

Rechnerarchitektur, Einführung in die Laborübungen _{G. Kemnitz}

Institut für Informatik, Technische Universität Clausthal 7. Januar 2016

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

7. Januar 2016 1/10

Verbindung mit dem PC

- Rechner unter Windows starten
- Web-Browser öffnen. Foliensatz zum Mitlesen öffnen:

techwww.in.tu-clausthal.de/site/Lehre/Rechnerarchitektur/

Atmel Studio starten

Zur Kontrolle, ob der Prozessor richtig angeschlossen und vom System erkannt wird, in Atmel Studio:

■ Tools > Device Programming

■ Tool, Device, Interface einstellen; Apply, Read, Read: Device Signature und Target Voltage sollten richtig angezeigt werden. G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

TU Clausthal

• Kontrolle der Sicherungsbits (Fuses, Grundeinstellungen):

Für Praktika sollten JTAGEN (JTAG Enabled), SPIEN (SPI Enabled) und OCDEN (On-Chip Debugging Enabled) gesetzt und WDTEN (WatchDog Timer Enabled) nicht gesetzt sein.

Das erste Programm

```
#include <avr/io.h>
 9
10
   □int main(void){
11
         DDRA = 0;
12
         DDRC = 0 \times FF;
13
         while (1){
14
              PORTC = PINA;
15
          }
     }
16
```

Projekt anlegen:

- File > New > Project
- GCC Executable Project,
- Name: Sw2Led,
- OK

Device: rechts oben ATmega2560 eingeben und dann links auswählen, OK

- Programm eingeben.
- Übersetzen: Build > Build Solution (F7).
- Wenn Fehler angezeigt werden, diese beseitigen.

```
9 #include <avr/io.h>
10 □int main(void){
11 DDRA = 0;
12 DDRC = 0xFF;
13 while (1){
14 PORTC = PINA;
15 }
16 }
```

- Programmer auswählen: Project > SW2Led Properties (Alt+F7) >Tools >Select debugger ...: AVR Dragon ..., Interface: JTAG; Speichern (Strg+S).
- Programm im Debugger-Modus starten: Debug > Start Debugging and Break (Alt+F5).
- Disassembliertes Programm anzeigen: Debug > Windows > Disassembly (Alt+8).

š 🕅 🛉 🗖	→ II ▶ ↔	• ?	•	h.	1 H	lex	76	
Disassembly 🕂	× Sw2Led	main	.c					
ᅌ 000007D	OUT 0x01,R1		Out	to	I/0 3	loca	atio	n
DDRC	= 0xFF;							
0000007E	SER R24	Set	Regi	ste	en			
0000007F	OUT 0x07,R24		Out	to	I/0 [loca	atio	n
P	ORTC = PORTA;							
00000080	IN R24,0x02		In f	ron	n I/O	100	cati	on
00000081	OUT 0x08,R24		Out	to	I/0 3	loca	atio	n
}								
0000082	RJMP PC-0x0002	2		Re]	lative	e ju	ump	
ᅌ Befehlsz	zähler	3	Einz	zels	chritt			
🖲 Unterbr	echungspunkt		Sta	rt (I	ois U-	Pun	kt)	

Der Befehlszähler zeigt auf die Startadresse von main()(0x7D).

Beobachtung der Register und Ports

Im folgenden Test im Schrittbetrieb sind das Register R24 und die Ports A und C zu beobachten.

IO View		Processor	- □ ×		
Filter:	- 🥒	Name	Value		
Name	Value	Program Cou Stack Pointer	0x000007D 0x21FC		
		X Register	0x0000		
		Y Register Z Register Status Register Cycle Counter Frequency	0x21FF 0x01FF ITHSVC 0		
Name Address Value	Bits				
PINA 0x20 0x00		Registers			
DDRA 0x21 0x00		R00	0x00		
PORTA 0x22 0x00		R01	0x00		

■ Register anzeigen: Debug > Windows > Processor Status.

• EA-Register anzeigen: Debug > Windows > IO.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

7. Januar 2016 8/10

Test des Programms

	0000007D	OUT	0x01,R1		Out to I/O location
	DDRC	= 0xF	FF;		
	0000007E	SER	R24	Set	Register
	0000007F	OUT	0x07,R24		Out to I/O location
	P	ORTC	= PORTA;		
	00000080	IN F	R24,0x02		In from I/O location
	00000081	OUT	0x08,R24		Out to I/O location
	}				
	00000082	RJMF	PC-0x0002	2	Relative jump
I	Befehlsz	zähler		4.	Einzelschritt

- Mit den Schaltern unterschiedliche Werte einstellen.
- Im Schrittbetrieb beobachten, wie die Schalterwerte zur Ausgabe transferiert werden.

• Es ist auch möglich, wenn das Programm hält, die angezeigten Registerinhalte im Prozessor zu ändern.

Fakt 1

Prägen Sie sich die einzelnen Arbeitsschritte für die nachfolgenden Aufgaben ein.