXIX
10	X	20	XX	30	XXX		

Bei allen Eingaben, für die keine Kante gezeichnet ist, Übergang in den Fehlerzustand.

¹Ein Mealy-Automat, der die Zeichen an den Kanten abräumt.

4 Überwachung auf Richtigkeit

Aufgabe 5.9: Kontrollausdruck

Scheiben Sie einen Testrahmen, den das nachfolgende fehlerhafte C-Programm für die Wurzelberechnung

```
uint8_t wurzel(uint16_t x){
  uint8_t w=0;
  uint16_t sum=0;
  while (sum<x){sum += (w<<1)+1;
  w++;}
  return w;
}</pre>
```

mit 1000 zufälligen Werten testet. Ergebniskontrolle mit der inversen Funktion und Fenstervergleich

$$y^2 \le x < (y+1)^2$$

Protokollierung aller x und y, die die Ergebniskontrolle nicht bestehen. Nutzen Sie dafür »rand() « aus »std lib.h«.

Zur Kontrolle

```
#include <std_lib.h>
#include <time.h>
#include <stdio.h>
int main(){
uint16_t x, y, xmin, xmax;
srand(time(NULL)); // Init. Pseudozufallsg.*
for (idx=0; idx<1000; idx++){
 x = rand() & OxFF; // Begrenzung auf 8 Bit
                       // Testobjekt
 y = wurzel(x);
                       // inversen Fkt.
 xmin = y*y;
 xmax = (y+1)*(y+1); // zu Kontrolle
 if ((x<xmin)||(x>xmax)){
  printf("x=\%d, y=\%d, y^2=\%d, y^2=\%d, y^3=\%d
      x, y, xmin, xmax);
                                    *time(NULL) liefert Sekunden seit dem 01.01.1970.
```

Aufgabe 5.10: Vergleichsfenster

Zwei zu vergleichende voneinander unabhängige normalverteilte Zufallsgrößen X_1 und X_2 haben denselben Erwartungswert und die Standardabweichungen sd $[X_1] = 3$ und sd $[X_2] = 4$. Wie groß ist für eine Kontrolle

```
if (abs(X1-X2)>eps) {<Fehlerbehandlung>};
```

der Radius ε des Vergleichsfenster mindestens zu wählen, damit die Wahrscheinlichkeit für Vergleichs-Phantom-FF $p_{\text{Phan}} \leq 0.1\%$ ist?

$$\mathbb{E}[X_1 - X_2] =$$

$$\operatorname{sd}[X_1 - X_2] =$$

z	,0	,1	,2	,3	,4	,5	,6	,7	,8	,9
0,	0,5000	0,5398	0,5793	0,6179	0,6554	0,6915	0,7257	0,7580	0,7881	0,8159
	0,8413									
2,	0,9772	0,9821	0,9861	0,9893	0,9918	0,9938	0,9953	0,9965	0,9974	0,9981
3,	0,9987	0,9990	0,9993	0,9995	0,9997	0,9998	0,9998	0,9999	0,9999	1,0000

Differenz der Erwartungswerte:

$$\mathbb{E}\left[X_1 - X_2\right] = 0$$

Die Varianz der Differenzen ist die Summe der Varianzen:

$$\operatorname{sd}[X_1 - X_2] = \sqrt{\operatorname{Var}[X_1] + \operatorname{Var}[X_2]} = \sqrt{3^2 + 4^2} = 5$$

Standadisierter Normalverteilungswert für beiderseitig $\alpha_1 = \alpha_2 = 0.05\%$ ist etwa 3,3.

	1	-	,2		-	-	-	-	-	
			0,5793							
1,	0,8413	0,8643	0,8849	0,9032	0,9192	0,9332	0,9452	0,9554	0,9641	0,9713
2,	0,9772	0,9821	0,9861	0,9893	0,9918	0,9938	0,9953	0,9965	0,9974	0,9981
3,	0,9987	0,9990	0,9993	0,9995	0,9997	0,9998	0,9998	0,9999	0,9999	1,0000

Mindestintervallradius für das Vergleichsfenster:

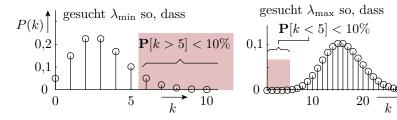
$$\varepsilon \approx 3.3 \cdot 5 = 16.5$$

Aufgabe 5.11: Diversitätsabschätzung

Bei einer Kontrolle durch Verdopplung und Vergleich wurden von #FF = 300 Fehlfunktionen $\#k_{\rm ist} = 5$ nicht erkannt.

- 1. Auf welchen Bereich der zu erwartenden Anzahl der nicht erkannten Fehlfunktionen lässt das Experiment schließen? Zulässige Irrtumswahrscheinlichkeiten, dass im Experiment ein Werte oberhalb oder unterhalb des Bereichs hätte auftreten können, $\alpha_1 = \alpha_2 = 10\%$.
- 2. Auf welchen Bereich der Diversität lässt das Experiment schließen?

Hinweise:


- 1. Zählwert X ist poisson-verteilt.
- 2. Schätzwert der zu erwartenden Diversität nach TV-F1, Abschn. 3.2 Überwachungsverfahren: $\hat{Div} = \frac{\#DFF}{\#FF} = 1 \frac{\#k_{\rm ist}}{\#FF}$

$$\hat{Div} = \frac{\#DFF}{\#FF} = 1 - \frac{\#k_{\text{ist}}}{\#FF}$$

Zur Kontrolle

Von #FF = 300 Fehlfunktionen wurden $x_{\text{ist}} = \#FF_{\text{M}} = 5$ nicht erkannt. Zulässige Irrtumswahrscheinlichkeiten: $\alpha_1 = \alpha_2 = 10\%$.

1. Unter- und Obergrenze des zu erwartenden Zählwerts:

$\alpha_1 = \alpha_2$	$k_{\rm ist} = 4$	$k_{\rm ist} = 5$	$k_{\rm ist} = 6$
2%	[1,53, 9,08]	[2,09, 10,6]	[2,68, 12,0]
10%	[2,43, 6,68]	[3,15, 7,99]	[3,89, 9,28]
20%	[3,09, 5,51]	[3,90, 6,73]	[4,73, 7,91]

2. Unter- und Obergrenze der zu erwartenden Diversität:

$$\begin{split} \mathbb{E} \left[Div \right]_{\min} &= 1 - \frac{\lambda_{\max}}{\#FF} = 1 - \frac{7,99}{300} = 97,3\% \\ \mathbb{E} \left[Div \right]_{\max} &= 1 - \frac{\lambda_{\min}}{\#FF} = 1 - \frac{3,15}{300} = 99,0\% \end{split}$$

5 Fehlertoleranz

5.1 Fehlerbehandlung

Aufgabe 5.12: Beispiele für die Fehlerbehandlung

Nennen Sie Beispiele (Ihnen bekannte Programme und Geräte) die folgende Techniken nutzen:

- 1. Zeitüberwachung mit Service-Abbruch bei Zeitüberschreitung.
- 2. Wiederholungsanforderung nach fehlerhaftem Datenempfang.
- 3. Systemen, bei denen sich Fehlverhalten durch andere Eingabereihenfolgen, Nutzung andere Eingaberenüs etc. umgehen lassen.
- 4. Systeme, die vor dem Ausschalten automatisch ihre Bearbeitungszustand sichern.
- 5. Systeme, die nach einer Fehlfunktion vom letzten gesicherten Zustand starten.
- 6. Versenden von Fehlerinformationen an die Firma, die das System entwickelt hat.

Zur Kontrolle

- 1. Zeitüberwachung mit Abbruch bei Zeitüberschreitung: Lesezugriffe auf Laufwerke. Lesezugriffe auf Daten im Internet. ...
- 2. Wiederholung nach fehlerhaftem Datenempfang: Standardreaktion auf Prüfsummenfehler beim Datenempfang, Buskollisionen CAN-Bus, Ethernet, ...
- 3. Beseitigung des Fehlverhalten durch geänderte Eingabereihenfolge: XFig, Textbearbeitung. Beim Löschen vorwärts Programmabsturz, beim Löschen rückwärts kein Absturz.
- 4. Automatische Sicherung des Bearbeitungszustands beim Ausschalten: Handys, Tablets, ...
- 5. Start vom letzten gesicherten Zustand: Typisch für Textverarbeitungssysteme.
- 6. Versenden von Fehlerberichten: Windows, Linux, ...

Aufgabe 5.13: Fail-Safe/-Fast/-Slow

- 1. Was besagt das Ruhestromprinzip?
- 2. Eine Software sei so programmiert, dass mit einem Compieler-Schalter zwischen Fail-Fast und Fail-Slow umgeschalten werden kann. Wann wird es wie übersetzt und warum?
- 1. Das System wird so aufgebaut, dass bei Ausfall der Kontrollfunktion die Notfallbehandlung eingeleitet wird.
- 2. Fail-Fast für den Test und Probebetrieb, um möglichst viele Probleme zu erkennen und Fehler zu finden. Fail-Slow für den Einsatz, weil so die Zuverlässigkeit höher ist.

Aufgabe 5.14: Fehlerisolation

- 1. Welche Konzepte dienen in modernen Betriebssystemen zur Fehlerisolation zwischen nebenläufig auf Rechner abzuarbeitenden Prozessen?
- 2. Welche Hardware-Funktionen stellen dafür moderne Prozessoren zur Verfügung?
- 1. Fehlerisolationskonzepte:
 - Virtuelle Adressierung, die jedem Prozess nur Zugriff auf eigene Daten erlaubt.
 - Zugriff auf Betriebssystemdienste (Bereitstellung von physikalischem Speicher, Zugriff auf EA-Geräte, ...) über Systemrufe, ...
- 2. Hardware-Funktionen für die Fehlerisolation:
 - Adressrecheneinheit, TLB (Übersetzungs-Cache zwischen virtuellen und physikalischen Adressen, Cache-Controller, ...;
 - Systemrufe: Software-Interrupts, privelegierte Befehle z.B. zur Umprogrammierung der TLBund Cache-Speicher, ...

5.2 Redundanz

Aufgabe 5.15: 3-Versionssystem

Für ein 3-Versionssystem mit den Wahrscheinlichkeiten je SL:

- $p_{\rm FF}=10^{-5}$ zufällige Fehlfunktion in einem Teilsystem
- $p_{\rm CC}=10^{-1}$ wenn die erste SL eine FF ist, sind die beiden anderen dieselbe FF.

wie groß sind unter der Annahme, dass zwei zufällige Verfälschungen praktisch nie übereinstimmen, die Wahrscheinlichkeiten:

- 1. p_{CCF} für drei durch gemeinsame Usache gleiche FF,
- 2. $p_{\mathrm{F}i}$ für i gleichzeitige unabhängige FF,
- 3. $p_{\rm F}$ für mindestens eine FF
- 4. p_{FT} bedingte Wahrscheinlichkeit für Tolerierung (genau eine FF, wenn mindestesens eine FF),
- 5. $p_{\rm E}$, bedingte Wahrscheinlichkeit für Erkennen ohne Tolerierung (mindestens zwei unabhängige FF, wenn mindestesens eine FF).

ZüreKontvellenssystem mit den Wahrscheinlichkeiten je SL:

- $p_{\mathrm{FF}} = 10^{-5}$ zufällige Fehlfunktion in einem Teilsystem
- $p_{\rm CC}=10^{-1}$ wenn die erste SL eine FF ist, sind die beiden anderen dieselbe FF.
- 1. identische (Common Cause) FF:

$$p_{\text{CCF}} = p_{\text{FF}} \cdot p_{\text{FA}} = 10^{-5} \cdot 10^{-1} = 10^{-6}$$

2. i unabhängige Fehlerfunktion. Die bedingte Wahrscheinlichkeit für nicht-Common-Cause-FF gehorcht dem Versuchsschema der Binomialverteilung:

$$p_{\mathrm{F}i} = (1 - p_{\mathrm{CCF}}) \cdot \binom{3}{i} \cdot p_{\mathrm{FF}}^{i} \cdot (1 - p_{\mathrm{FF}})^{3-i}$$

i	0	1	2	3
$p_{\mathrm{F}i}$	$1 - 3.1 \cdot 10^{-5}$	$3 \cdot 10^{-6}$	$3 \cdot 10^{-10}$	10^{-15}

3. mindestens eine FF:

$$p_{\rm F} = p_{\rm CCF} + \sum_{i=1}^{3} p_{\rm F}{}_i = 4 \cdot 10^{-6}$$

4. bedingte Wahrscheinlichkeit für Tolerierung:

$$p_{\rm FT} = \frac{p_{\rm F1}}{p_{\rm F}} = 0.75$$

5. bedingte Wahrscheinlichkeit Erkennen ohne Tolerierung:

$$p_{\rm F2} = p_{\rm FT} = \frac{p_{\rm F2} + p_{\rm F2}}{p_{\rm F}} = 3 \cdot 10^{-4}$$

5.4 RAID und Backup

Aufgabe 5.16: Zuverlässigkeiterhöhung durch Redundanz

Gegeben ist ein IT-System aus Rechner, Festplatte, Stromversorgung etc. mit folgenen Teilzuverlässigkeiten:

Teilsystem	Rechner	Fest-	Stromver-	sonstiges
		platte	$\operatorname{sorgung}$	
Teilzuverlässigkeit	$Z_{ m R}$	$Z_{ m FP}$	$Z_{ m SV}$	Z_*
Wert in SL/FF	1000	500	700	2000

1. Welche Gesamtzuverlässigkeit hat das System?

Teilzuverlässigkeit	$Z_{ m R}$	Z_{FP}	$Z_{ m SV}$	Z_*
Wert in SL/FF	1000	500	700	2000

2. Gesamtzuverlässigkeit, wenn die Festplatte durch ein RAID aus zwei Platten vom bisherigen Typ ersetzt wird, und das RAID nur eine Fehlfunktion weitergibt, wenn beide Platten zeitgleich eine Fehlfunktion haben?

$$Z_{\text{ges}} = \frac{1}{\frac{1}{1000} + \frac{1}{500} + \frac{1}{700} + \frac{1}{2000}} = 203 \frac{\text{SL}}{\text{FF}}$$

Das RAID versagt, wenn beide Platten (gleichzeitig) versagen:

$$\frac{1}{Z_{\text{RAID}}} = 1 - p_{\text{Z.RAID}} = (1 - p_{\text{Z.FP}})^2 = \frac{1}{Z_{\text{FP}}^2}$$

$$Z_{\text{RAID}} = 500^2 \frac{\text{SL}}{\text{NTFF}}$$

(NTFF – nicht tolerierte FF). Gesamtzuverlässigkeit:

$$Z_{\text{ges}} = \frac{1}{\frac{1}{1000} + \frac{1}{500^2} + \frac{1}{700} + \frac{1}{2000}} = 341 \frac{\text{SL}}{\text{FF}}$$

Erhöhung um etwa 40 SL/FF.