Technische Universität Clausthal Institut für Informatik Prof. G. Kemnitz 14. Mai 2018

Test und Verlässlichkeit: Aufgabenblatt 3

Hinweise: Schreiben Sie die Lösungen, so weit es möglich ist, auf die Aufgabenblätter. Tragen Sie Namen, Matrikelnummer und Studiengang in die nachfolgende Tabelle ein und schreiben Sie auf jedes zusätzlich abgegebene Blatt ihre Matrikelnummer.

Name	Matrikelnummer	Studiengang	Punkte von 15

Aufgabe 3.1: Herr M. möchte um Mitternacht in seinem Büro einen Bericht lesen. Er muss dazu in sein Büro, braucht Licht und eine Brille. Ereignisse (B_i Basisereignisse; N_i nicht untersuchte Ereignisse; F_i Fehlerereignisse):

- B_1 Tür klemmt, $p_{B1} = 0.1\%$
- B_2 Deckenlampe defekt, $p_{\rm B1} = 0,2\%$
- B_3 Tischlampe defekt, $p_{\rm B1} = 0, 2\%$
- B_4 Lesebrille defekt, $p_{B1} = 0,3\%$
- B_5 Ersatzbrille defekt, $p_{\rm B1}=0,5\%$
- $\bullet~N_1$ Schlüssel vergessen, $p_{\rm N1}$ unbekannt
- $\bullet~N_2$ Lesebrille vergessen, $p_{\rm N2}$ unbekannt
- N_3 Ersatzbrille im Schreibtisch eingeschlossen, $p_{\rm N3}$ unbekannt
- $\bullet \ F_1$ kein Zutritt zum Büro
- \bullet F_2 Büro unbeleuchtet
- F₃ Keine Brille
- F_4 Bericht ungelesen
- a) Stellen Sie den Fehlerbaum auf.

- 2P
- b) Schätzen Sie die Wahrscheinlichkeiten der Fehlerereignisse F_1 bis F_4 unter der Annahme, dass die Wahrscheinlichkeiten der unberücksichtigten Ereignisse nicht größere als 1% sind. 2P

Aufgabe 3.2: Bei der Übertragung von vier möglichen Zeichen A, B, C und D betrage die Wahrscheinlichkeit, das ein Zeichen in eines der drei anderen verfälscht wird, je $p_F = 5\%$. Die Wahrscheinlichkeit, dass es unverfälscht übertragen wird, ist $p_U = 1 - 3 \cdot p_F = 85\%$:

a) Stellen Sie den Zusammenhang als Markov-Kette dar.

2P

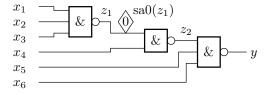
b) Beschreiben Sie die Markov-Kette durch ein lineares Gleichungssystem.

1P

c) Bestimmen Sie die Wahrscheinlichkeiten p_A bis p_D , dass ein » A « nach einer und nach fünf Übertragungen immer noch ein » A « bzw. ein anderes Zeichen ist¹. 2P

Schritt	p_{A}	p_{B}	$p_{\rm C}$	p_{D}
0	1	0	0	0
1				
5				

Aufgabe 3.3: Bestimmen Sie zwischen der exakt berechneten Nachweiswahrscheinlichkeit $p_i(n)$ und der im Weiteren verwendete Annäherung $p_{i.exp}(n)$ durch eine Exponentialfunktion die relative Abweichung für die Testsatzlänge $n = \frac{1}{p_i}$ und die Nachweiswahrscheinlichkeiten in der nachfolgenden Tabelle:


p_i	50%	25%	10%	1%
$p_i\left(n\right) = 1 - \left(1 - p_i\right)^n$				
$p_{i.\exp}(n) = 1 - e^{-n \cdot p_i}$				
relat. Abweichung $\frac{p_{i.\exp}(n) - p_i(n)}{p_i(n)}$				

Aufgabe 3.4: Berechnen Sie für den in der nachfolgenden Abbildung eingezeichneten Haftfehler $sa0(z_1)^2$ die Nachweiswahrscheinlichkeit

a) für gleichwahrscheinliche Eingaben und

2P

b) mit einer bitweisen Eingabewichtung von $g(x_i) = 60\%$ (Wichtung: Auftrittshäufigkeit des Bitwerts eins).

 $^{^1}$ Berechnung z.B. mit Matlab für die Schaltschritte 1 bis 5. Abgabe nur der Werte für den 1. und 5. Schritt in tabellarischer Form.

²Der Fehler bewirkt, dass z_1 immer null ist.