
CHAPTER 3 

RT-LEVEL COMBINATIONAL CIRCUIT 

3.1 INTRODUCTION 

The gate-level circuits discussed in Chapter 1 utilize simple logical operators to describe 
gate-level design, which is composed of simple logic cells. In this chapter, we examine 
the HDL description of module-level circuits, which are composed of intermediate-sized 
components, such as adders, comparators, and multiplexers. Since these components are 
the basic building blocks used in register transfer methodology, it is sometimes referred 
to as RT-level design. We first discuss more sophisticated VHDL operators and routing 
constructs and then demonstrate the RT-level combinational circuit design through a series 
of examples. 

3.2 RT-LEVEL COMPONENTS 

In addition to the logical operators, relational operators and several arithmetic operators 
can also be synthesized automatically. These operators correspond to intermediate-sized 
module-level components, such as comparators and adders. We examine these operators in 
this section and also cover miscellaneous synthesis-related VHDL constructs. Tables 3.1 
and 3.2 summarize the operators and their applicable data types used in this book. 
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Table 3.1 Operators and data types of VHDL-93 and IEEE std-logic-I164 package 

Operator Description Data type Data type 
of operands of result 

a ** b exponentiation integer integer 
a * b multiplication 
a / b division integer type for constants and 
a + b  addition array boundaries, not synthesis 
a - b  subtraction 

a & b  concatenation 1-D array, 
element 

1-D array 

a = b equalto any boolean 
a /= b notequal to 
a < b  less than scalar or 1 -D array boolean 
a <= b 
a > b greater than 
a >= b 

less than or equal to 

greater than or equal to 

not a negation 
a and b and 
a or b or 
a xor b xor 

boolean, std-logic, same as operand 
std-logic-vector 

Table 3.2 Overloaded operators and data types in the IEEE numeric-std package 

Overloaded Description Data type Data type 
operator of operands of result 

a * b  arithmetic unsigned, natural unsigned 
a + b  operation signed, integer signed 
a - b  

a = b  
a /= b 
a < b  relational unsigned, natural boolean 
a <= b operation signed, integer boolean 
a > b  
a >= b 

Table 3.3 Type conversions between std-logic-vector and numeric data types 

Data type of a To data type Conversion functiodtype casting 

unsigned, signed std-logic-vector std-logic-vector(a) 
signed, std-logic-vector unsigned unsigned( a) 
unsigned, std-logic-vector signed signed(a) 
unsigned, signed integer to-integer (a) 
natural unsigned to-unsigned(a, size) 
integer signed to-signed(a, size) 



RT-LEVEL COMPONENTS 37 

3.2.1 Relational operators 

Six relational operators are defined in the VHDL standard: = (equal to), /= (not equal to), 
< (less than), <= (less than or equal to), > (greater than), and >= (greater than or equal to). 
These operators compare operands of the same data type and return a value of the boolean 
data type. In this book, we don’t use the boolean data type directly, but embed it in routing 
constructs. This is discussed in Sections 3.3 and 3.5. During synthesis, comparators are 
inferred for these operators. 

3.2.2 Arithmetic operators 

In the VHDL standard, arithmetic operations are defined for the integer data type and 
for the natural data type, which is a subtype of integer containing zero and positive 
integers. We usually prefer to have more control in synthesis and define the exact number 
of bits and format (i.e., signed or unsigned). The IEEE numeric-std package is developed 
for this purpose. In this book, we use the integer and natural data types for constants 
and array boundaries but not for synthesis. 

IEEE numeric-std package The IEEE numeric-std package adds two new data 
types, unsigned and signed, and defines the relational and arithmetic operators over the 
new data types (known as operator overloading). The unsigned and signed data types 
are defined as an array with elements of the std-logic data type. The array is interpreted 
as the binary representation of unsigned or signed integers. We have to add an additional 
use statement to invoke the package: 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numric-std. a l l  ; -- i n v o k e  n u m e r i c - s t d  p a c k a g e  

The synthesizable overloaded operators are summarized in Table 3.2. 
Multiplication is a complicated operation, and synthesis of the multiplication operator * 

depends on synthesis software and target device technology. Xilinx Spartan-3 FPGA family Xilinx 
contains prefabricated combinational multiplier blocks. The Xilinx XST software can infer specific 
these blocks during synthesis, and thus the multiplication operator can be used in HDL 
code. The XCS200 device of the S3 board consists of twelve 18-by-18 multiplier blocks. 
While the synthesis of the multiplication operator is supported, we need to be aware of the 
limitation on the number and input width of these blocks and use them with care. 

Type conversion Because VHDL is a strongly typed language, std-logic-vector, 
unsigned, and signed are treated as different data types even when all of them are defined 
as an array with elements of the std-logic data type. A conversionfunction or type 
casting is needed to convert signals of different data types. The conversion is summarized 
in Table 3.3. Note that the std-logic-vector data type is not interpreted as a number and 
thus cannot be converted directly to an integer, and vice versa. 

The following examples illustrate the common mistakes and remedies for type conver- 
sion. Assume that some signals are declared as follows: 

l i b r a r y  ieee; 
use  ieee . std-logic-1164. a l l  ; 
use  ieee . numeric-std. a l l  ; 

s i g n a l  sl, s 2 ,  s3, s 4 ,  s 5 ,  s6: std-logic-vector(3 downto 0 ) ;  
. . .  
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s i g n a l  ul, u2, u 3 ,  u 4 ,  u5, u 6 ,  u 7 :  unsigned(3 downto 0 ) ;  
. . .  

Let us first consider the following assignment statements: 

u l  <= s l ;  -- n o t  o k ,  t y p e  m i s m a t c h  
u2 <= 5 ;  -- n o t  o k ,  t y p e  m i s m a t c h  
s2 <= u 3 ;  -- n o t  o k ,  t y p e  m i s m a t c h  
s3 <= 5 ;  -- n o t  o k ,  t y p e  m i s m a t c h  

They are all invalid because of type mismatch. The right-hand-side expression must be 
converted to the data type of the left-hand-side signal: 

u l  <= unsigned(s1); -- o k ,  t y p e  c a s t i n g  
u2 <= to-unsigned ( 5 , 4 )  ; -- o k ,  c o n v e r s i o n  f u n c t i o n  
s 2  <= std-logic-vector(u3); -- o k ,  t y p e  c a s t i n g  
s3 <= std-logic-vector (to-unsigned ( 5 , 4 ) )  ; -- ok  

Note that two type conversions are needed for the last statement. 
Let us consider statements that involve arithmetic operations. The following statements 

are valid since the -+ operator is defined with the unsigned and na tu ra l  types in the IEEE 
numer ic -s td  package. 

u4 <= u2 + u l ;  -- o k ,  b o t h  o p e r a n d s  u n s i g n e d  
u5 <= u2 + 1 ;  -- o k ,  o p e r a n d s  u n s i g n e d  and  n a t u r a l  

On the other hand, the following statements are invalid since no overloaded arithmetic 
operation is defined for the std-logic-vector data type: 

s5 <= s2 + s l ;  -- n o t  o k ,  + u n d e f i n e d  o v e r  t h e  t y p e s  
~6 <= ~2 + 1; -- n o t  o k ,  + u n d e f i n e d  o v e r  t h e  t y p e s  

To fix the problem, we must convert the operands to the unsigned (or signed) data type, 
perform addition, and then convert the result back to the std-logic-vector data type. 
The revised code becomes 

s5 <= std-logic-vector(unsigned(s2) + unsigned(s1)); -- ok  
s 6  <= std-logic-vector (unsigned(s2) + 1) ; -- ok  

Nonstandard arithmetic packages There are several non-IEEE arithmetic pack- 
ages, which are s td- logic-ar i th ,  std-logic-unsigned, and std-logic-signed. The 
s td- logic-ar i th  package is similar to the numeric-std package. The other two pack- 
ages do not introduce any new data type but define overloaded arithmetic operators over 
the std-logic-vector data type. This approach eliminates the need for data conversion. 
Although using these packages seems to be less cumbersome initially, it is not good practice 
since these packages are not a part of IEEE standards and may introduce a compatibility 
problem in the long run. We do not use these packages in this book. 

3.2.3 Other synthesis-related VHDL constructs 

Concatenation operator The concatenation operator, &, combines segments of ele- 
ments and small arrays to form a large array. The following example illustrates its use: 

s i g n a l  a1 : std-logic ; 
s i g n a l  a4: std-logic-vector ( 3  downto 0) ; 
s i g n a l  b8, c8, d8: std-logic-vector (7 downto 0 )  ; 
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0 Z 

1 a-in 

Figure 3.1 Symbol and functional table of a tri-state buffer. 

. . .  
b8 <= a4 & a 4 ;  
c8 <= a 1  & a 1  & a4  & ” 0 0 ” ;  
d8 <= b 8 ( 3  downto 0 )  & c 8 ( 3  downto 0 ) ;  

Implementation of the concatenation operator involves reconnection of the input and output 
signals and only requires “wiring.” 

One major application of the & operator is to perform shifting operations. Although both 
VHDL standard and numeric-std package define shift functions, they sometimes cannot 
be synthesized automatically. The & operator can be used for shifting a signal for a fixed 
amount, as shown in the following example: 

s i g n a l  a :  s t d - l o g i c - v e c t o r  ( 7  downto 0 )  ; 
s i g n a l  r o t ,  s h l ,  s h a :  s t d - l o g i c - v e c t o r  ( 7  downto 0 )  ; 

__ r o t a t e  a t o  r i g h t  3 b i t s  
r o t  <= a ( 2  downto 0 )  & a ( 8  downto 3 ) ;  
_- s h i f t  a t o  r i g h t  3 b i t s  and i n s e r t  0 ( l o g i c  s h i f t )  
s h l  <= “ 0 0 0 “  & a ( 8  downto 3 ) ;  
_- s h i f t  a t o  r i g h t  3 b i t s  and i n s e r t  MSB 
-- ( a r i t h m e t i c  s h i f t )  
s h a  <= a ( 8 )  & a ( 8 )  & a ( 8 )  & a ( 8  downto 3 )  ; 

An additional routing circuit is needed if the amount of shifting is not fixed. The design of 
a barrel shifter is discussed in Section 3.7.3. 

’Z’ value of sfd-logk The s td- logic  data type has a value of ’ Z ’ , which implies high 
impedance or an open circuit. It is not a normal logic value and can only be synthesized by a 
tri-state buffer. The symbol and function table of a tri-state buffer are shown in Figure 3.1. 
Operation of the buffer is controlled by an enable signal, oe (“output enable”). When it is 
’ 1 ’ , the input is passed to output. On the other hand, when it is ’ 0 ’, the y output appears 
to be an open circuit. The code of the tri-state buffer is 

y <= a - i n  when o e = ’ 1 ’  e l s e  ’ Z ’ ;  

The most common application for a tri-state buffer is to implement a bidirectional port 
to better utilize a physical I/O pin. A simple example is shown in Figure 3.2. The d i r  
signal controls the direction of signal flow of the b i  pin. When it is ’O’, the tri-state buffer 
is in the high-impedance state and the s ig -ou t  signal is blocked. The pin is used as an 
input port and the input signal is routed to the s ig- in  signal. When the d i r  signal is ’l’,  
the pin is used as an output port and the sig-out signal is routed to an external circuit. The 
HDL code can be derived according to the diagram: 

e n t i t y  bi-demo i s  
port  ( 
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Xilinx 
specific 

sig-out 
bi 

Figure 3.2 Single-buffer bidirectional I/O port. 

bi : i n o u t  std-logic ; 
. . .  

) 

sig-out <= output-expression; 

some-signal <= expression-with-sig-in; 

beg in  

. . .  

bi <= sig-out when dir=’l’ e l s e  ’Z’; 
sig-in <= bi; 
. . .  

Note that the mode of the bi port must be declared as inout for bidirectional operation. 
For a Xilinx Spartan-3 device, a tri-state buffer exists only in the I/O block (IOB) of a 

physical pin. Thus, the tri-state buffer can only be used for I/O ports that are mapped to the 
physical pins of an FPGA device. 

3.2.4 Summary 

Because of the nature of a strongly typed language, the data type frequently confuses a new 
VHDL user. Since this book is focused on synthesis, only a small set of data types and 
operators are needed. Their uses can be summarized as follows: 

0 Use the std-logic and std-logic-vector data types in entity port declaration and 

Use the ’Z’ value only to infer a tri-state buffer. 
0 Use the IEEE numeric-std package and its unsigned or signed data types for the 

internal signals that involve arithmetic operation. 
0 Use the data type casting or conversion functions in Table 3.3 to convert signals and 

expressions among the std-logic-vector and various numerical data types. 
0 Use VHDL‘s built-in integer data type and arithmetic operators for constant and 

array boundary expressions, but not for synthesis (i.e., not used as a data type for a 
signal). 

0 Embed the result of a relational operation, which is in the boolean data type, in 
routing constructs (discussed in Section 3.3). 

0 Use a user-defined two-dimensional data type for two-dimensional storage array 
(discussed in Section 4.2.3). 

for the internal signals that involve no arithmetic operations. 
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Use a user-defined enumerate data type for the symbolic states of a finite state machine 
(discussed in Chapter 5). 

3.3 ROUTING CIRCUIT WITH CONCURRENT ASSIGNMENT STATEMENTS 

The conditional signal assignment and selected signal assignment statements are concur- 
rent statements. Their behaviors are somewhat like the if and case statements of a conven- 
tional programming language. Instead of being executed sequentially, these statements are 
mapped to a routing network during synthesis. 

3.3.1 Conditional signal assignment statement 

Syntax and conceptual implementation The simplified syntax of a conditional 
signal assignment statement is 

signal-name <= value-expr-1 when boolean-expr-1 e l s e  
value-expr-2 when boolean-expr-2 e l s e  

value-expr-n ; 
. . .  

The Boolean expressions are evaluated successively in turn until one is found to be t r u e  
and the corresponding value expression is assigned to the signal. The value-exprn is 
assigned if all Boolean expressions are evaluated to be f a l s e .  

The conditional signal assignment statement implies a cascading priority routing net- 
work. Consider the following statement: 

r <= a + b + c when m = n e l s e  
a - b  when m > n e l s e  
c + 1 ;  

The routing is done by a sequence of 2-to-1 multiplexers. The diagram and truth table of a 
2-to-1 multiplexer are shown in Figure 3.3(a), and the conceptual diagram of the statement 
is shown in Figure 3.3(b). It the first Boolean condition (i.e., m=n) is t rue ,  the result of 
a+b+c is routed to r. Otherwise, the data connected to the 0 port is passed to r. We need to 
trace the path along the 0 port and check the next Boolean condition (i.e., m>n) to determine 
whether the result of a-b or c+l is routed to the output. 

Note that all the Boolean expressions and value expressions are evaluated concurrently. 
The values from the Boolean circuits set the selection signals of the multiplexers to route 
the desired value to the output. The number of cascading stages increases proportionally to 
the number of when-else clauses. A large number of when-else clauses will lead to a long 
cascading chain and introduce a large propagation delay. 

Examples We use two simple examples to demonstrate use of the conditional signal 
assignment statement. The first example is a priority encoder. The priority encoder has 
four requests, r (4), r (3), r (2), and r ( I ) ,  which are grouped as a single 4-bit r input, and 
r (4) has the highest priority. The output is the binary code of the highest-order request. 
The function table is shown in Table 3.4. The HDL code is shown in Listing 3.1. 

Priority encoder using a conditional signal assignment statement Listing 3.1 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
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L 

(a) Diagram of a 2-to-1 multiplexer 

Circuits for 
"value expressions" 

(b) Diagram of a conditional signal assignment statement 

Figure 3.3 Implementation of a conditional signal assignment statement. 

Table 3.4 Function table of a four-request priority encoder 

input output 
r pcode 

I--- 100 
0 1 - -  011 
0 0 1 -  010 
0 0 0 1  001 
0 0 0 0  000 
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Table 3.5 Truth table of a 2-to-4 decoder with enable 

input output 
en a(1) a(O) Y 

0 -  - 0000 
1 0  0 0001 
1 0  1 0010 
1 1 0 0100 
1 1 1 1000 

e n t i t y  prio-encoder i s  
p o r t  ( 

r :  i n  std-logic-vector (4 downto 1) ; 
pcode : o u t  std-logic-vector ( 2  downto 0)  

) ;  
end prio-encoder ; 

10 a r c h i t e c t u r e  cond-arch of prio-encoder i s  
b e g i n  

pcode <= 1110011 when (r(4)='1') e l s e  
" 0 1 1 "  when (r(3)='1') e l s e  
1 '0101 '  when (r(2)='1') e l s e  

IS " 0 0 1 "  when (r(l)='l ' )  e l s e  
" 000 " ; 

end cond-arch; 

The code first checks the r(4) request and assigns "100" to pcode if it is asserted. It 
continues to check the r (3) request if r (4) is not asserted and repeats the process until all 
requests are examined. 

The second example is a binary decoder. An n t 0 - 2 ~  binary decoder asserts 1 bit of the 
2n-bit output according to the input combination. The functional table of a 2-to-4 decoder 
is shown in Table 3.5. The circuit also has a control signal, en, which enables the decoding 
function when asserted. The HDL code is shown in Listing 3.2. 

Listing 3.2 Binary decoder using a conditional signal assignment statement 

l i b r a r y  ieee; 
u s e  ieee. std-logic-1164. a l l  ; 
e n t i t y  decoder-2-4 i s  

p o r t  ( 
5 a :  i n  std-logic-vector (1 downto 0 )  ; 

en: in  std-logic; 
y : o u t  std-logic-vector (3 downto 0 )  

) ;  
end decoder-2-4; 

a r c h i t e c t u r e  cond-arch of decoder-2-4 i s  
b e g i n  

I 0  

y <= " 0 0 0 0 "  when (en='O') e l s e  
"0001" when (a="OO") e l s e  

15 "0010" when (a="Ol") e l s e  
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" 0 1 0 0 "  when (a=I'lO'l) e l s e  
" 1 0 0 0 " ;  -- a = " ] ] "  

end cond-arch; 

The code first checks whether en is not asserted. If the condition is false (i.e., en is ' 1 '), 
it tests the four binary combinations in sequence. 

3.3.2 Selected signal assignment statement 

Syntax and conceptual implementation The simplified syntax of a selected signal 
assignment statement is 

w i t h  sel s e l e c t  
sig <= value-expr-1 when choice-1, 

value-expr-2 when choice-2, 
value-expr-3 when choice-3, 

value-expr-n when o t h e r s  ; 
. . .  

The selected signal assignment statement is somewhat like a case statement in a traditional 
programming language. It assigns an expression to a signal according to the value of the 
s e l  signal. A choice (i.e., choice-i) must be a valid value or a set of valid values of s e l .  
The choices have to be mutually exclusive (i.e., no value can be used more than once) and 
all inclusive (i.e., all values must be used). In other words, all possible values of s e l  must 
be covered by one and only one choice. The reserved word, others, is used in the end to 
cover unused values. Since the s e l  signal usually has the std-logic-vector data type, 
the others term is always needed to cover the unsynthesizable values ( 'XI, 'U' , etc.). 

The selected signal assignment statement implies a multiplexing structure. Consider the 
following statement: 

s i g n a l  sel : std-logic-vector (1 downto 0 )  ; 

w i t h  sel s e l e c t  
. . .  

r <= a + b + c when " O O " ,  
a - b  when I' 10 I' , 
c + l  when o t h e r s ;  

For synthesis purposes, the sel signal can assume four possible values: "OO", "01". "lo", 
and "1 1". It implies a 22-to-1 multiplexer with s e l  as the selection signal. The diagram and 
functional table of the 2'-to-1 multiplexer are shown in Figure 3.4(a), and the conceptual 
diagram of the statement is shown in Figure 3.4(b). The evaluated result of a+b+c is routed 
to r when s e l  is "OO", the result of a-b is routed when s e l  is "10", and the result of c+ l  
is routed when s e l  is "01" or "1 1". 

Again, note that all value expressions are evaluated concurrently. The s e l  signal is used 
as the selection signal to route the desired value to the output. The width (i.e., number of 
input ports) of the multiplexer increases geometrically with the number of bits of the s e l  
signal. 

Example We use the same encoder and decoder circuits to illustrate use of the selected 
signal assignment statement. The code for the priority encoder is shown in Listing 3.3. The 
entity declaration is identical to that in Listing 3.1 and is omitted. 
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(a) Diagram and functional table of a 4-to-1 multiplexer 
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(b) Diagram of a selected signal assignment statement 

Figure 3.4 Implementation of a selected signal assignment statement. 

Listing 3.3 Priority encoder using a selected signal assignment statement 

a r c h i t e c t u r e  sel-arch of prio-encoder i s  
b e g i n  

w i t h  r s e l e c t  
pcode <= " 1 0 0 "  when " 1 0 0 0 " l " 1 0 0 1 " 1 " 1 0 1 0 " 1 " 1 0 1 1 " 1  

" 0 1 1 "  when " 0 1 0 0 "  I"01Ol1' I " O 1 1 0 "  I " O 1 1 1 " ,  
" 0 1 0 "  when " 0 0 1 0 "  I " O O 1 1 " ,  
'I 0 0 1 I' when I' 0 0 0 1 'I , 
" 0 0 0 "  when o t h e r s  ; -- r="0000"  

5 '1 1100 " I " 1101 '1 I " 11 10 1' I " 11 11 , 

10 end sel-arch; 

The code exhaustively lists all possible combinations of the r signal and the corresponding 
output values. Note that the I symbol is used if the choice is more than one value. 

The code for the 2-to-4 decoder is shown in Listing 3.4. 

Listing 3.4 Binary decoder using a selected signal assignment statement 

a r c h i t e c t u r e  sel-arch of decoder-2-4 i s  

b e g i n  
s i g n a l  s :  std-logic-vector (2 downto 0)  ; 

s <= en & a ;  
5 w i t h  s s e l e c t  

y <= 1 ~ 0 0 0 0 "  when " 0 0 0 "  I " O O 1 "  I " 0 1 0 "  I t l O 1 l " ,  
l t O O O 1 t '  when " 1 0 0 1 1 ,  
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" 0 0 1 0 "  when " 1 0 1 " ,  
1 1 0 1 0 0 "  when " l l O " ,  

10 " 1 0 0 0 "  when o t h e r s ;  -- s = " I l l "  
end sel-arch ; 

We concatenate en and a to form a 3-bit signal, s, and use it as the selection signal. The 
remaining code again exhaustively lists all possible combinations and the corresponding 
output values. 

3.4 MODELING WITH A PROCESS 

3.4.1 Process 

To facilitate system modeling, VHDL contains a number of sequential statements, which 
are executed in sequence. Since their behavior is different from that of a normal concurrent 
circuit model, these statements are encapsulated inside a process. A process itself is a 
concurrent statement. It can be thought of as a black box whose behavior is described by 
sequential statements. 

Sequential statements include a rich variety of constructs, but many of them don't have 
clear hardware counterparts. A poorly coded process frequently leads to unnecessarily 
complex implementation or cannot be synthesized at all. Detailed discussion of sequential 
statements and processes is beyond the scope of this book. For synthesis, we restrict the 
use of the process to two purposes: 

0 Describe routing structures with i f  and case statements. 
0 Construct templates for memory elements (discussed in Chapter 4). 

The simplified syntax of a process with a sensitivity list is 

process(sensitivity-list) 
beg in  

sequential statement; 
sequential statement; 

. . .  
end p r o c e s s ;  

The sensitivity-list is a list of signals to which the process responds (Le., is "sensitive 
to"). For a combinational circuit, all the input signals should be included in this list. The 
body of a process is composed of any number of sequential statements. 

3.4.2 Sequential signal assignment statement 

The simplest sequential statement is a sequential signal assignment statement. The simpli- 
fied syntax is 

sig <= value-expression; 

The statement must be encapsulated inside a process. 
Although its syntax is similar to that of a simple concurrent signal assignment statement, 

the semantics are different. When a signal is assigned multiple times inside a process, only 
the last assignment takes effect. For example, the code segment 

p r o c e s s  (a, b) 
beg in  
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c <= a and b ;  
c <= a or b ;  

end p r o c e s s ;  

is the same as 

p r o c e s s  (a, b) 
beg in  

end p r o c e s s ;  
c <= a or b ;  

On the other hand, if they are concurrent signal assignment statements, as in 

-- n o t  within a p rocess  
c <= a and b ;  
c <= a or  b ;  

the code infers an and cell and an or cell, whose outputs are tied together. It is not allowed 
in most device technology and thus is a design error. 

The semantics of assigning a signal multiple times inside a process is subtle and can 
sometimes be error-prone. Detailed explanations can be found in the references cited in the 
Bibliographic section. We use multiple assignments only to avoid unintended memory, as 
discussed in Section 3.5.4. 

3.5 ROUTING CIRCUIT WITH IF AND CASE STATEMENTS 

If and case statements are two other commonly used sequential statements. In synthesis, 
they can be used to describe routing structures. 

3.5.1 If statement 

Syntax and conceptual implementation The simplified syntax of an if statement is 

i f  boolean-expr- 1 then 
sequential-statements; 

e l s i f  boolean-expr-2 then 
sequential-statements; 

e l s i f  boolean-expr-3 then 
sequent ial-statement s ; 

. . .  
e l s e  

end i f  ; 
sequential-statements; 

It has one then branch, one or more optional elsij" branches, and one optional else branch. 
The Boolean expressions are evaluated sequentially until an expression is evaluated as 
t r u e  or the else branch is reached, and the statements in the corresponding branch will be 
executed. 

An if statement and a concurrent conditional signal assignment statement are somewhat 
similar. The two statements are equivalent if each branch of the if statement contains only 
a single sequential signal assignment statement. For example, the previous statement 

r <= a + b + c when m = n e l s e  
a - b  when m > 0 e l s e  
c + 1 ;  
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can be rewritten as 

p r o c e s s ( a , b , c , m , n )  
b e g i n  

i f  m = n t h e n  
r <= a + b + c ;  

e l s i f  m > 0 t h e n  
r <= a - b ;  

e l s e  

e n d  i f  ; 
r <= c + 1; 

e n d  ; 

As in a conditional signal assignment statement, the if statement infers a similar priority 
routing structure during synthesis. 

Example The codes of the same priority encoder and written with an if statement are 
shown in Listings 3.5 and 3.6. They are similar to those in Listings 3.1 and 3.2.  Note that 
the if statement must be encapsulated inside a process. 

Listing 3.5 Priority encoder using an if statement 

a r c h i t e c t u r e  i f - a r c h  o f  p r i o - e n c o d e r  i s  
b e g i n  

p r o c e s s  (r) 
b e g i n  

5 i f  ( r ( 4 ) = ' 1 ' )  t h e n  
p c o d e  <= " 1 0 0 " ;  

e l s i f  ( r ( 3 ) = ' l ' ) t h e n  
p c o d e  <= " 0 1 1 " ;  

e l s i f  ( r ( 2 ) = ' l ' ) t h e n  
p c o d e  <= " 0 1 0 " ;  

e l s i f  ( r ( l ) = ' l J )  t h e n  
p c o d e  <= " 0 0 1 " ;  

e l s e  
p c o d e  <= " 0 0 0 " ;  

1s e n d  i f ;  
e n d  p r o c e s s ;  

e n d  i f - a r c h ;  

10 

5 

10 

Listing 3.6 Binary decoder using an if statement 

a r c h i t e c t u r e  i f - a r c h  o f  d e c o d e r - 2 - 4  i s  b e g i n  
p r o c e s s  ( e n ,  a )  
b e g i n  

i f  (en='O') t h e n  
y <= " 0 0 0 0 " ;  

e I s i f ( a = "  00  'I ) t h e n  
y <= " 0 0 0 1  ! I ;  

e 1 s i f  ( a = " 0 1  I' ) t h e n  
y <= " 0 0 1 0 " ;  

e l s i f  ( a = "  1 0 " )  t h e n  
y <= " 0 1 0 0 " ;  

e l s e  
y <= " 1 0 0 0 " ;  
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end i f ;  
1 5  end p r o c e s s ;  

end i f - a r c h ;  

3.5.2 Case statement 

Syntax and conceptual implementation The simplified syntax of a case statement 
is 

c a s e  s e l  i s  
when c h o i c e - 1  = >  

when c h o i c e - 2  => 
s e q u e n t i a l  s t a t e m e n t s ;  

s e q u e n t i a l  s t a t e m e n t s ;  

when o t h e r s  => 
s e q u e n t i a l  s t a t e m e n t s  ; 

end c a s e ;  

A case statement uses the s e l  signal to select a set of sequential statements for execution. 
As in a selected signal assignment statement, a choice (i.e., choice-i) must be a valid 
value or a set of valid values of s e l ,  and the choices have to be mutually exclusive and all 
inclusive. Note that the others term at the end covers the unused values. 

A case statement and a concurrent selected signal assignment statement are somewhat 
similar. The two statements are equivalent if each branch of the case statement contains 
only a single sequential signal assignment statement. For example, the previous statement 

with s e l  s e l e c t  
r <= a + b f c when " O O " ,  

a - b  when l t l O " ,  
c + l  when o t h e r s ;  

can be rewritten as 

p r o c e s s ( a , b , c , s e l )  
beg in  

c a s e  s e l  i s  
when ' l o o t 1  = >  

r <= a f b f c ;  
when " 1 0 "  = >  

r <= a - b ;  
when o t h e r s  = >  

r <= c + 1 ;  
end c a s e ;  

end ; 

As in a selected signal assignment statement, the case statement infers a similar multiplexing 
structure during synthesis. 

Example The codes of the same priority encoder and decoder written with a case state- 
ment are shown in Listings 3.7 and 3.8. As in Listings 3.3 and 3.4, the codes exhaustively 
lists all possible input combinations and the corresponding output values. 
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Listing 3.7 Priority encoder using a case statement 

a r c h i t e c t u r e  c a s e - a r c h  of  p r i o - e n c o d e r  i s  
beg in  

p r o c e s s  ( r )  
beg in  

5 c a s e  r i s  

in 

3 

when '11000" 1 '1001 '1  I " 1 0 1 0 "  
" 1 1 0 0 "  " 1 1 0 1 " 1 " 1 1 1 0 "  

p c o d e  <= " 1 0 0 " ;  
when " 0 1 0 0 "  " 0 1 0 1 "  I " 0 1 1 0 "  

p c o d e  <= " 0 1 1 " ;  
when " 0 0 1 0 "  l " 0 0 1 1 "  = >  

p c o d e  <= " 0 1 0 " ;  
when 'I 00 0 1 I' = > 

p c o d e  <= " 0 0 1 " ;  
when o t h e r s  = >  

p c o d e  <= " 0 0 0 " ;  
end c a s e ;  

end p r o c e s s ;  
end c a s e - a r c h ;  

1' 101  1 " I 
"1111" => 

Listing 3.8 Binary decoder using a case statement 

a r c h i t e c t u r e  c a s e - a r c h  o f  d e c o d e r - 2 - 4  i s  

beg in  
s i g n a l  s :  s t d - l o g i c - v e c t o r  ( 2  downto 0) ; 

s <= e n  & a ;  
5 p r o c e s s ( s )  

begin  
case  s i s  

when " 0 0 0 "  l " O O 1 "  I " O 1 0 "  I " 0 1 1 "  => 
y <= " 0 0 0 1 "  

when " 1 0 0 "  = >  
y <= " 0 0 0 1 "  

when " 1 0 1 "  => 
y <= " 0 0 1 0 "  

when " l l O r t  = >  
y <= " 0 1 0 0 "  

when o t h e r s  = >  
y <= " 1 0 0 0 " ;  

end c a s e ;  
end p r o c e s s ;  

20 end c a s e - a r c h  ; 

3.5.3 Comparison to concurrent statements 

The preceding subsections show that the simple if and case statements are equivalent to the 
conditional and selected signal assignment statements. However, an if or case statement 
allows any number and any type of sequential statements in their branches and thus is more 
flexible and versatile. Disciplined use can make the code more descriptive and even make 
a circuit more efficient. 
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This can be illustrated by two code segments. First, consider a circuit that sorts the 
values of two input signals and routes them to the large and small outputs. This can be 
done by using two conditional signal assignment statements: 

l a r g e  <= a when a > b e l s e  

s m a l l  <= b when a > b e l s e  
b ;  

a ;  

Since there are two relation operators (ie.,  two >) in code, synthesis software may infer 
two greater-than comparators. The same function can be coded by a single if statement: 

p r o c e s s  ( a ,  b )  
beg in  

i f  a > b then 
l a r g e  <= a ;  
s m a l l  <= b ;  

l a r g e  <= b ;  
small <= a ;  

e l s e  

end i f  ; 
end ; 

The code consists of only a single relational operator. 

the output. This can be clearly described by nested two-level if statements: 
Second, let us consider a circuit that routes the maximal value of three input signals to 

p r o c e s s  ( a , b , c )  
beg in  

i f  ( a  > b )  then 
i f  ( a  > c )  then 

max <= a ;  
e l s e  

max <= c ;  
end i f  ; 

i f  ( b  > c )  then 
max <= b ;  

e l s e  
max <= c ;  

end i f  ; 

e l s e  

end i f  ; 
end p r o c e s s ;  

We can translate the if statement to a “single-level” conditional signal assignment statement: 

max <= a when ( ( a  > b )  and ( a  > c ) )  e l s e  
c when ( a  > b )  e l s e  
b when ( b  > c )  e l s e  
c ;  

Since no nesting is allowed, the code is less intuitive. If concurrent statements must be 
used, a better alternative is to describe the circuit with three conditional signal assignment 
statements: 

s i g n a l  ac-max , bc-max: s t d - l o g i c ;  
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ac-max <= a when ( a  > c )  e l s e  

bc-max <= b when ( b  > c )  e l s e  

max <= ac-max when ( a  > b )  e l s e  

c ;  

c ;  

bc-max ; 

3.5.4 Unintended memory 

Although a process is flexible, a subtle error in code may infer incorrect implementation. 
One common problem is the inclusion of intended memory in a combinational circuit. The 
VHDL standard specifies that a signal will keep its previous value if it is not assigned in 
a process. During synthesis, this infers an internal state (via a closed feedback loop) or a 
memory element (such as a latch). 

To prevent unintended memory, we should observe the following rules while developing 
code for a combinational circuit: 

0 Include all input signals in the sensitivity list. 
0 Include the else branch in an if statement. 
0 Assign a value to every signal in every branch. 

For example, the following code segment tries to generate a greater-than (i.e., g t )  and 
an equal-to (ie. ,  eq) output signal: 

p r o c e s s  ( a )  -- b m i s s i n g  f r o m  s e n s i t i v i t y  l i s t  
begin  

i f  ( a  > b )  then -- e q  n o t  a s s i g n e d  i n  t h i s  b r a n c h  

e l s i f  ( a  = b )  then -- g t  n o t  a s s i g n e d  in t h i s  b r a n c h  

end i f  ; -- e l s e  b r a n c h  is o m i t t e d  

g t  <= )l'; 

e q  <= '1); 

end p r o c e s s ;  

Although the syntax is correct, it violates all three rules. For example, g t  will keep its 
previous value when the a>b expression is false and a latch will be inferred accordingly. 
The correct code should be 

p r o c e s s  ( a ,  b )  
beg in  

i f  ( a  > b )  then 

e q  <= ) O ' ;  
gt <= ' 1 ' ;  

e l s i f  ( a  = b )  then 
gt <= '0'; 
e q  <= ' 1 ' ;  

e l s e  
gt <= ' 0 ' ;  
e q  <= 'Q'; 

end i f  ; 
end p r o c e s s ;  

Since multiple sequential signal assignment statements are allowed inside a process, we 
can correct the problem by assigning a default value in the beginning: 
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p r o c e s s  (a, b) 
b e g i n  

gt <= ’ 0 ’ ;  
eq <= ’ 0 ’ ;  
i f  ( a  > b) then 

gt <= ’1’; 
e l s i f  (a = b) then 

end i f  ; 
end p r o c e s s ;  

eq <= ’ 1 ’ ;  

__ a s s i g n  d e f a u l t  v a l u e  

The g t  and eq signals assume ’ 0 ) if they are not assigned a value later. As discussed 
earlier, assigning a signal multiple times inside a process can be error-prone. For synthesis, 
this should not be used in other context and should be considered as shorthand to satisfy 
the “assigning all signals in all branches” rule. 

3.6 CONSTANTS AND GENERICS 

3.6.1 Constants 

HDL code frequently uses constant values in expressions and array boundaries. One good 
design practice is to replace the “hard literals” with symbolic constants. It makes code clear 
and helps future maintenance and revision. The constant declaration can be included in the 
architecture’s declaration section, and it syntax is 

c o n s t a n t  const-name : data-type : = value-expression; 

For example, we can declare two constants as 

c o n s t a n t  DATA-BIT: integer : =  8; 
c o n s t a n t  DATA-RANGE: integer : =  2**DATA_BIT - 1 ;  

The constant expression is evaluated during preprocessing and thus requires no physical 
circuit. In this book, we use capital letters for constants. 

The use of a constant can best be explained by an example. Assume that we want to 
design an adder with the carry-out bit. One way to do it is to extend the input by 1 bit and 
then perform regular addition. The MSB of the summation becomes the carry-out bit. The 
code is shown in Listing 3.9. 

Listing 3.9 Adder using a hard literal 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  
e n t i t y  add-w-carry i s  

ieee . numeric-std. a l l  ; 

5 p o r t (  
a ,  b :  i n  std-logic-vector(3 downto 0); 
cout : o u t  std-logic ; 
sum: o u t  std-logic-vector (3 downto 0 )  

) ;  
in end add-w-carry ; 

a r c h i t e c t u r e  hard-arch of  add-w-carry i s  
s i g n a l  a-ext , b-ext , sum-ext : unsigned(4 downto 0) ; 
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b e g i n  
1 5  a-ext <= unsigned(’0’ & a); 

b-ext <= unsigned( ’0’ & b) ; 
sum-ext <= a-ext + b-ext; 
sum <= std-logic-vector (sum-ext (3 downto 0 ) )  ; 
cout <= sum-ext(4); 

20 end hard-arch; 

The code is for a 4-bit adder. Hard literals, such as 3 and 4, are used for the ranges, as in 
unsigned(4 downto 0) and sum-ext (3 downto O ) ,  and the MSB, as in sum-ext (4). If 
we want to revise the code for an 8-bit adder, these literals have to be modified manually. 
This will be a tedious and error-prone process if the code is complex and the literals are 
referred to in many places. 

To improve the readability, we can use a symbolic constant, N ,  to represent the number 
of bits of the adder. The revised architecture body is shown in Listing 3.10. 

Listing 3.10 Adder using a constant 

a r c h i t e c t u r e  const-arch of add-w-carry i s  
c o n s t a n t  N :  integer : =  4; 
s i g n a l  a-ext , b-ext , sum-ext : unsigned(N downto 0 )  ; 

b e g i n  
5 a-ext <= unsigned(’0’ & a); 

b-ext <= unsigned(’0’ & b); 
sum-ext <= a-ext + b-ext; 
sum <= std-logic-vector (sum-ext ( N - l  downto 0 ) )  ; 
cout <= sum-ext(N); 

in end const-arch; 

The constant makes the code easier to understand and maintain. 

3.6.2 Generics 

VHDL provides a construct, known as a generic, to pass information into an entity and 
component. Since a generic cannot be modified inside the architecture, it functions some- 
what like a constant. A generic is declared inside an entity declaration, just before the port 
declaration: 

e n t i t y  entity-name i s  
g e n e r i c  ( 

generic-name : data-type : = def ault-values ; 
generic-name : data-type : = def ault-values ; 

generic-name : data-type : = def ault-values 
I 

p o r t  ( 
port-name : mode data-type ; 

1 ;  
end entity-name; 

For example, the previous adder code can be modified to use the adder width as a generic, 
as shown in Listing 3.1 1. 
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Listing 3.11 Adder using a generic 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a i l  ; 
e n t i t y  gen-add-w-carry i s  

j g e n e r i c  (N: integer :=4); 
port  ( 

a ,  b: in  std-logic-vector(N-1 downto 0 ) ;  
cout : out std-logic ; 
sum: out  std-logic-vector (N-1 downto 0)  

10 1 ; 
end gen-add-w-carry ; 

a r c h i t e c t u r e  arch of gen-add-w-carry i s  
s i g n a l  a-ext , b-ext , sum-ext : unsigned(N downto 0 )  ; 

a-ext <= unsigned(’0’ & a); 
b-ext <= unsigned(’0’ & b); 
sum-ext <= a-ext + b-ext; 
sum <= std-logic-vector (sum-ext (N-1 downto 0 ) )  ; 

i j  begin  

20 cout <= sum-ext(N); 
end arch; 

The N generic is declared in line 5 with a default value of 4. After N is declared, it can be 
used in the port declaration and architecture body, just like a constant. 

If the adder is later used as a component in other code, we can assign the desired value to 
the generic in component instantiation. This is known as generic mapping. The default value 
will be used if generic mapping is omitted. Use of the generic in component instantiation 
is shown below. 

s i g n a l  a4, b4, sum4: unsigned(3 downto 0); 
s i g n a l  a8, b8, sum8: unsigned(7 downto 0 ) ;  
s i g n a l  a16, b16, suml6: unsigned(l5 downto 0 ) ;  
s i g n a l  c4, c8, c16: std-logic; 

__ i n s t a n t i a t e  8 -  b i t  a d d e r  
adder-8-unit: work.gen-add-w-carry(arch) 

g e n e r i c  map ( N = >8) 
port  map(a=>a8, b=>b8, cout=>c8, sum=>sum8)) ; 

__ i n s t a n t i a t e  16 -  b i t  a d d e r  
adder-16-unit: work.gen-add-w-carry arch) 

g e n e r i c  map (N = > 16) 
port  map(a=>al6, b=>b16, cout=>c 6 ,  sum=>suml6)) ; 

__ i n s t a n t i a t e  4 -  b i t  a d d e r  
-- ( g e n e r i c  m a p p i n g  o m i t t e d ,  d e f a u l t  v a l u e  4 u s e d )  
adder-4-unit: work.gen-add-w-carry(arch) 

port  map(a=>a4, b=>b4, cout=>c4, sum=>sum4)) ; 

A generic provides a mechanism to create scalable code, in which the “width” of a circuit 
can be adjusted to meet a specific need. This makes code more portable and encourages 
design reuse. 
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(a) Diagram of a seven-segment LED display 

(b) Hexadecimal digit patterns 

Figure 3.5 Seven-segment LED display and hexadecimal patterns. 

3.7 DESIGN EXAMPLES 

3.7.1 

The sketch of a seven-segment LED display is shown in Figure 3.5(a). It consists of seven 
LED bars and a single round LED decimal point. On the prototyping board, the seven- 
segment LED is configured as active low, which means that an LED segment is lit if the 
corresponding control signal is '0'. 

A hexadecimal digit to seven-segment LED decoder treats a 4-bit input as a hexadecimal 
digit and generates appropriate LED patterns, as shown in Figure 3.5(b). For completeness, 
we assume that there is also a 1-bit input, dp, which is connected directly to the decimal 
point LED. The LED control signals. dp, a, b, c, d. e, f ,  and g, are grouped together as a 
single 8-bit signal, sseg. The code is shown in Listing 3.12. It uses one selected signal 
assignment statement to list all the desired patterns for the seven LSBs of the sseg signal. 
The MSB is connected to dp. 

Hexadecimal digit to seven-segment LED decoder 

Listing 3.12 Hexadecimal digit to seven-segment LED decoder 

l i b r a r y  ieee; 
u s e  ieee. std-logic-1164. a l l  ; 
e n t i t y  hex-to-sseg i s  

p o r t  ( 
hex: i n  std-logic-vector (3 downto 0)  ; 
dp: i n  std-logic; 
sseg: o u t  std-logic-vector (7 downto 0 )  

1 ;  
end hex-to-sseg; 

a r c h i t e c t u r e  arch of hex-to-sseg i s  
b e g i n  

I {I 

w i t h  hex s e l e c t  
sseg(6 downto 0 )  <= 

15 'I 0000001 I' when 'I 0000 I' , 
I' 1 0 0 1 1 1 1 I' when " 0 0 0 1 'I , 
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25 

'I 0 0  100 10 'I when I' 00 10 I' , 
'I 0 0 0 0 1 10 'I when 'I 0 0 1 1 , 
'I 1 0 0 1 1 0 0 when I' 0 1 0 0 'I , 
' I  0 100 100 'I when 'I 0 10 1 'I , 
'I 0 10 0 0 0 0 I' when ' I  0 1 10 I' , 
'I 0 0 0 1  I 1  1 'I when It 0 1  I 1  'I , 
" 0 0 0 0 0 0 0 ~ ~  when " 1 0 0 0 " ,  
'I 0 0 0 0 1 0 0 I '  when 'I 1 0 0 1 I' , 
" 0 0 0 1 0 0 0 "  when " 1 0 1 0 " ,  ---a 
" 1 1 0 0 0 0 0 "  when "1011", -4 
"0110001"  when " I l O O " ,  --c 
" 1 0 0 0 0 1 0 "  when " 1 1 0 1 " ,  --d 
" 0 1 1 0 0 0 0 "  when " I l l O " ,  ---e 

in " 0 1 1 1 0 0 0 "  when o t h e r s  ; --f 
sseg(7) <= d p ;  

end arch; 

There are four seven-segment LED displays on the prototyping board. To save the 
number of FPGA chip's I/O pins, a time-multiplexing scheme is used. The block diagram 
of the time-multiplexing module, disp-mux, is shown in Figure 3.6(a). The inputs are inO, 
inl, in2, and in3, which correspond to four 8-bit seven-segment LED patterns, and the 
outputs are an, which is a 4-bit signal that enables the four displays individually, and sseg, 
which is the shared 8-bit signal that controls the eight LED segments. The circuit generates 
a properly timed enable signal and routes the four input patterns to the output alternatively. 
The design of this module is discussed in Chapter 4. For now, we just treat it as a black box 
that takes four seven-segment LED patterns, and instantiate it in the code. 

Testing circuit We use a simple 8-bit increment circuit to verify operation of the decoder. 
The sketch is shown in Figure 3.6(b). The s w  input is the 8-bit switch of the prototyping 
board. It is fed to an incrementor to obtain sw+l. The original and incremented s w  signals 
are then passed to four decoders to display the four hexadecimal digits on seven-segment 
LED displays. The code is shown in Listing 3.13. 

Listing 3.13 Hex-to-LED decoder testing circuit 

l i b r a r y  ieee; 
u s e  ieee.std-logic-ll64.all; 
use 
e n t i t y  hex-to-sseg-test i s  

ieee . numeric-std. a l l  ; 

5 p o r t (  
clk: i n  std-logic; 
s w :  i n  std-logic-vector ( 7  downto 0) ; 
an: o u t  std-logic-vector (3 downto 0) ; 
sseg : o u t  std-logic-vector (7  downto 0 )  

l o  ) ;  
end hex-to-sseg-test; 

a r c h i t e c t u r e  arch of hex-to-sseg-test i s  
s i g n a l  inc : std-logic-vector (7 downto 0) ; 

I (  s i g n a l  l e d 3 ,  led2, led1 , ledO: std-logic-vector (7 downto 0) ; 
b e g i n  

-_ i n c r e m e n t  i n p u t  
inc <= std-logic-vector(unsigned(sw) + 1); 
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Figure 3.6 LED time-multiplexing module and decoder testing circuit. 
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2 0  -- i n s t a n t i a t e  f o u r  i n s t a n c e s  of h e x  d e c o d e r s  
__ i n s t a n c e  f o r  4 LSBs  of  i n p u t  
s s e g - u n i t - 0 :  e n t i t y  work .  h e x - t o - s s e g  

-_ i n s t a n c e  f o r  4 MSBs of i n p u t  
2 5  s s e g - u n i t - 1  : e n t i t y  work .  h e x - t o - s s e g  

p o r t  m a p ( h e x = > s w ( 3  downto  0)  , dp = > ' O ' ,  s s e g = > l e d O ) ;  

p o r t  m a p ( h e x = > s w ( 7  downto  4 ) ,  dp = > ' O ' ,  s s e g = > l e d l ) ;  
-- i n s t a n c e  f o r  4 L S B s  o f  i n c r e m e n t e d  v a l u e  
s s e g - u n i t - 2 :  e n t i t y  work .  h e x - t o - s s e g  

p o r t  m a p ( h e x = > i n c ( 3  downto O ) ,  dp =>'1', s s e g = > l e d 2 ) ;  
20 -- i n s t a n c e  for 4 MSBs of  i n c r e m e n t e d  v a l u e  

s s e g - u n i t - 3 :  e n t i t y  work .  h e x - t o - s s e g  
p o r t  m a p ( h e x = > i n c ( 7  downto 4 ) ,  dp = > ' 1 ' ,  s s e g = > l e d 3 ) ;  

__ i n s t a n t i a t e  7 - s e g  LED d i s p l a y  t i m e - m u l t i p l e x i n g  m o d u l e  
15 d i s p - u n i t :  e n t i t y  work .d i sp -mux  

p o r t  map( 
c l k = > c l k ,  r e s e t = > ' O '  , 
i n O = > l e d O ,  i n l = > l e d l ,  i n 2 = > l e d 2 ,  i n 3 = > l e d 3 ,  
a n = > a n ,  s s e g = > s s e g )  ; 

10 end a r c h ;  

We can follow the procedure in Chapter 2 to synthesize and implement the circuit on 
the prototyping board. Note that the disp-rnux.vhd file, which contains the code for the 
time-multiplexing module, and the ucf constraint file must be included in the Xilinx ISE 
project during synthesis. 

3.7.2 Sign-magnitude adder 

An integer can be represented in sign-magnitude format, in which the MSB is the sign and 
the remaining bits form the magnitude. For example, 3 and -3 become "001 1" and "101 1" 
in 4-bit sign-magnitude format. 

A sign-magnitude adder performs an addition operation in this format. The operation 
can be summarized as follows: 

0 If the two operands have the same sign, add the magnitudes and keep the sign. 
0 If the two operands have different signs, subtract the smaller magnitude from the 

One possible implementation is to divide the circuit into two stages. The first stage sorts 
the two input numbers according to their magnitudes and routes them to the max and min 
signals. The second stage examines the signs and performs addition or subtraction on the 
magnitude accordingly. Note that since the two numbers have been sorted, the magnitude 
of max is always larger than that of min and the final sign is the sign of max. 

The code is shown in Listing 3.14, which realizes the two-stage implementation scheme. 
For clarity, we split the input number internally and use separate sign and magnitude signals. 
A generic, N, is used to represent the width of the adder. Note that the relevant magnitude 
signals are declared as unsigned to facilitate the arithmetic operation, and type conversions 
are performed at the beginning and end of the code. 

larger one and keep the sign of the number that has the larger magnitude. 
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Listing 3.14 Sign-magnitude adder 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee . numeric-std. a l l  ; 
e n t i t y  sign-mag-add i s  

5 g e n e r i c  (N: integer : = 4 )  ; -- d e f a u l t  4 b i t s  
p o r t  ( 

a ,  b: i n  std-logic-vector(N-1 downto 0 ) ;  
sum: o u t  std-logic-vector (N-1 downto 0)  

1 ;  
lo end sign-mag-add ; 

a r c h i t e c t u r e  arch of  sign-mag-add i s  
s i g n a l  mag-a , mag-b : unsigned (N-2 downto 0 )  ; 
s i g n a l  mag-sum , max , min: unsigned (N-2 downto 0)  ; 

1 5  s i g n a l  sign-a , sign-b , sign-sum: std-logic; 
b e g i n  

mag-a <= unsigned (a(N-2 downto 0 )  ; 
mag-b <= unsigned(b(N-2 downto 0 ) )  ; 
sign-a <= a(N-1); 

20 sign-b <= b(N-1); 
-_ s o r t  a c c o r d i n g  t o  m a g n i t u d e  
p r o c e s s  (mag-a ,mag-b , sign-a, sign-b) 
b e g i n  

i f  mag-a > mag-b then 
25 max <= mag-a; 

min <= mag-b; 
sign-sum <= sign-a; 

max <= mag-b; 
min <= mag-a; 
sign-sum <= sign-b; 

e l s e  

end i f  ; 
end p r o c e s s ;  
-- a d d / s u b  m a g n i t u d e  

ii mag-sum <= max + min when sign.-a=sign-b e l s e  
max - min; 

--form o u t p u t  
sum <= std-logic-vector(sign-sum & mag-sum); 

end arch; 

Testing circuit We use a 4-bit sign-magnitude adder to verify the circuit operation. The 
sketch of the testing circuit is shown in Figure 3.7. The two input numbers are connected to 
the 8-bit switch, and the sign and magnitude are shown on two seven-segment LED displays. 
Two pushbuttons are used as the selection signal of a multiplexer to route an operand or the 
sum to the display circuit. The rightmost even-segment LED shows the 3-bit magnitude, 
which is appended with a '0' in front and fed to the hexadecimal to seven-segment LED 
decoder. The next LED displays the sign bit, which is blank for the plus sign and is lit 
with a middle LED segment for the minus sign. The two LED patterns are then fed to the 
time-multiplexing module, dispmux, as explained in Section 3.7.1. The code is shown in 
Listing 3.15. 
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Figure 3.7 Sign-magnitude adder testing circuit. 
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Listing 3.15 Sign-magnitude adder testing circuit 

- sseg 
- an 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
u s e  ieee . numeric-std. a l l  ; 
e n t i t y  sm-add-test i s  

5 p o r t (  
clk: i n  std-logic; 
btn: i n  std-logic-vector (1 downto 0) ; 
sw: i n  std-logic-vector ( 7  downto 0) ; 
an: o u t  std-logic-vector (3 downto 0) ; 

i n  sseg : o u t  std-logic-vector ( 7  downto 0) 
) ;  

end sm-add-test; 

a r c h i t e c t u r e  arch of sm-add-test i s  
1 5  s i g n a l  sum, mout , oct : std-logic-vector (3 downto 

s i g n a l  led3, led2, led1 , led0 : std-logic-vector ( 

__ i n s t a n t i a t e  a d d e r  
sm-adder-unit : e n t i t y  work. sign-mag-add 

20 g e n e r i c  map ( N = >4) 

b e g i n  

p o r t  map(a=>sw(3 downto 0) , b=>sw(7 downto 4) 
sum=>sum); 

- - 3 - t o  - I  m u x  t o  s e l e c t  a n u m b e r  t o  d i s p l a y  
2:  with btn s e l e c t  

mout <= sw(3 downto 0) when " 0 0 " ,  -- a 
sw(7 downto 4) when " O l " ,  -- b 

sum sum when o t h e r s ;  _- 

0) ; 
downto 0); 

30 -- m a g n i t u d e  d i s p l a y e d  on r i g h t m o s t  7 - s e g  LED 
act <= '0' & mout (2 downto 0) ; 
sseg-unit : e n t i t y  work. hex-to-sseg 

_- s i g n  d i s p l a y e d  on 2 n d  7 - s e g  LED 
p o r t  map(hex=>oct , dp=> ' 0 '  , sseg=>ledO) ; 
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led1 <= "11111110" when mout(3)='l' e l s e  -- m i d d l e  b a r  

-- o t h e r  two 7 - s e g  LEDs b l a n k  
led2 <= " 1 1 1 1 1 1 1 1 " ;  
led3 <= "11111111"; 

" 11 1 1  1 1  11 " ; _- b l a n k  

40 

-- in s t a n t i a t e 
disp-unit : e n t i t y  work. disp-mux 

p o r t  map( 

d i s p l a y  m u  1 t i p  1 e x e  r 

clk=>clk, reset=>'O', 

an=>an, sseg=>sseg) ; 
4% inO=>ledO, inl=>ledl, in2=>led2, in3=>led3, 

end arch; 

3.7.3 Barrel shifter 

Although VHDL has built-in shift functions, they sometimes cannot be synthesized auto- 
matically. In this subsection, we examine an 8-bit barrel shifter that rotates an arbitrary 
number of bits to right. The circuit has an 8-bit data input, a, and a 3-bit control signal, amt, 
which specifies the amount to be rotated. The first design uses a selected signal assignment 
statement to exhaustively list all combinations of the amt signal and the corresponding 
rotated results. The code is shown in Listing 3.16. 

Listing 3.16 Barrel shifter using a selected signal assignment statement 

l i b r a r y  ieee; 
use  ieee . std-logic-1164. a l l  ; 
e n t i t y  barrel-shifter i s  

p o r t  ( 
a: i n  std-logic-vector (7 downto 0) ; 
amt: i n  std-logic-vector (2 downto 0) ; 
y :  o u t  std-logic-vector (7 downto 0) 

) ;  
end barrel-shifter ; 

a r c h i t e c t u r e  sel-arch o f  barrel-shifter i s  
b e g i n  

10 

w i t h  amt s e l e c t  
y < =  a when "000" , 

a(l downto 0) & a(7 downto 2) when " O l O " ,  
a(2 downto 0) & a(7 downto 3) when "Oil", 
a(3 downto 0) & a(7 downto 4) when " l O O " ,  
a(4 downto 0) & a(7 downto 5) when "101", 

20 a(5 downto 0) & a(7 downto 6 )  when " 1 1 0 " ,  

a(6 downto 0) & a(7) when o t h e r s ;  -- 1 1 1  

i s  a(0) & a(7 downto 1) when "OOl", 

end sel-arch; 

While the code is straightforward, it will become cumbersome when the number of input 
bits increases. Furthermore, a large number of choices implies a wide multiplexer, which 
makes synthesis difficult and leads to a large propagation delay. Alternatively, we can 
construct the circuit by stages. In the nth stage, the input signal is either passed directly to 
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output or rotated right by 2n positions. The nth stage is controlled by the nth bit of the amt 
signal. Assume that the 3 bits of amt are mzmlmo. The total rotated amount after three 
stages is r 1 z z 2 ~  + m121 + mo2’, which is the desired rotating amount. The code for this 
scheme is shown in Listing 3.17. 

Listing 3.17 Barrel shifter using multi-stage shifts 

a r c h i t e c t u r e  multi-stage-arch of  barrel-shifter i s  
s i g n a l  S O ,  sl: std-logic-vector ( 7  downto 0) ; 

b e g i n  
__ s t a g e  0 ,  s h i f t  0, o r  I b i t  

T S O  <= a(0) & a(7 downto 1) when amt(O)=’l’ e l s e  
a ;  

__ s t a g e  1 ,  s h i f t  0 o r  2 b i t s  
sl <= s O ( 1  downto 0) & s O ( 7  downto 2)  when arnt(l)=’l’ e l s e  

s o  ; 
10 -- s t a g e  2 ,  s h i f t  0 o r  4 b i t s  

y <= s i ( 3  downto 0) & s O ( 7  downto 4) when amt(2)=’l’ e l s e  
s l ;  

end multi-stage-arch ; 

Testing circuit To test the circuit, we can use the 8-bit switch for the a signal, three 
pushbutton switches for the a t  signal, and the eight discrete LEDs for output. Instead of 
deriving a new constraint file for pin assignment, we create a new HDL file that wraps the 
barrel shifter circuit and maps its signals to the prototyping board’s signals. The code is 
shown in Listing 3.18. 

Listing 3.18 Barrel shifter testing circuit 

l i b r a r y  ieee ; 
u s e  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  shifter-test i s  

.F p o r t (  
sw: i n  std-logic-vector (7 downto 0) ; 
btn: i n  std-logic-vector (2 downto 0) ; 
led: o u t  std-logic-vector ( 7  downto 0) 

1 ;  
10 end shifter-test; 

a r c h i t e c t u r e  arch of  shifter-test i s  
b e g i n  

shift-unit : e n t i t y  work.barrel-shifter(multi-stage-arch) 
li port map(a=>sw, amt=>btn, y = > l e d ) ;  

end arch; 

3.7.4 Simplified floating-point adder 

Floating point is another format to represent a number. With the same number of bits, 
the range in floating-point format is much larger than that in signed integer format. Al- 
though VHDL has a built-in floating-point data type, it is too complex to be synthesized 
automatically. 
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sort align addsub normalize 

eg. 1 + 0 . 5 4 E 3  - 0 . 8 7 E 4  - 0 . 8 7 E 4  - 0 . 8 7 E 4  
- 0 . 8 7 E 4  + 0 . 5 4 E 3  + 0 . 0 5 E 4  + 0 . 0 5 E 4  

- 0 . 8 2 E 4  
~~~~ 

eg. 2 + O .  5 4 E 3  - 0 . 5 5 E 3  - 0 . 5 5 E 3  - 0 . 5 5 E 3  
- 0 . 5 5 E 3  + 0 . 5 4 E 3  + 0 . 5 4 E 3  + 0 . 5 4 E 3  

- 0 . 0 1 E 3  
~~~~ 

eg. 3 + O .  54E0  -0.55EO -0.55EO -0.55EO 
-0.55EO +0 .54EO +0 .54EO +0 .54EO 

-0.  OlEO 
~ ~ _ _ _ ~  

- 0 . 8 7 E 4  
+O . 0 5 E 4  
- 0 . 8 2 E 4  

- 0 . 5 5 E 3  
+ O .  5 4 E 3  
- 0 . 1 0 E 2  

-0.55EO 
+ O .  5 4 E 0  
-0 .  OOEO 

+ O .  5 6 E 3  
+O . 5 2 E 3  
+ O .  1 0 E 4  

Figure 3.8 Floating-point addition examples. 

Detailed discussion of floating-point representation is beyond the scope of this book. 
We use a simplified 13-bit format in this example and ignore the round-off error. The 
representation consists of a sign bit, s ,  which indicates the sign of the number (1 for 
negative); a 4-bit exponent field, e, which represents the exponent; and an 8-bit significand 
field, f ,  which represents the significand or the fraction. In this format. the value of a 
floating-point number is (-1)‘ * . f  * 2“. The . f  * 2“ is the magnitude of the number and 
(-1)‘ is just a formal way to state that ‘ ‘ s  equal to 1 implies a negative number.” Since 
the sign bit is separated from the rest of the number, floating-point representation can be 
considered as a variation of the sign-magnitude format. 

We also make the following assumptions: 
Both exponent and significand fields are in unsigned format. 
The representation has to be either normalized or zero. Normalized representa- 
tion means that the MSB of the significand field must be ’1’. If the magnitude of 
the computation result is smaller than the smallest normalized nonzero magnitude, 
0.10000000 * 2Oooo, it must be converted to zero. 

Under these assumptions, the largest and smallest nonzero magnitudes are 0.11 11 11 11 * 
2l1I1 and 0.10000000 * 20°00, and the range is about 216 (i.e., 

Our floating-point adder design follows the process of adding numbers manually in 
scientific notation. This process can best be explained by examples. We assume that the 
widths of the exponent and significand are 2 and 1 digits, respectively. Decimal format 
is used for clarity. The computations of several representative examples are shown in 
Figure 3.8. The computation is done in four major steps: 

1. Sorting: puts the number with the larger magnitude on the top and the number with 
the smaller magnitude on the bottom (we call the sorted numbers “big number” and 
“small number”). 

2.  Alignment: aligns the two numbers so they have the same exponent. This can be 
done by adjusting the exponent of the small number to match the exponent of the big 

~AAAA~A~~$i~~).  



DESIGN EXAMPLES 65 

number. The significand of the small number has to shift to the right according to the 
difference in exponents. 

3. Additionhubtraction: adds or subtracts the significands of two aligned numbers. 
4. Normalization: adjusts the result to normalized format. Three types of normalization 

0 After a subtraction, the result may contain leading zeros in front, as in example 2.  
0 After a subtraction, the result may be too small to be normalized and thus needs 

0 After an addition, the result may generate a carry-out bit, as in example 4. 

procedures may be needed: 

to be converted to zero, as in example 3. 

Our binary floating-point adder design uses a similar algorithm. To simplify the imple- 
mentation, we ignore the rounding. During alignment and normalization, the lower bits of 
the significand will be discarded when shifted out. The design is divided into four stages, 
each corresponding to a step in the foregoing algorithm. The suffixes, ‘b’, ‘s’, ‘a’, ‘r’, and 
‘n’, used in signal names are for “big number,” “small number,” “aligned number,” “result 
of additionisubtraction,” and “normalized number,” respectively. The code is developed 
according to these stages, as shown in Listing 3.19. 

Listing 3.19 Simplified floating-point adder 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  fp-adder i s  

5 port  ( 

signl , sign2 : in  std-logic ; 
expl , exp2 : in  std-logic-vector (3 downto 0 )  ; 
fracl , frac2: in  std-logic-vector (7 downto 0)  ; 
sign-out: out std-logic; 

frac-out : out  std-logic-vector ( 7  downto 0 )  
10 exp-out : out  std-logic-vector (3 downto 0)  ; 

1 ;  
end fp-adder ; 

1 5  a r c h i t e c t u r e  arch of fp-adder i s  
_- s u f f i x  b ,  s ,  a ,  n f o r  
_- b i g ,  s m a l l ,  a l i g n e d ,  n o r m a l i z e d  number  
s i g n a l  signb , signs : std-logic; 
s i g n a l  expb, exps , expn: unsigned (3 downto 0)  ; 

s i g n a l  sum-norm: unsigned ( 7  downto 0 )  ; 
s i g n a l  exp-diff : unsigned (3 downto 0 )  ; 
s i g n a l  sum: unsigned(8 downto 0); --one e x t r a  f o r  c a r r y  
s i g n a l  leadO: unsigned (2 downto 0) ; 

-- 1 s t  s t a g e :  s o r t  t o  find t h e  l a r g e r  n u m b e r  
p r o c e s s  (signl , sign:!, expl, exp2, fracl , frac2) 
beg in  

:C s i g n a l  fracb, fracs, fraca, fracn: unsigned(7 downto 0 ) ;  

25 beg in  

if (expl & fracl) > (exp2 & frac2) then 
10 signb <= signl; 

signs <= sign2; 
expb <= unsigned (expl) ; 
exps <= unsigned (exp2) ; 
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40 

so 

fracb <= unsigned(frac1); 
5 fracs <= unsigned(frac2); 

e l s e  
signb <= sign2; 
signs <= signl; 
expb <= unsigned (exp2 ) ; 
exps <= unsigned (expl) ; 
fracb <= unsigned(frac2); 
fracs <= unsigned(frac1); 

e n d  i f  ; 
e n d  p r o c e s s ;  

__ 2 n d  s t a g e :  a l i g n  s m a l l e r  n u m b e r  
exp-diff <= expb - exps; 
w i t h  exp-diff s e l e c t  

45 

fraca <= 
fracs 
" 0 " & fracs(7 d o w n t o  1) 
'I 0 0 I' & fracs(7 d o w n t o  2 )  
I' 000 " & fracs(7 downto  3 )  
" 0000 " & fracs(7 d o w n t o  4)  
' ' 0 0 0 0 0 "  & fracs ( 7  d o w n t o  5 )  
" 0 0 0 0 0 0 "  & fracs (7 d o w n t o  6) 
" 0 0 0 0 0 0 0 ' '  & fracs (7) 
" 00000000" 

when 
when 
when 
when 
when 
when 
when 
when 
when 

" 0 0 0 0 "  , 
"OOOl", 
" 0 0 1 0 "  , 
" 0 0 1 1 "  , 
" 0 1 0 0 "  , 
"OlOI", 
" 0 1 10 " , 
"Olll", 
o t h e r s  ; 

60 -- 3 r d  s t a g e  : a d d / s u b t r a c t  
sum <= ( ' 0 '  & fracb) + ( ' 0 '  & fraca) when signb=signs e l s e  

( ' 0 '  & fracb) - ( ' 0 '  & fraca); 

70 

X I 1  

-- 4 t h  s t a g e  : n o r m a l i z e  

lead0 <= " 0 0 0 "  when (sum(7)='l') e l s e  
" 0 0 1 "  when (sum(6)='1') e l s e  
" 0 1 0 "  when (sum(5)='1') e l s e  
'loll" when (sum(4)='1') e l s e  
11100" when (sum(3)='1') e l s e  
" 1 0 1 "  when (sum(2)='1') e l s e  
" 1 1 0 "  when (sum(l)='l') e l s e  
'I 11 1 " ; 

a5 -- c o u n t  l e a d i n g  0 s  

_- s h i f r  s i g n i f i c a n d  a c c o r d i n g  t o  l e a d i n g  0 
- 5  w i t h  lead0 s e l e c t  

sum-norm <= 
sum(7 d o w n t o  0)  when " 0 0 0 "  , 
sum(6 d o w n t o  0)  & ' 0 '  when " O O l " ,  
sum(5 d o w n t o  0 )  & " 0 0 "  when "OIO", 
s u m ( 4  d o w n t o  0 )  & " 0 0 0 "  when "Oil", 
s u m ( 3  d o w n t o  0 )  & " 0 0 0 0 "  when " l O O " ,  
sum(2 d o w n t o  0 )  & " 0 0 0 0 0 "  when "101", 
s u m ( 1  d o w n t o  0 )  & " 0 0 0 0 0 0 "  when " 1 1 0 " ,  
sum(0) & ~ t O O O O O O O 1 ~  when o t h e r s  ; 

*, 
__ n o r m a l i z e  with s p e c i a l  c o n d i t i o n s  
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90 

95 

p r o c e s s  (sum, sum-norm, expb, leado) 
b e g i n  

i f  s u r n ( S ) = ’ l ’  t h e n  -- w /  c a r r y  o u t ;  s h i f t  f r a c  t o  r i g h t  
expn <= expb + 1 ;  
fracn <= s u m ( 8  downto 1); 

expn <= ( o t h e r s = > ’ O ’ ) ;  -- s e t  t o  0 
fracn <= ( o t h e r s = > ’ O ’ ) ;  

expn <= expb - lead0; 
fracn <= sum-norm; 

e l s i f  (lead0 > expb) t h e n  -- t o o  s m a l l  t o  n o r m a l i z e ;  

e l s e  

end i f ;  
end p r o c e s s ;  

-- f o r m  o u t p u t  
sign-out <= signb; 
exp-out <= std-logic-vector(expn); 
frac-out <= std-logic-vector(fracn); 

I00 

105 end arch; 

The circuit in the first stage compares the magnitudes and routes the big number to the 
signb, expb, and f r acb  signals and the smaller number to the s igns,  exps, and f r a c s  
signals. The comparison is done between expl&f r a c l  and exp2&f rac2. It implies that 
the exponents are compared first, and if they are the same, the significands are compared. 

The circuit in the second stage performs alignment. It first calculates the difference 
between the two exponents, which is expb-exps, and then shifts the significand, f r acs ,  
to the right by this amount. The aligned significand is labeled f raca.  The circuit in the 
third stage performs sign-magnitude addition, similar to that in Section 3.7.2. Note that the 
operands are extended by 1 bit to accommodate the carry-out bit. 

The circuit in the fourth stage performs normalization, which adjusts the result to make 
the final output conform to the normalized format. The normalization circuit is constructed 
in three segments. The first segment counts the number of leading zeros. It is somewhat 
like a priority encoder. The second segment shifts the significands to the left by the amount 
specified by the leading-zero counting circuit. The last segment checks the carry-out and 
zero conditions and generates the final normalized number. 

Testing circuit The floating-point adder has two 13-bit input operands. Since the proto- 
typing board has only one 8-bit switch and four 1-bit pushbuttons, it cannot provide enough 
number of physical inputs to test the circuit. To accommodate the 26 bits of the floating- 
point adder, we must create a testing circuit and assign constants or duplicated switch signals 
to the adder’s input operands. An example is shown in Listing 3.20. It assigns one operand 
as constant and uses duplicated switch signals for the other operand. The addition result is 
passed to the hexadecimal decoders and the sign circuit and is shown on the seven-segment 
LED display. 

Listing 3.20 Floating-point adder testing circuit 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  fp-adder-test i s  

5 p o r t (  
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clk: in std-logic; 
sw: in std-logic-vector (7 downto 0) ; 
btn: in std-logic-vector (3 downto 0) ; 
an: out std-logic-vector (3 downto 0) ; 

10 sseg: out std-logic-vector (7 downto 0) 
) ;  

end fp-adder-test; 

architecture arch of fp-adder-test is 
1 5  signal signl , sign2 : std-logic; 

signal expl , exp2: std-logic-vector (3 downto 0) ; 
signal fracl , frac2 : std-logic-vector (7 downto 0) ; 
signal sign-out : std-logic; 
signal exp-out : std-logic-vector (3 downto 0) ; 

signal led3, led2, ledl, ledO: 
20 signal frac-out : std-logic-vector (7 downto 0) ; 

std-logic-vector (7 downto 0) ; 
begin 

__ s e t  u p  t h e  f p  a d d e r  i n p u t  s i g n a l s  

expl <= "1000"; 
frac1<= '1' & sw(1) & sw(0) & " 1 0 1 0 1 " ;  
sign2 <= sw(7); 
exp2 <= btn; 

2 5  signl <= '0'; 

10 frac2 <= '1' & sw(6 downto 0); 

__ i n s t a n t i a t e  fp a d d e r  
fp-add-unit : entity work. fp-adder 

port map( 
3' signl=>signl, sign2=>sign2, expl=>expl, exp2=>exp2, 

fracl=>fracl, fracZ=>frac2, 
sign-out=>sign-out , exp-out=>exp-out , 
frac-out=>frac-out 

1 ;  
40 

__ i n s t a n t i a t e  t h r e e  i n s t a n c e s  of h e x  d e c o d e r s  

sseg-unit-0 : entity work. hex-to-sseg 
e x p  o n  e n  t 

port map(hex=>exp-out , dp=>'O' , sseg=>ledO); 

__ 

45 -- 4 L S B s  of f r a c t i o n  
sseg-unit-1 : entity work. hex-to-sseg 

port map(hex=>frac-out (3 downto 0) , 
dp=>' 1 ' , 

50 sseg-unit-2: entity work. hex-to-sseg 

sseg=>ledl) ; 
-- 4 MSBs o f  f r a c t i o n  

port map(hex=>frac-out ( 7  downto 4 ) ,  
dp=>'O', sseg=>led2); 

__ s i g n  
led3 <= " 1 1 1 1 1 1 1 0 "  when sign-out='l' else -- m i d d l e  b a r  

55 " 11 11 11 11 " ; __ b l a n k  

-_ i 11 s t a n  t i a  t e  7 -  s e g  LED d i s p  l a j  t i m e  - m u  1 t i p 1  e x i n g  m o d u l e  
disp-unit : entity work.disp-mux 
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p o r t  map( 
60 c l k = > c l k ,  r e s e t = > ' O '  , 

i n O = > l e d O ,  i n l = > l e d l ,  i n 2 = > l e d 2 ,  i n 3 = > l e d 3 ,  
a n = > a n ,  s s e g = > s s e g  

1 ;  
end a r c h ;  

3.8 BIBLIOGRAPHIC NOTES 

The Designer's Guide to VHDL by P. J. Ashenden provides detailed coverage on the VHDL 
constructs discussed in this chapter, and the author's RTL Hardware Design Using VHDL: 
Coding for  Eficiency, Portability, and Scalability discusses the coding and optimization 
schemes and gives additional design examples. 

3.9 SUGGESTED EXPERIMENTS 

3.9.1 Multi-function barrel shifter 

Consider an %bit shifting circuit that can perform rotating right or rotating left. An addi- 
tional l-bit control signal, lr, specifies the desired direction. 

1. 

2. 
3. 
4. 

5. 

6. 
7. 

Design the circuit using one rotate-right circuit, one rotate-left circuit, and one 2-to- 1 
multiplexer to select the desired result. Derive the code. 
Derive a testbench and use simulation to verify operation of the code. 
Synthesize the circuit, program the FPGA, and verify its operation. 
This circuit can also be implemented by one rotate-right shifter with pre- and post- 
reversing circuits. The reversing circuit either passes the original input or reverses 
the input bitwise (for example, if an %bit input is a7a6a5a4a3a2a1ao3 the reversed 
result becomes aOa1a2a3f&5a5a6a7). Repeat steps 2 and 3. 
Check the report files and compare the number of logic cells and propagation delays 
of the two designs. 
Expand the code for a 16-bit circuit and synthesize the code. Repeat steps 1 to 5. 
Expand the code for a 32-bit circuit and synthesize the code. Repeat steps 1 to 5. 

3.9.2 Dual-priority encoder 

A dual-priority encoder returns the codes of the highest or second-highest priority requests. 
The input is a 12-bit req signal and the outputs are first and second, which are the 4-bit 
binary codes of the highest and second-highest priority requests, respectively. 

1. Design the circuit and derive the code. 
2. Derive a testbench and use simulation to verify operation of the code. 
3. Design a testing circuit that displays the two output codes on the seven-segment LED 

4. Synthesize the circuit, program the FPGA, and verify its operation. 
display of the prototyping board, and derive the code. 

3.9.3 BCD incrementor 

The binary-coded-decimal (BCD) format uses 4 bits to represent 10 decimal digits. For 
example, 25910 is represented as "0010 0101 1001" in BCD format. A BCD incrementor 
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adds 1 to a number in BCD format. For example, after incrementing, "0010 0101 1001" 
(i.e., 25910) becomes "0010 01 10 0000" (i.e., 26OlO). 

1. Design a three-digit 12-bit incrementor and derive the code. 
2 .  Derive a testbench and use simulation to verify operation of the code. 
3. Design a testing circuit that displays three digits on the seven-segment LED display 

4. Synthesize the circuit, program the FPGA, and verify its operation. 
and derive the code. 

3.9.4 Floating-point greater-than circuit 

A floating-point greater-than circuit compares two floating-point numbers and asserts out- 
put, g t ,  when the first number is larger than the second number. Assume that the two 
numbers are represented in the format discussed in Section 3.7.4. 

1. Design the circuit and derive the code. 
2.  Derive a testbench and use simulation to verify operation of the code. 
3. Design a testing circuit and derive the code. 
4. Synthesize the circuit, program the FPGA, and verify its operation. 

3.9.5 Floating-point and signed integer conversion circuit 

A number may need to be converted to different formats in a large system. Assume that 
we use the 13-bit format in Section 3.7.4 for the floating-point representation and the 
8-bit signed data type for the integer representation. An integer-to-floating-point conver- 
sion circuit converts an 8-bit integer input to a normalized, 13-bit floating-point output. 
A floating-point-to-integer conversion circuit reverses the operation. Since the range of 
a floating-point number is much larger, conversion may lead to the underflow condition 
(i.e., the magnitude of the converted number is smaller than "00000001") or the overflow 
condition (i.e., the magnitude of the converted number is larger than "01 11 11 11 "). 

1. Design an integer-to-floating-point conversion circuit and derive the code. 
2.  Derive a testbench and use simulation to verify operation of the code. 
3. Design a testing circuit and derive the code. 
4. Synthesize the circuit, program the FPGA, and verify its operation. 
5. Design a floating-point-to-integer conversion circuit. In addition to the &bit integer 

output, the design should include two status signals, uf and o f ,  for the underflow 
and overflow conditions. Derive the code and repeat steps 2 to 4. 

3.9.6 Enhanced floating-point adder 

The floating-point adder in Section 3.7.4 discards the lower bits when they are shifted out 
(it is known as round to zero). A more accurate method is to round to the nearest even, 
as defined in the IEEE Standard for Binary Floating-point Arithmetic (IEEE Std 754). 
Three extra bits, known as the guard, round, and sticky bits, are required to implement this 
method. If you learned floating-point arithmetic before, modify the floating-point adder in 
Section 3.7.4 to accommodate the round-to-the-nearest-even method. 




