

Test und Verlässlichkeit Grosse Übung 3 Prof. G. Kemnitz

Institut für Informatik, Technische Universität Clausthal 21. Mai 2015

1. Lineare Transformationen

Lineare Transformationen

1. Lineare Transformationen

Aufgabe Lineare Transformationen

Die drei voneinader unabhängigen Längenangaben (in Metern) $X,\,Y$ und Z haben die nachfolgenden Erwartungswerte und Standardabweichungen:

Zufallsgröße	X	Y	Z
Erwartungswert	10 m	$3~\mathrm{m}$	7,5 m
Standardabweichung	$0,\!21\mathrm{m}$	$0,\!07\mathrm{m}$	$0.14\mathrm{m}$

Wie groß sind die Erwartungswerte und Standardabweichungen der folgenden Linearkombinationen:

- X+Y+Z
- 22 m + X 2Y

1. Lineare Transformationen

Lösung

Der Erwartungswert ist die Summe/Linearkombination der Erwartungswerte:

$$10 \,\mathrm{m} + 3 \,\mathrm{m} + 7.5 \,\mathrm{m} = 20.5 \,\mathrm{m}$$

$$22 \,\mathrm{m} + 10 \,\mathrm{m} - 2 \cdot 7.5 \,\mathrm{m} = 17.5 \,\mathrm{m}$$

Die Standardabweichung ist die Wurzel aus der Summe der Quadrate:

$$\sqrt{(0.21 \,\mathrm{m})^2 + (0.07 \,\mathrm{m})^2 + (0.14 \,\mathrm{m})^2} = 0.262 \,\mathrm{m}$$

$$\sqrt{(0.21 \,\mathrm{m})^2 + (-2 \cdot 0.14 \,\mathrm{m})^2} = 0.35 \,\mathrm{m}$$

Multimodale Verteilung

2. Multimodale Verteilung

Aufgabe Multimodale Verteilung

In einer Kiste werden die Widerstände von drei nacheinander gekauften Produktions-Chargen gemischt. Die Werte alle drei Chargen seinen normalverteilt. Die nachfolgende Tabelle zeigt die Anzahl den Erwartungswert und die Streuung je Charge.

	Anzahl	Erwartungswert	Standardabweichung
Charge 1	212	$0{,}941\mathrm{k}\Omega$	30Ω
Charge 2	95	$1{,}07\mathrm{k}\Omega$	34Ω
Charge 3	212	$1,2~\mathrm{k}\Omega$	111 Ω

- Verteilung der Widerstandsmischung als Gleichung?
- 2 Programm zur Berechung der Verteilung?
- **3** Graphische Darstellung der Verteilung?

2. Multimodale Verteilung

Lösung Teil a

Zugehörigkeitswahrscheinlichkeiten, Erwartungswerte und Standardabeichungen:

Charge	Anzahl	Erwartungswert	Standardabweichung
1	$h_1 = \frac{212}{524} = 40,4\%$	$E\left(X_{1}\right)=0.941 \text{ k}\Omega$	$\sqrt{D^2\left(X_1\right)} = 30\Omega$
2	$h_2 = \frac{95}{524} = 18,1\%$	$E\left(X_{2}\right)=1.07\mathrm{k}\Omega$	$\sqrt{D^2\left(X_2\right)} = 34\Omega$
3	$h_3 = \frac{212}{524} = 41,4\%$	$E\left(X_{3}\right)=1,2\ \mathrm{k}\Omega$	$\sqrt{D^2(X_3)} = 111 \Omega$

Mischverteilung:

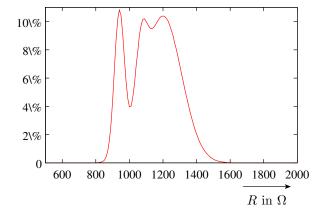
$$P(X = x) = \sum_{i=1}^{3} h_i \cdot \frac{1}{\sqrt{D^2(X_i)} \cdot \sqrt{2\pi}} \cdot e^{-\frac{(x - E(X_i))^2}{2 \cdot D^2(X_i)}}$$

Lösung Teil b

```
Berechung der Verteilungswerte:
    function y = mmvert(x)
     h = [212/524 95/524 217/524];
     mu = [0.94E3 \ 1.07E3 \ 1.2E3];
     si = [30 \ 34 \ 111];
     v=0;
     for i=1:3
      y = y + h(i)*normpdf((x-mu(i))/si(i));
     end
    end
Berechnung der Verteilung:
    for i=1:150
     x(i) = 500 + 10*i:
     P(i) = mmvert(x(i));
    end
    plot (x, P); print("AfgMmvert.fig", "-dfig");
```


2. Multimodale Verteilung

Lösung Teil c



Poisson-Verteilung

Aufgabe Poisson-Verteilung

Bei einer Service-Leistung sei die Eintrittswahrscheinlichkeit einer Fehlfunktion 1%. Wie groß sind bei 50, 100, 200 und 500 Service-Leistungen die Wahrscheinlichkeiten, dass 0, 1, ..., 10 Fehlfunktionen auftreten?

- I Gleichung zur Berechung der Wahrscheinlichkeiten?
- 2 Programm zur Berechung der Verteilung?
- 3 Graphische Darstellung der Verteilung?

3. Poisson-Verteilung

Lösung Teil a und b

Zu programmierende Gleichung:

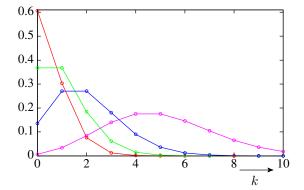
$$P(X = k) = e^{-1\% \cdot N} \cdot \frac{(1\% \cdot N)^k}{k!}$$

Programm:

```
clear all; clf;
N = [50, 100, 200, 500];
for j=1:length(N)
pN=0.01*N(j);
 Pois(1) = exp(-pN);
 fak=1; k(1)=0;
 for i=1:10
  k(i+1) = i:
  Pois(i+1) = Pois(i)*pN/i;
 end
 plot(k, Pois, sprintf("%d-o",j)); hold on;
end
```


3. Poisson-Verteilung

Lösung Teil c



FHNW-Funktion

Aufgabe FHNW-Funktion

Bei einer Fehlersimulation mit einer Stichprobe von 1000 Modellfehlern waren mit $n_1 = 100$ Zufallstests 451 Fehler, mit $n_2 = 1000$ Zufallstests 76 Fehler noch nicht nachweisbar.

- I Schätzen Sie die Parameter k und φ_0 einer Potenzfunktsannäherung der FHNW-Funktion.
- Wie viele Fehler sind nach dieser Näherung mit n = 100.000 Zufallstests noch nicht nachweisbar?
- Wie lange ist nach dieser Näherung noch zu simulieren, bis alle außer einem Fehler nachgewiesen sind?

Schätzen der beiden Parameter

Zur Abschätzung von k werden für die zwei Testdauern n_1 und n_2 die Anzahl der nicht gefundenen Fehler in die folgende Gleichung eingesetzt:

$$E\left(\varphi_{\text{NErk}}, n_{2}\right) = E\left(\varphi_{\text{NErk}}, n_{1}\right) \cdot \left(\frac{n_{2}}{n_{1}}\right)^{-k}$$

$$k = \frac{\ln\left(\frac{E\left(\varphi_{\text{NErk}}, n_{2}\right)}{E\left(\varphi_{\text{NErk}}, n_{1}\right)}\right)}{\ln\left(\frac{n_{1}}{n_{2}}\right)} \approx \frac{\ln\left(\frac{76}{451}\right)}{\ln\left(\frac{100}{1000}\right)} = 0,773$$

Der Parameter φ_0 ergibt sich durch Einsetzen der Testdauern n_1 und der Anzahl der nicht gefundenen Fehler für diesen Zeitpunkt:

$$E(\varphi_{\text{NErk}}, n) = \varphi_0 \cdot n^{-k}$$

$$\varphi_0 = E(\varphi_{\text{NErk}}, n) \cdot n^k$$

$$= 451 \cdot 100^{0,773} = 76 \cdot 1000^{0,773} \approx 15.800$$

Extrapolation auf längere Testdauern

Wie viele Fehler sind nach dieser Näherung mit n = 100.000 Zufallstests noch nicht nachweisbar?

$$E(\varphi_{\text{NErk}}, n) = 15.800 \cdot 100.000^{-0.773} \approx 2.2$$

■ Wie lange ist nach dieser Näherung noch zu simulieren, bis alle außer einem Fehler nachgewiesen sind?

$$E(\varphi_{\text{NErk}}, n) = 1 = \varphi_0 \cdot n^{-k}$$

 $n = \sqrt[k]{\varphi_0} = \sqrt[0.773]{15.800}$
 $= 270.000$

Zuverlässigkeitswachstum

🐠 5. Zuverlässigkeitswachstum

Aufgabe Zuverlässigkeitswachstum

Ein Anwender beobachtet bei einem an 10 Arbeitsplätzen genutztem System, dass bei Fehlfunktionen automatisch Fehlerreports an den Hersteller sendet, und der Hersteller kontinuierlich Bug-Fixes einspielt, für die Häufigkeit der Fehlfunktionen für 10 Systeme in Abhängiggkeit von der Nutzungsdauer:

Nutzungsdauer	10 Wochen	30 Wochen
Fehlfunktionen pro Tag	153	24

- Schätzen Sie den Parameter k der FHNW-Funktion.
- Wie viele Prozent der nach 10 Wochen noch vorhandenen Fehler sind nach 30 Wochen immer noch nicht beseitigt?
- 3 Wie lange muss das System noch weiterreifen, bis bei den 10 genutzten Arbeitsplätzen in Summe im Mittel nur noch zwei Fehlfunktionen pro Tag zu erwarten sind?

5. Zuverlässigkeitswachstum

Lösung Teil a: Schätzen von k

Die fehlerbedingt Zuverläsigkeit nimmt mit der k+1-ten Potenz der Nutzungsdauer zu¹:

$$Z_{\text{n.Fehler}}(n_2) = Z_{\text{n.Fehler}}(n_1) \cdot \left(\frac{n_2}{n_1}\right)^{k+1}$$

$$k = \frac{\ln\left(\frac{Z_{\text{n.Fehler}}(n_2)}{Z_{\text{n.Fehler}}(n_1)}\right)}{\ln\left(\frac{n_2}{n_1}\right)} - 1 \approx \frac{\ln\left(\frac{153}{24}\right)}{\ln\left(\frac{30}{10}\right)} - 1 = 0,69$$

(n - hier Reifedauer, während der Fehlfunktionen im Mittel nach dem)a – ten auftreten beseitigt werden; $Z_{\text{n.Fehler}}(n)$ – fehlerbezogene Teilzuverlässigkeit als Funktion der Reifedauer).

¹Es sei angenommen, dass alle Fehlfunktionen durch Fehler verursacht werden, sich die Reifedauer proportional zur Anzahl der ausprobierten Service-Leitungen verhält und der Testaufwand vor dem Einsatz gegenüber der Reifedauer im Einsatz vernachlässigbar ist.

Lösung Teil b: Nicht beseitigte Fehler

Die Fehleranzahl nimmt nur mit Exponent k statt k+1 ab:

$$\frac{E(\varphi, n_2)}{E(\varphi, n_1)} = \left(\frac{n_1}{n_2}\right)^{0.69} = 42,76\%$$

Es bleiben überschlagsweise noch 42% der Fehler übrig bzw. es werden in dieser Zeit ca. 58% der Fehler beseitigt.

5. Zuverlässigkeitswachstum

Lösung Teil c: Reifedauer

Erforderliche Reifedauer, bis eine angestrebte (fehlerbedingte) Teilzuverlässigkeit erreicht ist:

$$\frac{Z_{\text{n.Fehler}}(n_2)}{Z_{\text{n.Fehler}}(n_1)} = \left(\frac{n_2}{n_1}\right)^{k+1} \\
\frac{n_2}{n_1} = \left(\frac{Z_{\text{n.Fehler}}(n_2)}{Z_{\text{n.Fehler}}(n_1)}\right)^{\frac{1}{k+1}} = \left(\frac{\frac{1}{2}}{\frac{1}{153}}\right)^{\frac{1}{1686}} = 273$$

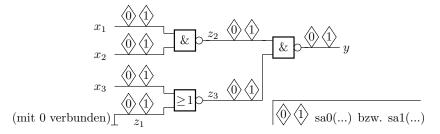
Die erforderliche Gesamtreifedauer bis zum Erreichen einer fehlerbezogenen Teilzuverlässigkeit von 5 Tagen (2 FF pro Tag und 10 Systemen) beträgt incl. der bereits abgearbeiteten 30 Wochen insgesamt 273 Wochen.

Haftfehlermenge

🧗 6. Haftfehlermenge

Aufgabe 4.2

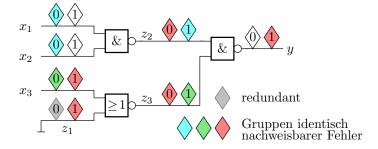
Gegeben ist die nachfolgende Schaltung mit 12 eingezeichneten Haftfehlern.



Welche der Haftfehler sind

- redundant, d.h. mit keiner Eingabebelegung nachweisbar,
- 2 identisch nachweisbar,
- 3 implizit durch die Tests anderer Haftfehler nachweisbar?

Redundante Fehler

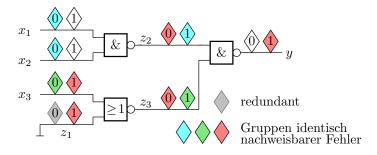


Redundant:

■ sa0(z_1), weil die Anregungsbedingung $z_1 = 1$ nicht einstellbar ist.

6. Haftfehlermenge

Identisch nachweisbare Fehler

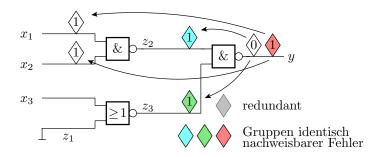


Identisch nachweisbar:

- $sa0(x_1)$, $sa0(x_2)$, $sa1(z_2)$ weil bei allen drei Fehler z_2 ständig 1 ist
- $\operatorname{sa1}(x_3)$, $\operatorname{sa1}(z_1)$, $\operatorname{sa0}(z_2)$, $\operatorname{sa0}(z_3)$, $\operatorname{sa1}(y)$ weil bei allen drei Fehler y ständig 1 ist.
- sa0(x_3), sa1(z_3), beide nachweisbar mit $x_3z_2 = 11$

6. Haftfehlermenge

Implizit nachweisbar



- Alle Testeingaben für den Nachweis der Fehler sa $1(z_2)$ und sa $1(z_3)$ verlangen y = 1 und das y beobachtbar ist und implizieren damit den Nachweis von sa0(y).
- $\operatorname{sa1}(x_1)$ und $\operatorname{sa1}(x_2)$ sind nur nachweisbar, wenn sie y auf null ändern. Ihr Nachweis impliziert damit den von $\operatorname{sa1}(y)$.

Messfehler

Aufgabe Messfehler

Nach einem Fertigungsprozess für Kondensatoren werden deren Kapazitäten gemessen. Die Messergebnisse sind normalverteilt mit einem Erwartungswert von $10 \,\mathrm{nF}$ und einer Standardabweichung von $1 \,\mathrm{nF}$. Die Messung hat einen systematischen Messfehler von $+0.1 \,\mathrm{nF}^2$. Die Differenz zwischen gemessenem und tatsächlichem Wert hat eine Standardabweichung von $0.5 \,\mathrm{nF}$. Wie groß sind

- 1 der Erwartungswert und
- 2 die Standardabweichung

der Kapazitäten der produzierten Kondensator-Charge.

²Die gemessenen Werte sind im Mittel 0,1nF größer als die tatsächlichen Werte.

Lösung

Der gemessene Wert ist die Summe aus zu messendem Wert und Messfehler. Unter der Annahme, dass Produktion und Messung von einander unabhängig sind, addieren sich die Erwartungswerte und Varianzen:

$$E(C_{MW}) = E(C_{W}) + E(C_{MF})$$

 $D^{2}(C_{MW}) = D^{2}(C_{W}) + D^{2}(C_{MF})$

(MW – Messwert; W – Wert; MF – Messfehler). Aufgelöst nach Erwartungswert und Standardabweichung des Wertes:

$$E(C_{\rm W}) = E(C_{\rm MW}) - E(C_{\rm MF}) = 10 \,\mathrm{nF} - 0.1 \,\mathrm{nF} = 9.9 \,\mathrm{nF}$$

$$D^2(C_{\rm MW}) = D^2(C_{\rm W}) + D^2(C_{\rm MF})$$

$$\sqrt{D^2(C_{\rm MW})} = \sqrt{(1 \,\mathrm{nF})^2 - (0.5 \,\mathrm{nF})^2} \approx 0.87 \,\mathrm{nF}$$

Programmierfehler

Programmierfehler

Einem Programmierer unterlaufen im Mittel 82 Syntaxfehler und 45 funktionale Fehler auf 1.000 Code-Zeilen. Schätzen Sie den Erwartungswert und die Standardabweichung der Anzahl der Syntax- und der funktionalen Fehler für ein Programm aus 10.000 Codezeilen unter der Annahme, dass die Fehler unabhängig voneinander entstehen.

Lösung

Der Erwartungswert ist für

- die Syntaxfehler 820 und die
- funktionalen Fehler 450.

Bei unabhängiger Fehlerentstehung ist die Varianz nach oben durch die einer binomialverteilung mit demselben Erwartungswert beschränkt:

$$D^{2}(\varphi) \leq E(\varphi) \cdot \left(1 - \frac{E(\varphi)}{\operatorname{Anz}(\operatorname{CZ})}\right) \approx E(\varphi)$$

(Anz(CZ) – Anzahl der Code-Zeilen als die Anzahl der potenziellen Fehler). Die Standardabweichung für die beiden Fehlerarten sind

- Syntaxfehler: $D^2(\varphi_{\text{Syntax}}) \le \sqrt{820 \left(1 \frac{820}{10.000}\right)} \approx 29$
- funktionalen Fehler: $D^2\left(\varphi_{\text{Funk}}\right) \leq \sqrt{450 \left(1 \frac{450}{10.000}\right)} \approx 21.$

Effektive Fehleranzahl

9. Effektive Fehleranzahl

Effektive Fehleranzahl

Zur Abschätzung der FHNW-Funktion für ein Programm wurde eine Fehlersimulation mit 1.000 Modellfehlern und 1.000 verschiedenen Zufallsfolgen durchgeführt. Dabei ergaben sich folgende Erwartungswerte und folgende Standardabweichungen für die Anzahl der nicht nachweisbaren Modellfehler in Abhängigkeit von der Testdauer n:

n	100	1.000	10.000	100.000	1.000.000
$E\left(\varphi\right)$	751	532	370	95	48
$\sqrt{D^{2}\left(\varphi\right) }$	53.7	41,8	23,5	12,1	5,3

Wie groß ist die effektive Fehleranzahl φ_{eff} für die in der Tabelle angegebenen Testsatzlängen?

9. Effektive Fehleranzahl

Lösung mit Octave

n	100	1.000	10.000	100.000	1.000.000
$E\left(\varphi\right)$	751	532	370	95	48
$\sqrt{D^{2}\left(\varphi\right) }$	53.7	41,8	23,5	12,1	5,3

```
E=[751 532 370 95 48];
D=[47.7 36.8 28.5 13.1 5.3]:
N=2000:
for i=1:5
  K = D(i)**2/(E(i)*(1-E(i)/N));
  if K>1
    N_{eff} = N/K;
  else
    N_{eff} = N;
  end
  printf('i=%d K=%4.2f N_eff=%6.1f\n', i, K, N_eff);
end
```

9. Effektive Fehleranzahl

Ergebnis

n	100	1.000	10.000	100.000	1.000.000
$E\left(\varphi\right)$	751	532	370	95	48
$\sqrt{D^{2}\left(\varphi\right) }$	53.7	41,8	$23,\!5$	12,1	5,3

Programmausgabe:

```
i=1 K=4.85 N_eff= 412.3
```

$$i=5 \ K=0.60 \ N_eff=2000.0$$

Bestimmen der »Programmierergüte«

10. Bestimmen der »Programmierergüte«

Aufgabe: Bestimmen der »Programmierergüte«

Von einem Programmierer wurde für eine Stichprobe von Programmen sein persönlicher Güteparameter AFFPZ1000 (Anteil der fehlerhaften funktionalen Programmzeilen pro 1000 NLOC³) bestimmt. Ergebnis des Stichprobentests:

```
AFFPZ1000: 50, 41, 47, 25, 67, 71, 42, 88, 52, 64, ...
           38, 23, 65, 97, 64, 92, 36, 59, 62, 31
```

Aus dieser Stichprobe soll

- 1 ohne weitere Vorkenntnisse über die Verteilung
- 2 unter Annahme einer Normalverteilung auf den Bereich, in dem der Erwartungswert liegt, geschlussfolgert werden. Zugelassene Irrtumswahrscheinlichkeit $\alpha = 4\%$.

³NLOC: Netto-Codezeilen, Anzahl der Programmzeilen ohne Kommentarund Leerzeilen.

10. Bestimmen der »Programmierergüte«

Schätzen des Erwartungswerts und der Varianz

```
X = [50, 41, 47, 25, 67, 71, 42, 88, 52, 64, \dots]
        38, 23, 65, 97, 64, 92, 36, 59, 62, 31];
   alpha=0.04;
   E=X(1);
                  % Erwartungswert der
   for i=2:length(X) % Datenstichprobe
     E = E + X(i);
   end
   E = E/length(X);
   D2 = (X(1)-E)**2; % Varianz der
   D2 = D2 + (X(1)-E)**2;
   end D2 = D2/(length(X)-1);
   printf('E=\%4.1f D2=\%4.1f\n', E, D2);
Programmausgabe:
```

E=51.7 D2= 1.3

10. Bestimmen der »Programmierergüte«

Ohne weitere Vorkenntnisse über die Verteilung erfolgt die Lösung über die tschebyschewsche Ungleichung:

```
eps = sqrt(D2/alpha);  % Intervallradius
printf('Bereich AFFPZ1000 tscheb: %4.1f bis %4.1f\n',...
E-eps, E+eps);
```

Programmausgabe:

Bereich AFFPZ1000 tscheb: 46.0 bis 57.4

Unter Annahme einer Normalverteilung ist der Intervallradius bei einer Irrtumswahrscheinlichkeit von $4\% \ \varepsilon_{\sigma} = 2{,}33$:

```
eps = 2.33 * sqrt(D2);
printf('Bereich AFFPZ1000 normal: %4.1f bis %4.1f\n',...
E-eps, E+eps);
```

Programmausgabe:

Bereich AFFPZ1000 normal: 49.1 bis 54.3

Erkennungswahrscheinlichkeit Inspektion

11. Erkennungswahrscheinlichkeit Inspektion

Aufgabe: Erkennungswahrscheinlichkeit Inspektion

Es soll die Masikierungswahrscheinlichkeit eines Programmierers beim Korrekturlesen von Programmen experimentell geschätzt werden, indem in das zu inspezierende Programmmaterial N Fehler eingefügt werden, und gezählt wird, wie viele der Inspektor davon nicht findet. Der zulässige Intervallradius sei 20% der Wahrscheinlichkeit $\bar{p}_{\rm S}$, dass eine Fehler nicht gefunden wird. Die Anzahl der nicht gefundenen Fehler sei normalverteilt und die zulässige Irrtumswahrscheinlichkeit sei $\alpha=4\%$

11. Erkennungswahrscheinlichkeit Inspektion

Lösung

Unter Annahme einer Normalverteilung beträgt der Intervallradius mindestens:

$$\varepsilon \ge \varepsilon_{\sigma} \cdot \sqrt{N \cdot \bar{p}_{S} \cdot (1 - \bar{p}_{S})}$$

 $(\varepsilon_{\sigma}$ – relativer Intervallradius einer normalverteilten Größe, bei $\alpha = 4\%$ ist $\varepsilon_{\sigma} = 2.05$; \bar{p}_{S} – gesuchte Nichterkennungswahrscheinlichkeit). Er soll nicht größer sein als 20% mal der zu erwartenden Anzahl nicht erkannter Fehler sein:

$$\varepsilon \leq 20\% \cdot \bar{p}_{\rm S} \cdot N$$

Für die minimale Fehleranzahl ergibt sich daraus:

$$20\% \cdot \bar{p}_{\mathrm{S}} \cdot N \quad \geq \quad 2,05 \cdot \sqrt{N \cdot \bar{p}_{\mathrm{S}} \cdot (1 - \bar{p}_{\mathrm{S}})}$$

$$N \quad \geq \quad 10,25 \cdot \frac{1 - \bar{p}_{\mathrm{S}}}{\bar{p}_{\mathrm{S}}}$$

Die Fehleranzahl muss so groß sein, dass der Inspektor mindestens 10 Fehler nicht findet.

Maskierungsausschluss

12. Maskierungsausschluss

Aufgabe: Maskierungsausschluss

Bei $N = 10^6$ Kontrollen dürfen mit einer Wahrscheinlichkeit von $1 - \alpha = 99\%$

- **1** kein falsches Ergebnis
- 2 maximal ein falsches
- 3 maximal zwei falsche Ergebnisse

als richtig klassifiziert werden. Wie groß darf die Maskierungswahrscheinlichkeit $p_{\rm M}$ der Kontrolle dafür maximal sein?

12. Maskierungsausschluss

Lösung

Die Anzahl der maskierten falschen Ergebnisse ist hier sehr klein und damit näherungsweise poisson-verteilt. Es muss gelten:

$$P(X \le k) = \sum_{k=0}^{\text{AMF}} e^{-p_{\text{M}} \cdot 10^6} \cdot \frac{\left(p_{\text{M}} \cdot 10^6\right)^k}{k!} \le 1 - \alpha = 99\%$$

(AMF – max. erlaubte Anzahl der Masierungen). Mit der Tabelle auf dem Foliensatz ergeben sich folgende Obergrenzen für die Maskierungswahrscheinlichkeit:

AMF	0	1	2
$p_{ m M}$	$1,01 \cdot 10^{-8}$	$1,49 \cdot 10^{-7}$	$4,36 \cdot 10^{-7}$