Test und Verlässlichkeit, Übungsblatt 2 (13P)

Prof. G. Kemnitz, TU Clausthal, Institut für Informatik

29. April 2016

Aufgabe 2.1

Herr M. möchte um Mitternacht in seinem Büro einen Bericht lesen. Er muss dazu in sein Büro, braucht Licht und eine Brille. Ereignisse (B_i Basisereignisse ; N_i nicht untersuchte Ereignisse; F_i Fehlerereignisse):

- B_1 Tür klemmt, $p_{\rm B1}=0,1\%$
- B_2 Deckenlampe defekt, $p_{\rm B1}=0,2\%$
- B_3 Tischlampe defekt, $p_{B1} = 0, 2\%$
- B_4 Lesebrille defekt, $p_{B1} = 0.3\%$
- B_5 Ersatzbrille defekt, $p_{\rm B1} = 0.5\%$
- $\bullet~N_1$ Schlüssel vergessen, $p_{\rm N1}$ unbekannt
- $\bullet~N_2$ Lesebrille vergessen, $p_{\rm N2}$ unbekannt
- N_3 Ersatzbrille im Schreibtisch eingeschlossen, $p_{\rm N3}$ unbekannt
- \bullet F_1 kein Zutritt zum Büro
- \bullet F_2 Büro unbeleuchtet
- F_3 Keine Brille
- F_4 Bericht ungelesen
- a) Stellen Sie den Fehlerbaum auf.

2P

b) Schätzen Sie die Wahrscheinlichkeiten der Fehlerereignisse F_1 bis F_4 unter der Annahme, dass die Wahrscheinlichkeiten der unberücksichtigten Ereignisse nicht größere als 1% sind. 2P

Aufgabe 2.2

Bei der Übertragung von vier möglichen Zeichen A, B, C und D betrage die Wahrscheinlichkeit, das ein Zeichen in eines der drei anderen verfälscht wird, je $p_F = 5\%$. Die Wahrscheinlichkeit, dass es unverfälscht übertragen wird, ist $p_{\rm U} = 1 - 3 \cdot p_{\rm F} = 85\%$:

a) Stellen Sie den Zusammenhang als Markow-Kette dar.

- 2P
- b) Beschreiben Sie die Markow-Kette durch ein lineares Gleichungssystem.
- 1P
- c) Bestimmen Sie die Wahrscheinlichkeiten p_A bis p_D , dass ein » A « nach einer und nach fünf Übertragungen immer noch ein » A « bzw. ein anderes Zeichen ist¹. 2P

 $^{^1}$ Berechnung z.B. mit Matlab für die Schaltschritte 1 bis 5. Abgabe nur der Werte für den 1. und 5. Schritt in tabellarischer Form.

Schritt	$p_{\rm A}$	p_{B}	p_{C}	p_{D}
0	1	0	0	0
1				
5				

Aufgabe 2.3

Wie groß darf die mittlere Reparaturzeit MTTR für einen Drucker maximal sein, wenn dieser im Mittel dreimal im Jahr ausfällt und mit $p_{\rm V} \geq 99\%$ Wahrscheinlichkeit verfügbar sein muss? 1P

Aufgabe 2.4

Für ein herkömmliches Auto sein angenommen, dass mit einem Durchschnittsfahrer die mittlere Zeit zwischen zwei durch den Fahrer verursachte Unfällen 200 Stunden betragt. Hinzu kommt ca. alle 3000 Fahrstunden ein Unfall durch technisches Versagen des Fahrzeuges. Von einem neuartigen Steuergerät, dass überhöhte Geschwindigkeiten und zu geringe Sicherheitsabstände unterbindet, wird erwartet, dass es die mittlere Zeit zwischen zwei durch den Fahrer verursachte Unfälle verdreifacht.

- a) Wie groß ist bisher die mittlere Zeit zwischen zwei Unfällen insgesamt?
- b) Wie groß muss die mittlere Zeit zwischen zwei durch das neue Steuergerät verursachte Unfälle mindestens sein, damit sich insgesamt die mittlere Zeit zwischen zwei Unfällen auf das 2,5-fache erhöht?