

Test und Verlässlichkeit Grosse Übung zu Foliensatz 2 Prof. G. Kemnitz

Institut für Informatik, TU Clausthal (TV GUeF2) 1. Juni 2017

Inhalt: Große Übungen zu Foliensatz 2

Zufallstest

- 1.1 Nachweiswahrscheinlichkeit
- 1.2 Anzahl der Fehler und FF
- 1.3 Steuer- und Beobachtbarkeit
- 1.4 Operationsprofil und Wichtung

Verteilungen

- 2.1 Erwartungswert, Varianz
- 2.2 Lineare Transformationen, ...
- 2.3 Verteilung von Zählwerten
- 2.4 Binomialverteilung

- 2.5 Effektive Anzahl der Zählversuche
- 2.6 Poisson-Verteilung
- 2.7 Multimodale Verteilungen
- 2.8 Verteilung der Fehleranzahl Kennwerte schätzen
- 3.1 FHSF-Funktion
- 3.2 Bereichsschätzung
- 3.3 Kleine Zählwerte
- 3.4 E(X) und Eintrittsw.
- 3.5 Seltene Ereignisse
- 3.6 Verteilung unbekannt
- 3.7 Länge von Zufallstests

Zufallstest

Nachweiswahrscheinlichkeit

Aufgabe 2.1: Nachweiswahrscheinlichkeit

Ein System hat im Mittel bei jeder 10^4 -ten Service-Leistung eine Fehlfunktion. 70% der FF werden einem ersten, 20% einem zweiten und die restlichen 10% nicht lokalisierbaren Fehler zugeordnet.

- \blacksquare Welche Nachweiswahrscheinlichkeiten p_1 und p_2 haben die beiden zugeordneten Fehler?
- Wie lang muss ein Zufallstest mindestens sein, damit der schlechter nachweisbare zugeordnete Fehler mindestens mit einer Wahrscheinlichkeit von 99% nachgewiesen wird?
- Welche Zuverlässigkeit ist für das System zu erwarten, wenn die beiden zugeordneten Fehler beseitigt sind?

Nachweiswahrscheinlichkeiten der beiden zugeordneten Fehler:

$$p_1 = 0.7 \cdot 10^{-4}; \quad p_2 = 0.2 \cdot 10^{-4}$$

Testsatzlänge für den Nachweis von Fehler 2:

$$99\% \ge p_2(n) = 1 - e^{-n \cdot p_2}$$

$$n \ge -\frac{\ln(1 - 99\%)}{p_2} = 2.3 \cdot 10^5$$

Nach Beseitigung der zugeordneten Fehler ist eine Verringerung der Häufigkeit der FF auf 10% und damit eine Verzehnfachung der Zuverlässigkeit zu erwarten:

$$Z = 10^5 \, \frac{\mathrm{SL}}{\mathrm{FF}}$$

Aufgabe 2.2: Fehlerbezogene Zuverlässigkeit

Ein System habe zwei Fehler mit den Nachweiswahrscheinlichkeiten $p_1=3\cdot 10^{-3}$ und $p_2=2\cdot 10^{-3}$ je Service-Leistung.

- Wie groß ist die fehlerbezogene Zuverlässigkeit¹?
- 2 Mit welcher Wahrscheinlichkeit weist ein Zufallstest der Länge n=1000 jeden der beiden Fehler nach?
- Mit welcher Wahrscheinlichkeit ist mit 1000 Service-Leistungen nachweisbar, dass das System fehlerhaft ist?

¹Mittlere Anzahl der Service-Leistungen zwischen zwei durch Fehler verursachte Fehlfunktionen.

- Fehlerbezogene Zuverlässigkeit:
 - Wahrscheinlichkeit einer durch Fehler verursache FF/SL:

$$p_{\text{FFF}} = 1 - (1 - p_1) \cdot (1 - p_2) \approx p_1 + p_2 = 5 \cdot 10^{-3}$$

Zuverlässigkeit:

$$Z = \frac{1}{p_{\rm FFF}} = 200 \, \frac{\rm SL}{\rm FF}$$

- Nachweiswahrscheinlichkeit mit einem Zufallstest der Länge n=1000:
 - Fehler 1: $p_1(1000) = 1 e^{-1000 \cdot 3 \cdot 10^{-3}} = 1 e^{-3} = 95,02\%$
 - Fehler 2: p_2 (1000) = $1 e^{-1000 \cdot 2 \cdot 10^{-3}} = 1 e^{-2} = 86,47\%$
- System fehlerhaft « ist nachweisbar, wenn mindestens ein Fehler nachweisbar ist:

$$p_{1\vee 2}(1000) = 1 - e^{-1000 \cdot (p_1 + p_2)} = 1 - e^{-5} = 99.3\%$$

Anzahl der Fehler und FF

Aufgabe 2.3: Anzahl der Fehler und FF

Für einen bestimmten Systemtyp gelte als Richtwert, dass die zehnfache Länge eines Zufallstests die Anzahl der nicht nachweisbaren Fehler auf ein Drittel verringert.

- \blacksquare Auf welchen Exponenten k einer FHSF-Potenzfunktion lässt das schließen?
- 2 Auf welchen Anteil verringert sich, wenn alle nachweisbaren Fehler beseitigt werden, die Wahrscheinlichkeit einer durch Fehler verursachten FF durch Verzehnfachung der Testsatzlänge?
- Um welchen Faktor ist die Testsatzlänge zu erhöhen, um die Zuverlässigkeit um den Faktor 1000 zu erhöhen?

■ Exponent der der FHSF-Potenzfunktion:

$$\frac{E(\varphi(n_0))}{E(\varphi(n))} = 3 = \left(\frac{n}{n_0}\right)^k = 10^k; \quad k = \frac{\ln(3)}{\ln(10)} = 0,477$$

Verringerung der Wahrscheinlichkeit einer durch Fehler verursachten FF bei 10-facher Testsatzlänge:

$$\frac{\left(p_{\text{FFF}}\left(10\cdot n_{0}\right)\right)}{p_{\text{FFF}}\left(n_{0}\right)} = \left(\frac{n_{0}}{10\cdot n_{0}}\right)^{k+1} = 10^{-1,477} = 0,0333$$

3 Testsatzverlängerung für die 1000-fache Zuverlässigkeit:

$$\frac{Z_{\rm F}(n)}{Z_{\rm F}(n_0)} \frac{(p_{\rm FFF}(n_0))}{p_{\rm FFF}(n)} = 1000 = \left(\frac{n}{n_0}\right)^{k+1}$$

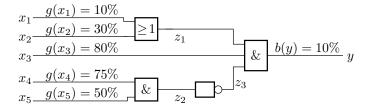
$$\frac{n}{n_0} = 1000^{\frac{1}{1,477}} = 107$$

Die 1000-fache Zuverlässigkeit verlangt etwa den 100-fachen

1. Zufallstest

Steuer- und Beobachtbarkeit

Aufgabe 2.4: Wichtung und Beobachtbarkeit



- **I** Bestimmen Sie die Wichtungen der Signale z_1 , z_2 , z_3 und y.
- 2 Bestimmen Sie die Beobachtbarkeit des Eingangs x_4 .

$$g\left(z_{1}\right) =$$

$$g\left(z_{2}\right) =$$

$$g(z_3) =$$

$$g(y) =$$

$$x_{1} \frac{g(x_{1}) = 10\%}{g(x_{2}) = 30\%} \ge 1 \frac{g(z_{1}) = 87,4\%}{z_{1}}$$

$$x_{2} \frac{g(x_{3}) = 80\%}{g(x_{3}) = 80\%} \ge 1 \frac{g(z_{1}) = 87,4\%}{z_{1}}$$

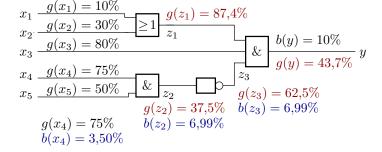
$$x_{3} \frac{g(x_{4}) = 75\%}{g(x_{5}) = 50\%} \ge 1 \frac{z_{3}}{g(z_{3})} = 62,5\%$$

$$y(z_{2}) = 37,5\%$$

$$b(z_3) =$$

$$b(z_2) =$$

$$b(x_4) =$$



1. Zufallstest

Operationsprofil und Wichtung

Aufgabe 2.5: Operationsprofil

Gegeben sind eine Liste von Operationen, je Operation die Wahrscheinlichkeiten einer Fehlfunktion je Service-Leistung und zwei Operationsprofile:

i	Operation	$p_{\mathrm{FF}.i}$	Profil A	Profil B
1	editieren	$5 \cdot 10^{-3}$	35%	48%
2	löschen	$2 \cdot 10^{-4}$	12%	17%
3	browse	$4 \cdot 10^{-2}$	46%	25%
4	drucken	10^{-2}	7%	10%

Wie groß sind für jedes der beiden Operationsprofile

- 1 die Wahrscheinlichkeit einer Fehlfunktion je Service-Leistung,
- die Zuverlässigkeit?

Die Wahrscheinlichkeit einer Fehlfunktion je Service-Leistung ist der gewichtete Mittelwert:

Die Zuverlässigkeiten in Service-Leistungen je Fehlfunktion sind die Kehrwerte davon:

$$Z_{\text{F.A}} = \frac{1}{p_{\text{FFF.A}}} = 47,9$$

 $Z_{\text{F.B}} = \frac{1}{p_{\text{FFF.B}}} = 74,4$

Verteilungen

Erwartungswert, Varianz

Aufgabe 2.6: Erwartungswert und Varianz

Gegeben ist die Verteilung:

mögliche Ergebnisse x_i	0	1	2
Wahrscheinlichkeit p_i	20%	65%	15%

Berechnen Sie:

- den Erwartungswert,
- die Varianz ohne Nutzung des Verschiebungssatzes,
- 3 die Varianz unter Nutzung des Verschiebungssatzes.

mögliche Ergebnisse x_i	0	1	2
Wahrscheinlichkeit p_i	20%	65%	15%

Erwartungswert:

$$E(X) = 0.20\% + 1.65\% + 2.15\% = 0.95$$

Varianz ohne Verschiebungssatz:

$$D^{2}(X) = 20\% \cdot (0 - 0.95)^{2} + 65\% \cdot (1 - 0.95)^{2} + 15\% \cdot (2 - 0.95)^{2}$$
$$= 0.3475$$

3 Varianz unter Nutzung des Verschiebungssatzes:

$$D^{2}(X) = 20\% \cdot 0^{2} + 65\% \cdot 1^{2} + 15\% \cdot 2^{2} - 0.95^{2} = 0.3475$$

Lineare Transformationen, ...

Aufgabe 2.7: Varianz bei lin. Transformation

Kontrollieren Sie die Gleichungen zur linearen Transformation

I für den Erwartungswert:

$$E\left(a\cdot X+b\right) = a\cdot E\left(X\right) + b$$

g für die Varianz:

$$D^2 \left(a \cdot X + b \right) = a^2 \cdot D^2 \left(X \right)$$

Erwartungswert:

$$E(a \cdot X + b) = \sum_{i=1}^{N} p_i \cdot (a \cdot x_i + b)$$

$$= a \cdot \sum_{i=1}^{N} p_i \cdot x_i + \sum_{i=1}^{N} p_i \cdot b \checkmark$$

Varianz:

$$D^{2}(a \cdot X + b) = \sum_{i=1}^{N} p_{i} \cdot (a \cdot x_{i} + b - (a \cdot E(X) + b))^{2}$$

$$= a^{2} \cdot \underbrace{\sum_{i=1}^{N} p_{i} \cdot (x_{i} - E(X))^{2}}_{D^{2}(X)} \checkmark$$

Aufgabe 2.8: Varianz der Summe von Zufallsgrößen

Zeigen Sie, dass die Varianz der Summe zweiter Zufallsgrößen gleich der Summe der Varianzen plus der doppelten Kovarianz ist:

$$D^{2}(X + Y) = D^{2}(X) + D^{2}(Y) + 2 \cdot \text{Cov}(X, Y)$$

mit der Kovarianz:

$$Cov(X,Y) = E((X - E(X)) \cdot (Y - E(Y)))$$

$$= \sum_{i=1}^{N_{x}} \left(\sum_{i=1}^{N_{y}} (p_{i} \cdot p_{j} \cdot (x_{i} - E(X)) \cdot (y_{i} - E(Y))) \right)$$

$$D^{2}(X+Y) = \dots$$

$$= \sum_{i=1}^{N_{x}} \left(\sum_{j=1}^{N_{y}} (p_{i} \cdot p_{j} \cdot (x_{i} - E(X) + y_{i} - E(Y))^{2}) \right)$$

$$= \sum_{i=1}^{N_{x}} \left(\sum_{j=1}^{N_{y}} (p_{i} \cdot p_{j} \cdot ((x_{i} - E(X))^{2} + (y_{i} - E(Y))^{2} + 2 \cdot (x_{i} - E(X)) \cdot (y_{i} - E(Y))) \right)$$

$$= \sum_{i=1}^{N_{x}} p_{i} \cdot (x_{i} - E(X))^{2} \cdot \sum_{j=1}^{N_{y}} p_{j} + \sum_{j=1}^{N_{y}} p_{j} \cdot (y_{j} - E(Y))^{2} \cdot \sum_{j=1}^{N_{x}} p_{j}$$

$$+ 2 \cdot \sum_{i=1}^{N_{x}} \left(\sum_{j=1}^{N_{y}} (p_{i} \cdot p_{j} \cdot (x_{i} - E(X)) \cdot (y_{i} - E(Y))) \right)$$

 $E((X-E(X))\cdot(Y-E(Y)))$

Aufgabe 2.9: Summe von Zufallsgrößen

Drei Holzbausteine, die je eine zu erwartende Höhe von 3 cm mit einer Standardabweichung von 1 mm haben, werden zu einem Turm aufgeschichtet. Welchen Erwartungswert und welche Standardabweichung hat die Höhe des Turms? Die Höhen der Bausteine sollen nicht korrelieren (Kovarianz null).

$$E(h_{\rm ges}) =$$

$$\sqrt{D^2(h_{\rm ges})} =$$

Summe der Erwartungswerte:

$$E(H_{\rm ges}) = 3 \cdot 3 \,\mathrm{cm} = 9 \,\mathrm{cm}$$

Summe der Varianzen:

$$D^2(H_{\rm ges}) = 3 \cdot (1 \, \text{mm})^2$$

Standardabweichung der Summe:

$$\sqrt{D^2 \left(H_{\text{ges}} \right)} = \sqrt{3} \, \text{mm}$$

Verteilung von Zählwerten

Aufgabe 2.10: Verteilung der Fehleranzahl

Die Fehler i=1 bis 5 seien mit folgenden Wahrscheinlichkeiten nachweisbar:

Fehler	1	2	3	4	5
p_i	10%	20%	40%	50%	30%

Berechnen Sie die Verteilung der Anzahl der nachweisbaren Fehler durch Ausfüllen der nachfolgende Tabelle:

Fehleranzahl	0	1	2	3	4	5
Fehler 1	90%	10%				
Fehler 1 und 2			2%			
Fehler 1 bis 3				0,8%		
Fehler 1 bis 4						
Fehler 1 bis 5						

Berechnungsprogramm und Ausgaben

```
p = [0.10 \ 0.20 \ 0.40 \ 0.50 \ 0.30];
P(1,1)=1-p(1);
P(1,2) = p(1);
for i = 2.5
  P(i,1)=P(i-1,1) * (1-p(i));
  P(i,i+1)=P(i-1,i)*p(i);
  for i=2:i
    P(i,j) = P(i-1,j)*(1-p(i)) + P(i-1,j-1)*p(i);
  end:
end:
P =
  0.90000
           0.10000
                    0.00000
                             0.00000
                                      0.00000
                                               0.00000
  0.72000
           0.26000
                    0.02000
                             0.00000
                                      0.00000
                                               0.00000
  0.43200 0.44400
                                      0.00000
                    0.11600
                             0.00800
                                              0.00000
  0.21600 0.43800
                    0.28000
                             0.06200
                                      0.00400
                                               0.00000
  0.15120 0.37140
                    0.32740
                             0.12740
                                      0.02140
                                               0.00120
```


Nachweiswahrscheinlichkeiten:

Fehler	1	2	3	4	5
p_i	10%	20%	40%	50%	30%

Verteilung der Anzahl der nachweisbaren Fehler:

Fehleranzahl	0	1	2	3	4	5
Fehler 1	90%	10%				
Fehler 1 und 2	72%	26%	2%			
Fehler 1 bis 3	43,2%	44,4%	11,6%	0,8%		
Fehler 1 bis 4	21,6%	43,8	28%	6,2%	0,4%	
Fehler 1 bis 5	15,12%	37,14%	32,74%	12,74%	2,14%	0,12%

Binomialverteilung

2. Verteilungen

Aufgabe 2.11: Gleicher E(X) wie Zählverteilung

Berechnen Sie die Binomialverteilung für die Anzahl der nachweisbaren Fehler zur Aufgabe zuvor

- mit derselben Anzahl möglicher Zählwerte,
- demselben Erwartungswert und
- als Eintrittswahrscheinlichkeit dem Mittelwert der Nachweiswahrscheinlichkeiten:

Fehler	1	2	3	4	5
p_i	10%	20%	40%	50%	30%

Mittlere Nachweiswahrscheinlichkeit: p =

k	0	1	2	3
P(X=k)	$(1-p)^5$	$5 \cdot p \cdot (1-p)^4$		

Nachweiswahrscheinlichkeiten aus der Aufgabe zuvor:

Fehler	1	2	3	4	5
p_i	10%	20%	40%	50%	30%

- lacksquare Anzahl der möglichen Zählwerte: N=5
- lacksquare mittlere Nachweiswahrscheinlichkeit: p=30%
- Verteilung:

k	0	1	2	3	4	5
$P\left(X=k\right)$	16,81%	36,02%	30,87%	13,23%	2,84%	0,24%

■ Zählverteilung aus der Aufgabe zuvor zum Vergleich:

P(X=k)	15,12%	37,14%	32,74%	12,74%	2,14%	0,12%

Effektive Anzahl der Zählversuche

Aufgabe 2.12: Effektive Anzahl der Zählversuche

Beim mehrfachen Zählen von Schadensereignissen bei 30 Versuchen ergab sich für die Zählwerte ein Erwartungswert von 9,75 und eine Standardabweichung von 4,42. Gesucht seien:

- I Schadenseintrittswahrscheinlichkeit p?
- 2 Varianzerhöhung κ ?
- Effektive Versuchsanzahl?
- 4 die skalierte kumulative Binomialverteilung mit demselben Erwartungswert und annähernd derselben Varianz.

- f I Schadenseintrittswahrscheinlichkeit: p=32.5%
- Varianzerhöhung:

2. Verteilungen

$$\kappa \ge \frac{D_{\rm S}^2(X)}{E_{\rm S}(X) \cdot \left(1 - \frac{E_{\rm S}(X)}{N}\right)} = \frac{4.42^2}{9.75 \cdot (1 - 325\%)} = 2.97 \approx 3$$

effektive Versuchsanzahl: $N_{\rm eff} = \frac{N}{\kappa} = \frac{30}{3} = 10$. Kontrolle: $E(X) = \kappa \cdot N_{\rm eff} \cdot p = 9.75$;

$$D^{2}(X) = \kappa^{2} \cdot N_{\text{eff}} \cdot p \cdot (1-p) = 19.7; \sqrt{D^{2}(X)} = 4.44$$

Skaliert kumulative Binomialverteilung mit demselben Erwartungswert und fast derselben Varianz:

$$P(X \le \kappa \cdot k) = \sum_{j=0}^{k} {10 \choose j} \cdot 32,5\%^{j} \cdot 67,5\%^{10-j}$$

$\kappa \cdot k$	0	3	6	9	12	15	18	21	≥24
$P(X \leq \kappa \cdot k)$	2,0%	11,4%	31,9%	58,2%	80,8%	93,2%	98,3%	99,7%	100%

Aufgabe 2.13: Effektive Fehleranzahl

Für eine Modellfehlermenge von 1000 Fehlern wurden für 10 verschiedene Zufallstestsätze derselben Länge die Anzahl der nicht nachweisbaren Fehler bestimmt:

$Versuch\ i$	1	2	3	4	5	6	7	8	9	10
Ergebnis $arphi_{\mathrm{NErk}.i}$	58	49	40	54	67	35	34	57	47	66

- I Schätzen Sie den Erwartungswert und die Standardabweichung der Anzahl der nicht nachweisbaren Fehler.
- Wie groß ist die effektive Modellfehleranzahl?

ì	ì	ß	Š
	_	_	

Versuch i	1	2	3	4	5	6	7	8	9	10
Ergebnis $arphi_{\mathrm{NErk}.i}$	58	49	40	54	67	35	34	57	47	66

- Erwartungswertder Datenstichprobe: $E_{\rm S}\left(X\right) =$
- Varianz der Datenstichprobe: $D_{S}^{2}\left(X\right) =$
- Varianzvergrößerung: $\kappa =$
- Effektive Modellfehleranzahl: $N_{\rm eff} =$

2. Verteilungen 5. Effektive Anzahl der Zählversuche

Zur Kontrolle

Versuch i	1	2	3	4	5	6	7	8	9	10
Ergebnis $arphi_{\mathrm{NErk}.i}$	58	49	40	54	67	35	34	57	47	66

- Erwartungswertder Datenstichprobe: $E_{\rm S}\left(X\right)=50.7$
- Varianz der Datenstichprobe: $D_S^2(X) = 140{,}01$
- Varianzvergrößerung:

$$\kappa = \frac{D_{\rm S}^2(X)}{E_{\rm S}(X) \cdot \left(1 - \frac{E_{\rm S}(X)}{N}\right)} = \frac{14001}{50.7 \cdot \left(1 - \frac{50.7}{1.000}\right)} = 2.91$$

• Effektive Modellfehleranzahl: $N_{
m eff}=rac{N}{\kappa}=344$

Poisson-Verteilung

Aufgabe 2.14: Poissonverteilung

Die Auftrittswahrscheinlichkeit einer Fehlfunktion je Service-Leistung sei $p_{\rm FF}=10^{-5}$. Wie wahrscheinlich ist es, dass bei 10^4 Service-Leistungen 0, 1, 2 oder mehr als zwei Fehlfunktionen auftreten?

Erwartungswert:
$$E\left(X\right) = \frac{FF}{10000\,SL}$$

keine FF:
$$P(k=0) =$$

eine FF:
$$P(k = 1) =$$

zwei FF:
$$P(k=2) =$$

mehr als zwei FF:
$$P(k > 2) =$$

- Erwartungswert: $E\left(X\right) = p_{\mathrm{FF}} \cdot 10^4 = 0.1 \, \frac{FF}{1000 \, SL}$
- keine FF: $P(k=0) = e^{-E(X)} = 90,48\%$
- \blacksquare eine FF: $P\left(k=1\right)=e^{-E\left(X\right)}\cdot E\left(X\right)=9{,}05\%$
- **v** zwei FF: $P(k=2) = e^{-E(X)} \cdot \frac{E(X)^2}{2} = 0.45\%$
- mehr als zwei FF:

$$P(k > 2) = 1 - 90,48\% - 9,05\% - 0,45\% = 0,015\%$$

Multimodale Verteilungen

Aufgabe 2.15: Verteilung der Widerstandswerte

In eine Kiste für $1k\Omega$ -Widerstände wurde

- 500 Widerstände mit normalverteiltem Widerstandswert, Erwartungswert 1,02 k Ω und Standardabweichung 10 Ω und
- $lue{1}$ 300 Widerstände mit normalverteiltem Widerstandswert, Erwartungswert 9,99 k Ω und Standardabweichung 15 Ω gemischt. Welche Verteilung haben die Widerstandswerte bei zufälliger Entnahme aus der Kiste?

Beschreibung mit Hilfe der standardisierten Normalverteilung $\Phi\left(z\right)$.

 $P(X \leq R) =$

$$P\left(X \leq R\right) = \frac{500}{800} \cdot \Phi\left(\frac{R-1,02\,\mathrm{k}\Omega}{10\,\Omega}\right) + \frac{300}{800} \cdot \Phi\left(\frac{R-0,99\,\mathrm{k}\Omega}{15\,\Omega}\right)$$

Verteilung der Fehleranzahl

Aufgabe 2.16: Verteilung der Anzahl nachw. Fehler

Der nachfolgende Matlab-Vektor enthält für 20 Modellfehler die Nachweiswahrscheinlichkeiten je Service-Anforderung :

```
p0 = [0.9 0.8 0.75 0.5 0.4 0.36 0.2 0.15
0.08 0.072 0.04 0.03 0.016
0.007 0.002 0.0018
8E-4 4E-4 2E-5 6E-6]
```

Bestimmen Sie für eine Anzahl von $n=10^4$ Service-Anforderungen

- II die Nachweiswahrscheinlichkeiten aller Fehler,
- 2 den Erwartungswert der Anzahl der nachweisbaren Fehler,
- 3 die Varianz der Anzahl der nachweisbaren Fehler und
- 4 die Verteilung der Anzahl der nachweisbaren Fehler unter der Annahme, dass alle Modellfehler unabhängig voneinander nachweisbar sind.

II Nachweiswahrscheinlichkeiten für n = 1000:

$$p0 = [0.9 \ 0.8 \ 0.75 \ 0.5 \ 0.4 \ 0.36 \ 0.2 \ ...];$$

for $i=1:20 \ p(i) = 1 - exp(-p0(i)*n);$ end;

Fehler	1 bis 13	14	15	16	17	18	19	20
$p_i(n)$	100%	99,9%	86,5%	83,5%	55,1%	33,0%	2,0%	0,6%

- 2 Erwartungswert: 18,6
- 3 Standardabweichung: 0,866
- Verteilung:

k	0 bis 13	14	15	16	17	18	19	20
$P\left(X=k\right)$	0	0,7%	8,68%	34,7%	41,8%	13,8%	0,3%	0

Kennwerte schätzen

FHSF-Funktion

Aufgabe 2.17: FHSF-Potenzfunktion

Gegeben sind die mittlere Anzahl von SL je FF für 24 Modellfehler:

$$x = [10 \ 11 \ 13 \ 15 \ 17 \ 18 \ 21 \ 24 \ 29 \ 31 \ 33 \ 37 \ 40 \dots]$$
 $52 \ 67 \ 70 \ 83 \ 110 \ 185 \ 217 \ 290 \ 420 \ 850 \ 1730 \ 5870];$

II Zählen Sie für die Intervallstaffelung in der nachfolgenden Tabelle mit $x_0=\sqrt{10}$ die Fehler je Intervall.

i	2	3	4	5	6	7
$x \in$	$[x_0^2, x_0^3)$	$[x_0^3, x_3^4)$	$[x_0^4, x_3^5)$	$[x_0^5, x_3^6)$	$[x_0^6, x_3^7)$	$[x_0^7, x_3^8)$
H_i						
k						

Um welchen Faktor verringert sich abschätzungsweise die Anzahl der Modellfehler je Dekade? Auf welchen Exponenten k für eine FHSF-Potenzfunktion lässt das schließen?

Mittlere Anzahl der SL je FF und Fehler ($x_0 = \sqrt{10}$):

 $x = [10 \ 11 \ 13 \ 15 \ 17 \ 18 \ 21 \ 24 \ 29 \ 31 \ 33 \ 37 \ 40 \dots]$ $52 \ 67 \ 70 \ 83 \ 110 \ 185 \ 217 \ 290 \ 420 \ 850 \ 1730 \ 5870];$

i	2	3	4	5	6	7
$x \in$	$[x_0^2, x_0^3)$	$[x_0^3, x_3^4)$	$[x_0^4, x_3^5)$	$[x_0^5, x_3^6)$	$[x_0^6, x_3^7)$	$[x_0^7, x_3^8)$
H_i	10	6	4	2	1	1
H_i/H_{i+1}	1,67	1,5	2	2	1	
k	0,44	0,35	0,60	0,60	0	

Aus dem Histogramm lässt sich ableiten, dass das Testobjekt in grober Näherung eine FHSF-Potenzfunktion mit $k=0,4\dots0,6$ hat.

Aufgabe 2.18: Fortsetzung FHSF-Potenzfunktion

Bestimmung Sie die zu erwartende Anzahl der nicht nachweisbaren Fehler $E\left(\varphi_{\mathrm{Nerk}}\left(n\right)\right)$ für Zufallstestsätze der Länge $n \in (30, 100, 300, 1000, ..., 10.000)$ für die Fehlermenge aus der Aufgabe zuvor mit

$$x = [10 \ 11 \ 13 \ 15 \ 17 \ 18 \ 21 \ 24 \ 29 \ 31 \ 33 \ 37 \ 40 \dots]$$
 $52 \ 67 \ 70 \ 83 \ 110 \ 185 \ 217 \ 290 \ 420 \ 850 \ 1730 \ 5870];$

Suchen Sie für

$$E(\varphi(n)) = E(\varphi(100)) \cdot \left(\frac{100}{n}\right)^{k}$$

mit $E(\varphi(100))$ aus dem Aufgabenteil zuvor ein geeignetes kdurch Probieren, mit dem der Verlauf aus dem Aufgabenteil zuvor gut angenähert wird.

```
x = \begin{bmatrix} 10 & 11 & 13 & 15 & 17 & 18 & 21 & 24 & 29 & 31 & 33 & 37 & 40 & \dots \end{bmatrix}
52 67 70 83 110 185 217 290 420 850 1730 5870];
n = [30 \ 100 \ 300 \ 1E3 \ 3E3 \ 1E4]; k = 0.5;
for i = 1:length(n)
EX p(i) = 0;
 for j=1:length(x)
 EX p(i) = EX p(i) + exp(-n(i)/x(j));
 end:
EX FHSF(i) = 7.14*(n(i)/100)^- - k;
end:
printf('\nTestsatzlaenge_n____:');
for i = 1:length(n); printf('%7d', n(i)); end;
printf('\nE(X)_aus_p_berechnet___:');
for i=1:length(n); printf(', KX p(i)); end;
printf ('\nE(X) mit k=\%2.2f berechnet:', k);
for i=1:length(n); printf(', KX FHSF(i)); end;
printf('\n');
```


	30	100	300	10^{3}	$3 \cdot 10^3$	10^{4}
$\sum_{i=1}^{N_{\mathrm{PF}}} e^{-\frac{n}{x_i}}$				l		
$7,14 \cdot \left(\frac{100}{n}\right)^{0,5}$	13,04	7,14	4,12	2,26	1,30	0,71
$7,14 \cdot \left(\frac{100}{n}\right)^{0,6}$	14,70	7,14	3,69	1,79	0,93	0,45
$7,14 \cdot \left(\frac{100}{n}\right)^{0,7}$	16,58	7,14	3,31	1,42	0,66	0,28

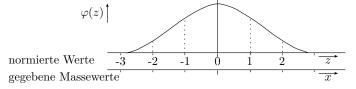
Die beste Approximation ergibt sich mit $k \approx 0.6$.

Bereichsschätzung

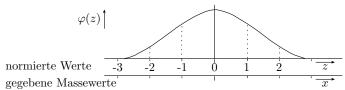
Aufgabe 2.19: Normalverteilung

Eine normalverteilte Zufallsgröße habe den Erwartungswert E(X) = 1 kg und einer Standardabweichung von 10 g.

lacksquare Mit welcher Wahrscheinlichkeit ist $X>1{,}03\,\mathrm{kg}$?

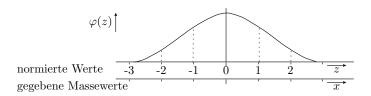


2 Mit welcher Wahrscheinlichkeit gilt $0.98 \,\mathrm{kg} \leq X \leq 1.02 \,\mathrm{kg}$?



Lösung Aufgabenteil 1

$$E\left(X\right)=1\,\mathrm{kg},$$
 Standardabweichung von 10 g. Gesucht $P\left(X>1{,}03\,\mathrm{kg}\right).$



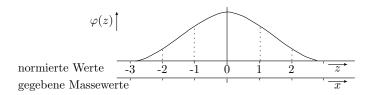
Zurückführung auf die standardisierte Normalverteilung:

$$lacksquare$$
 transformierte Untergrenze: $z_{\min} = rac{x_{\min}}{\sqrt{D^2(X)}} =$

$$lacktriangle$$
 Gesuchte Wahrscheinlichkeit: Φ (

Lösung Aufgabenteil 2

 $E\left(X\right)=1\,\mathrm{kg},$ Standardabweichung von 10 g. Gesucht $P\left(9.98\,\mathrm{kg}\leq X\leq 10.02\,\mathrm{kg}\right).$

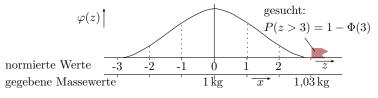


- \blacksquare transformierte Untergrenze: $z_{\min} = \frac{x_{\min-}}{\sqrt{D^2(X)}} =$
- lacktriangledown transformierte Obergrenze: $z_{
 m max}=rac{x_{
 m max-}}{\sqrt{D^2(X)}}=$
- Gesuchte Wahrscheinlichkeit: Φ () $-\Phi$ () =

Eine normalverteilte Zufallsgröße habe den Erwartungswert

$$E(X) = 1 \text{ kg}$$
 und einer Standardabweichung von 10 g.

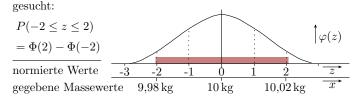
II Mit welcher Wahrscheinlichkeit ist $X > 1.03 \,\mathrm{kg}$?



z	,0	,1	,2	,3	,4	,5	,6	,7	,8	,9
0,	0,5000	0,5398	0,5793	0,6179	0,6554	0,6915	0,7257	0,7580	0,7881	0,8159
1,	0,8413	0,8643	0,8849	0,9032	0,9192	0,9332	0,9452	0,9554	0,9641	0,9713
2,	0,9772	0,9821	0,9861	0,9893	0,9918	0,9938	0,9953	0,9965	0,9974	0,9981
3,	0,9987	0,9990	0,9993	0,9995	0,9997	0,9998	0,9998	0,9999	0,9999	1,0000

• Gesuchte Wahrscheinlichkeit: $1 - \Phi(3) = 0.13\%$

- ... E(X) = 1 kg und einer Standardabweichung von 10 g.
 - 2 Mit welcher Wahrscheinlichkeit gilt $9.98 \,\mathrm{kg} \leq X \leq 10.02 \,\mathrm{kg}$?



	,0									
	0,5000									
1,	0,8413	0,8643	0,8849	0,9032	0,9192	0,9332	0,9452	0,9554	0,9641	0,9713
2,	0,9772	0,9821	0,9861	0,9893	0,9918	0,9938	0,9953	0,9965	0,9974	0,9981
3,	0,9987	0,9990	0,9993	0,9995	0,9997	0,9998	0,9998	0,9999	0,9999	1,0000

■ Gesuchte Wahrscheinlichkeit:

$$\Phi(2) - \Phi(-2) = 2 \cdot \Phi(2) - 1 = 95.44\%$$

Kleine Zählwerte

Aufgabe 2.20: Maskierungsanzahl

Bei der Überwachung von Service-Ergebnissen wird im Mittel eine von tausend Fehlfunktion (FF) nicht erkannt. Wie wahrscheinlich ist es, dass

- von tausend FF keine,
- 2 von tausend FF mehr als eine,
- von 5000 FF weniger als 3 und
- von 5000 FF mehr als 8

Fehlfunktion unerkannt bleiben?

Bei der Überwachung von Service-Ergebnissen wird im Mittel eine von tausend Fehlfunktion nicht erkannt. Wie wahrscheinlich ist es, dass von

- 1. 1000 FF keine,
- 2. tausend FF mehr als eine,
- 3. 5000 FF weniger als 3 und
- 4. von 5000 FF mehr als 8

Berechnung	Lösung
poiscdf(1,0):	36,8%
1-poscdf(1,1):	26,4%
poiscdf(5,2):	12,5%
1-poiscdf(5,8):	6,81%

3. Kleine Zählwerte

Fehlfunktion unerkannt bleiben?

Aufgabe 2.21: Maskierungsanzahl

Die zu erwartende Anzahl der Schadensfälle pro Jahr für ein bestimmtes Risiko betrage 8,3.

- Welche Anzahl von Schadensfällen pro Jahr wird mit einer Irrtumswahrscheinlichkeit $\alpha_1 = 2\%$ nicht unterschritten?
- 2 Welche Anzahl von Schadensfällen pro Jahr wird mit einer Irrtumswahrscheinlichkeit $\alpha_2 = 2\%$ nicht überschritten?

$$E(X) = 8.3, \ \alpha_1 = \alpha_2 = 2\%.$$

- Welche Anzahl von Schadensfällen wird mit einer Irrtumswahrscheinlichkeit $\alpha_1 = 2\%$ nicht unterschritten?
- 2 Welche Anzahl von Schadensfällen wird mit einer Irrtumswahrscheinlichkeit $\alpha_2=2\%$ nicht überschritten?

Lösung:

	Berechnung	Ergebnis		
1	pois_k_min(0.02,8.3)	3		
2	pois_k_max(0.02,8.3)	16		

4. E(X) und Eintrittsw.

 $E\left(X\right)$ und Eintrittsw.

Aufgabe 2.22: Maskierungswahrscheinlichkeit

Bei einer Überwachung wurden von N=1000 Fehlfunktionen $x_{\rm ist}=178$ nicht erkannt. In welchem Bereich liegen der Erwartungswert der Anzahl der Maskierungen und die Maskierungswahrscheinlichkeit p? Zulässige Irrtumswahrscheinlichkeit sei $\alpha=1\%$. Keine Maskierungabhängigkeiten $(\kappa=1)$.

α	4,54%	0,26%	0	4%	2%	1%	0,4%	0,2%
$\Phi^{-1}\left(1-\frac{\alpha}{2}\right)$	2	3	4	2,05	2,33	2,57	2,88	3,10

Min. und max. Erwartungswert der Anzahl der Maskierungen:

$$E(X)_{\min/\max} = \mp$$

Bereich der Maskierungswahrscheinlichkeit:

$$p_{\min/\max} =$$

Min. und max. Erwartungswert der Anzahl der Maskierungen:

$$E(X)_{\min/\max} = x_{ist} \mp \sqrt{\kappa \cdot x_{ist} \cdot \left(1 - \frac{x_{ist}}{N}\right)} \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$$
$$= 178 \mp \sqrt{178 \cdot \left(1 - \frac{178}{1000}\right)} \cdot \Phi^{-1} \left(1 - \frac{1\%}{2}\right)$$

α	4,54%	0,26%	0	4%	2%	1%	0,4%	0,2%
$\Phi^{-1}\left(1-\frac{\alpha}{2}\right)$	2	3	4	2,05	2,33	2,57	2,88	3,10

$$E(X)_{\min/\max} = [147, 209]$$

Bereich der Maskierungswahrscheinlichkeit:

$$p_{\min/\max} = [14,7\%, 20,9\%]$$

Aufgabe 2.23: Wahrscheinlichkeit einer FF

Zur Abschätzung der Wahrscheinlichkeit p für ein Service-Versagen wurden für $N=10^6$ Service-Anforderungen $x_{\rm ist}=430$ FF gezählt.

- I Wie groß ist der Schätzwert $p_{\rm S}$ der Wahrscheinlichkeit einer FF?
- 2 Wie groß ist die Irrtumswahrscheinlichkeit α , dass p außerhalb eines Intervalls $p_{\rm S} \cdot (1 \pm 10\%)$ liegt?
- Mit wie vielen Service-Anforderungen ist die Überprüfung fortzusetzen, um die Irrtumswahrscheinlichkeit auf $\alpha \leq 1\%$ abzusenken?

Lösung Aufgabenteil 1 und 2

3. Kennwerte schätzen

Der Schätzwert der Eintrittswahrscheinlichkeit ist

$$p_{\rm S} = \frac{x_{\rm ist}}{N} = \frac{430}{10^6}$$

2 Wie groß ist die Irrtumswahrscheinlichkeit α , dass p außerhalb eines Intervalls $p_{\rm S} \cdot (1 \pm 10\%)$ liegt?

Auflösung der Gleichung

$$x_{\text{ist. min}} = \frac{1}{\frac{1}{N} + \frac{\varepsilon_{\text{rel.}}^2}{\left(\phi^{-1}(1-\alpha)\right)^2}}$$

nach α :

$$\alpha = 2 \cdot \left(1 - \Phi \left(\varepsilon_{\text{rel}} \cdot \sqrt{\frac{1}{\kappa \cdot \left(\frac{1}{x_{\text{ist}}} - \frac{1}{N} \right)}} \right) \right)$$

Mit $x_{\rm ist} = 430$; $\varepsilon_{\rm rel} = 10\%$; $\kappa = 1$ (keine Abhängigkeiten gegeben) und $N = 10^6$:

$$\alpha = 2 \cdot \left(1 - \Phi\left(0.1 \cdot \sqrt{\frac{1}{1 \cdot \left(\frac{1}{430} - \frac{1}{10^6}\right)}}\right)\right) = 2 \cdot (1 - \Phi(2.07))$$

									,8	
0,	0,5000	0,5398	0,5793	0,6179	0,6554	0,6915	0,7257	0,7580	0,7881	0,8159
1,	0,8413	0,8643	0,8849	0,9032	0,9192	0,9332	0,9452	0,9554	0,9641	0,9713
2,	0,9772	0,9821	0,9861	0,9893	0,9918	0,9938	0,9953	0,9965	0,9974	0,9981
									0,9999	

$$\alpha = 2 \cdot (1 - \Phi(2,07)) = 3,58\%$$

Mit wie vielen Service-Anforderungen ist die Überprüfung fortzusetzen, um die Irrtumswahrscheinlichkeit auf $\alpha \leq 1\%$ abzusenken?

fortzusetzen, um die Irrtumswahrscheinlichkeit auf $\alpha \leq 1\%$ abzusenken?

Fortsetzung bis zum Zählwert:

$$x_{\mathrm{ist}} = \frac{1}{\left[\frac{1}{N} + \right] \frac{\varepsilon_{\mathrm{rel}}^2}{\left[\kappa \cdot \right] \left(\Phi^{-1} \left(1 - \frac{\alpha}{2}\right)\right)^2}} \approx \frac{\left(\Phi^{-1} \left(1 - \frac{\alpha}{2}\right)\right)^2}{\varepsilon_{\mathrm{rel}}^2} = \frac{\left(\Phi^{-1} \left(1 - \frac{1\%}{2}\right)\right)^2}{0.1^2}$$

							i	
α	4,54%	0,26%	0	4%	2%	1%	0,4%	0,2%
$\Phi^{-1}\left(1-\frac{\alpha}{2}\right)$	2	3	4	2,05	2,33	2,57	2,88	3,10

$$x_{\rm ist} \approx \left(\frac{2,75}{0.1}\right)^2 = 756,25$$

Mit der Eintrittswahrscheinlichkeit aus Aufgabenteil 1: ...

$$x_{\rm ist} \approx \left(\frac{2,75}{0,1}\right)^2 = 756,25$$

Mit der Eintrittswahrscheinlichkeit aus Aufgabenteil 1:

$$p_{\rm S} = \frac{x_{\rm ist}}{N} = \frac{430}{10^6}$$

$$N = \frac{756,25}{430} \cdot 10^6 = 1,7587 \cdot 10^6$$

Die Überprüfung ist etwa mit $N-10^6=758.700$ Service-Anforderungen fortzusetzen.

Aufgabe 2.24: Mindestmodellfehleranzahl

Wie groß muss die effektive Modellfehleranzahl mindestens sein und wie viele Fehler davon muss der Test nachweisen, um mit einer Irrtumswahrscheinlichkeit von $\alpha \leq 2\%$ für eine zu erwartende Modellfehlerüberdeckung im Bereich von 98,6% bis 99,4% garantieren zu können?

Annahmen:

lacktriangle Die Anzahl der nicht nachweisbaren Fehler $arphi_{
m NErk}$ sei normalverteilt.

Hinweis:

lacktriangleright » effektive Modellfehleranzahl« impliziert $\kappa=1$ und Varianz gleich der einer Binomialverteilung mit demselben Erwartungswert.

Mindestanzahl der Modellfehler Fehler $\varphi_{\rm M}$, um mit $\alpha \leq 2\%$ für $FC_{\rm M}=98.6\%\dots99.4\%$ garantieren zu können?

Für eine symmetrische Bereichsschätzung von Zählwerten

$$x_{\min/\max} = E(X) \mp \sqrt{\kappa \cdot E(X) \cdot \left(1 - \frac{E(X)}{N}\right) \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)}$$

sind die Zählwerte nicht erkannten Modellfehler; Minimum, Maximum und Erwartungswert proportional zur Modellfehleranzahl $arphi_{\mathrm{M}};\ 1-\frac{E(X)}{N}=E\left(FC\right),\ \kappa=1$ und $\Phi^{-1}\left(1-\frac{\alpha}{2}\right)=2,\!33$:

$$x_{\text{max}} - x_{\text{min}} =$$

$$x_{\min/\max} = E(X) \mp \sqrt{\kappa \cdot E(X) \cdot \left(1 - \frac{E(X)}{N}\right)} \cdot \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)$$

Minimum, Maximum und Erwartungswert proportional zur Modellfehleranzahl: $x_{\min} = \varphi_{\mathrm{M}} \cdot 0.6\%$, $x_{\max} = \varphi_{\mathrm{M}} \cdot 1.4\%$ und $E\left(X\right) = \varphi_{\mathrm{M}} \cdot 1\%$. $1 - \frac{E(X)}{N} = E\left(FC\right) = 99\%$. $\kappa = 1$.

$$x_{\text{max}} - x_{\text{min}} = \varphi_{\text{M}} \cdot 0.8\% = 2 \cdot \sqrt{\varphi_{\text{M}} \cdot 0.99\%} \cdot 2.33$$

$$\varphi_{\text{M}} = 0.0099 \cdot \left(\frac{2.33}{0.004}\right)^2 = 3359$$

Was besagt das Ergebnis?

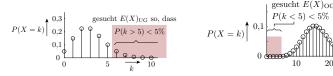
- Die Fehlersimulation muss mit mindestens 3359 unabhängig voneinander nachweisbaren Modellfehlern erfolgen.
- Eine Fehlerüberdeckung von 98,6%...99,4% mit einer Irrtumswahrscheinlichkeit, verlangt eine Testsatzlänge, die 99% dieser Modellfehler, d.h. alle außer ca. 34 nachweist.
- Bei Abhängigkeiten im Fehlernachweis muss die Modelfehleranzahl κ -mal so groß sein.
- Redundate Fehler in der Fehlermenge sind problematisch, weil sie als nicht nachweisbare Fehler gezählt werden, aber eigentlich keine Fehler sind.

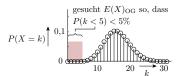
Seltene Ereignisse

Aufgabe 2.25: Zuverlässigkeitsintervall

Beim Test von 10^3 Service-Leistungen eines Systems wurden 5 Fehlfunktionen beobachtet. Für welchen Bereich der Zuverlässigkeit kann nach diesem Versuchsergebnis mit den Irrtumswahrscheinlichkeiten $\alpha_1 = \alpha_2 = 5\%$ garantiert werden?

Garantierbare Unter- und Obergrenze des Erwartungswerts:





- $e^{-E(X)_{\mathrm{UG}}} \cdot \sum_{k=0}^{5} \frac{E(X)_{\mathrm{UG}}^{k}}{k} \geq 95\%$; Überschlag: $E(X)_{\mathrm{UG}} \approx e^{-E(X)_{\mathrm{OG}}} \cdot \sum_{k=0}^{4} \frac{E(X)_{\mathrm{OG}}^{k}}{k} < 5\%$; Überschlag: $E(X)_{\mathrm{OG}} \approx E(X)_{\mathrm{OG}} \approx E(X)_{\mathrm{OG}}$

	$\alpha_1 = \alpha_2 = 5\%$		$\alpha_1 = \alpha_2$	$_{2}=10\%$	$\alpha_1 = \alpha_2 = 20\%$		
$x_{\rm ist}$	$E(X)_{\min}$	$E(X)_{\max}$	$E(X)_{\min}$	$E(X)_{\max}$	$E(X)_{\min}$	$E(X)_{\max}$	
4	1,970	7,754	2,432	6,680	3,089	5,515	
5	2,613	9,154	3, 152	7,993	3,903	6,722	
6	3,285	10,513	3,894	9,275	4,733	7,906	

Bereich der

- lacksquare Eintrittswahrscheinlichkeit einer Fehlerlfunktion $p_{
 m FF}$ und
- lacksquare der zu erwartenden Zuverlässigkeit $E\left(Z\right)$:

	Grenze 1	Grenze 2
Anzahl FF	$E(X)_{\mathrm{UG}} \approx$	$E(X)_{\text{OG}} \approx$
$p_{ m FF}$		
$E\left(Z\right)$		

 $N=10^3 \ {\rm Service\text{-}Leistungen} \ \dots \ 5 \ {\rm Fehlfunktionen}.$

Garantierbare Unter- und Obergrenze des Erwartungswerts:

	$\alpha_1 = \alpha$	$x_2 = 5\%$	$\alpha_1 = \alpha_2$	$_{2}=10\%$	$\alpha_1 = \alpha_2 = 20\%$		
x_{ist}	$E(X)_{\min}$	$E(X)_{\max}$	$E(X)_{\min}$	$E(X)_{\text{max}}$	$E(X)_{\min}$	$E(X)_{\max}$	
5	2,613	9,154	3,152	7,993	3,903	6,722	

Eintrittswahrscheinlichkeits- und Zuverlässigkeitsbereich:

	Grenze 1	Grenze 2
Anzahl FF	$E(X)_{\text{UG}} \approx 3.15$	$E(X)_{\rm OG} \approx 7.99$
$p_{\mathrm{FF}} = \frac{E(X)_{\mathrm{UG/OG}}}{1000}$	0,315%	0,799
$E(Z) = \frac{1}{p_{\text{EF}}}$	$317 \frac{\mathrm{SL}}{\mathrm{FF}}$	$250 \frac{\mathrm{SL}}{\mathrm{FF}}$

Verteilung unbekannt

Aufgabe 2.26: Bereichsschätzung Kapazitätswerte

Gegeben ist eine Stichprobe gemessener Kapazitätswerte in nF:

$$C: 1,20, 1,23, 1,18, 1,25, 1,21, 1,19, 1,23, 1,22, 1,09, 1,17$$

In welchem Bereich liegt mit einer Irrtumswahrscheinlichkeit von 2% der Erwartungswert

- wenn die Kapazitätswerte normalverteilt sind,
- 2 nach der tschebyscheffschen Ungleichung?
- lacksquare geschätzter Erwartungswert: $E_{\mathrm{S}}\left(C
 ight)=$
- ullet geschätzte Standardabweichung: $\sqrt{D_{
 m S}^2\left(C
 ight)}=$

	Intervallradius	gesuchter Bereich
normalverteilt		
tscheb. Ungl.		

■
$$E_{\rm S}\left(C\right) = \frac{1,20+1,23+1,18+1,25+1,21+1,19+1,23+1,22+1,09+1,17}{10} = 1,179$$
■ $\sqrt{D_{\rm S}^2\left(C\right)} = \sqrt{\frac{(1,20-1,179)^2+(1,23-1,179)^2+\dots}{9}} = 0,0450$

Intervallradius:

$$\blacksquare$$
 normalverteilt: $\varepsilon_{\mathrm{norm}} = \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\cdot\sqrt{D_{\mathrm{S}}^{2}\left(C\right)} = 0{,}0922$

α	2%	1%	0,5%	0,2%	0,1%
$\Phi^{-1}\left(1-\frac{\alpha}{2}\right)$	2,05	2,33	2,57	2,88	3,10

• tscheb. Ungl.:
$$\varepsilon_{\rm tscheb} = \sqrt{\frac{D_{\rm S}^2(C)}{\alpha}} = \frac{0.0540}{\sqrt{2\%}} = 0.3182$$

Gesuchter Bereich:

- normalverteilt: $E_{\rm S}\left(C\right)\pm\varepsilon_{\rm norm}=\left[1,105,\ 1,289\right]$
- tscheb. Ungl.: $E_S(C) \pm \varepsilon_{tscheb} [0.861, 1.497]$

Länge von Zufallstests

Aufgabe 2.27: Erforderliche Modellfehleranzahl

Um für eine Modellfehlerüberdeckung von $FC_{\rm M}=99\%$ zu garantieren, soll das Simulationsabbruchkriterium

$$\varphi_{\text{NErk.ist}} \in \{0, 1, 2\}$$

sein. Wie groß muss die Anzahl der nicht redundanten Modellfehler $arphi_{
m M}$ bei einer Irrtumswahrscheinlichkeit $lpha_1=lpha_2=2\%$ sein?

Annahmen:

- Vernachlässigbare Abhängigkeiten im Fehlernachweis ($\kappa=1$).
- $ullet arphi_{
 m NErk}$ (Anzahl der nicht nachweisbaren Fehler) poisson-verteilt.

Vorschlag für den Lösungsweg:

- Abschätzung der Unter- und Obergrenze des Erwartungswertes.
- Für den ungünstigsten Fall des Erwartungswertes (Ober- oder Untergrenze?) muss die Modellfehleranzahl so groß sein, dass die zu erwartende Fehlerüberdeckung 99% ist.

Tabelle der Unter- und Obergrenzen des Erwartungswertes:

	$\alpha_1 = \alpha_2 = 0.5\%$		$\alpha_1 = \alpha$	$r_2 = 1\%$	$\alpha_1 = \alpha_2 = 2\%$		
X_{ist}	$E(X)_{\min}$	$E(X)_{\max}$	$E(X)_{\min}$	$E(X)_{\max}$	$E(X)_{\min}$	$E(X)_{\max}$	
0	0,005	5,299	0,01	4,606	0,02	3,912	
1	0,103	7,430	0,148	6,639	0,215	5,835	
2	0,338	9,274	0,436	8,405	0,567	7,517	

Erforderliche Modellfehleranzahl:

$$\varphi_{\mathrm{M}} = \frac{E\left(\varphi_{\mathrm{NErk}}\right)_{\mathrm{max}}}{1 - FC_{\mathrm{M}}} = 100 \cdot E\left(\varphi_{\mathrm{NErk}}\right)_{\mathrm{max}}$$

$arphi_{ m NErk.ist}$	0	1	2
$\varphi_{ m M}$	392	584	751

Aufgabe 2.28: Simulationsabbruch bei $\varphi_{\text{NErk.ist}} = 20$

Um für eine Modellfehlerüberdeckung von $FC_{\rm M}=99\%$ zu garantieren, soll das Simulationsabbruchkriterium

$$\varphi_{\text{NErk.ist}} = 20$$

sein. Wie groß muss die Anzahl der nicht redundanten Modellfehler $arphi_{
m M}$ bei einer Irrtumswahrscheinlichkeit $lpha_1=lpha_2=2\%$ sein?

Annahmen:

- Vernachlässigbare Abhängigkeiten im Fehlernachweis ($\kappa=1$).
- φ_{NErk} (Anzahl der nicht nachweisbaren Fehler) normalverteiltverteilt.
- Varianz von φ_{NErk} ist ungefähr gleich dem Istwert.

Lösungsweg wie in der Aufgabe zuvor nur mit Normalverteilung.

Bestimmung der Obergrenze des Erwartungswerts:

$$E(\varphi_{\text{NErk}})_{\text{max}} = \varphi_{\text{NErk}} + \Phi^{-1}(1 - \alpha_2) \cdot \sqrt{\varphi_{\text{NErk}}}$$
$$= 20 + 2.05 \cdot \sqrt{20} = 29.17$$

α	2,27%	0,13%	0	2%	1%	0,5%	0,2%	0,1%
$\Phi^{-1}(1-\alpha)$	2	3	4	2,05	2,33	2,57	2,88	3,10

Erforderliche Modellfehleranzahl:

$$\varphi_{\text{M}} = \frac{E\left(\varphi_{\text{NErk}}\right)_{\text{max}}}{1 - FC_{\text{M}}} = 100 \cdot E\left(\varphi_{\text{NErk}}\right)_{\text{max}} = 2917$$

■ Bei Abhängigkeiten im Fehlernachweis κ -facher Wert.