
CHAPTER 17

PICOBLAZE INTERRUPT INTERFACE

17.1 INTRODUCTION

During normal program execution, a microcontroller polls the I/O peripherals (i.e., checks
the status signals) and determines the course of action accordingly. An I/O peripheral
is passive and waits for its turn. The interrupt is a mechanism that allows an external
I/O peripheral to initiate the operation. It, as the name shows, interrupts normal program
execution and starts a service routine for the I/O peripheral. For a microcontroller, the
interrupt is usually reserved for a time-critical peripheral operation, which must be processed
immediately. The PicoBlaze microcontroller provides support for simple interrupt-handling
capability. In this chapter, we examine the PicoBlaze’s interrupt mechanism and use an
example to illustrate software and interface development.

17.2 INTERRUPT HANDLING IN PICOBLAZE

Interrupt handling is a coordinated effort between hardware and software. When an external
peripheral needs service through interrupt, it asserts the interrupt signal of PicoBlaze. If
the interrupt service is enabled, PicoBlaze completes execution of the current instruction,
activates the interrupt-ack signal to acknowledge the acceptance of the interrupt request,
and then implicitly executes the call 3FF instruction. When the instruction is executed, the
current content of the program counter is saved in stack and the 3FF address is loaded to
the programmer counter. Note that the 3FF address is the last location in the instruction

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

405

406 PICOBLAZE INTERRUPT INTERFACE

Figure 17.1 Interrupted flow.

memory and serves as the starting point of the interrupt service routine. It usually contains
a jump instruction, which leads to the body of the service routine. The service should be
ended with a returni instruction to return to the interrupted point and resume the previous
execution.

17.2.1 Software processing

Four instructions are associated with interrupt, as discussed in Section 14.5.9. The en-
able interrupt and disable interrupt instructions enable and disable the interrupt request,
and the two return-from-interrupt instructions, returni enable and returni disable, return
execution to the interrupted point.

A typical program segment with interrupt service routine is shown in Figure 17.1. It
generally consists of the following segments:

0 An initial enable interrupt instruction: used to enable the interrupt service. This is
needed since the interrupt request is disabled by default.

INTERRUPT HANDLING IN PICOBLAZE 407

Figure 17.2 Timing diagram of an interrupt event.

0 A jump instruction in the end of the instruction memory (i.e., 3FF): leads to the

Interrupt service routine: the code that actually performs the requested service. The

A representative flow of an interrupt event is shown in Figure 17.1. We assume that
the external I/O assert the interrupt signal in the middle of the add SO, s3 instruction.
PicoBlaze performs the following steps in sequence:

1. Completes execution of the current execution.
2. Saves the content of the program counter, clears the interrupt flag, i, to zero, preserves

3. Executes the jump isr instruction in the 3FF address.
4. Performs the service routine.
5. Executes the returni instruction, in which the saved program counter and flags are

6 . Resumes the interrupted program and executes the sub s5,OI instruction.

interrupt service routine.

routine should be ended with a returni instruction.

the zero and carry flags, and loads the program counter with 3FF.

restored.

17.2.2 Timing

The detailed timing diagram of the previous interrupt event is shown in Figure 17.2. The
basic sequence is:

0 At tl: The external interrupt interface asserts the interrupt signal. PicoBlaze
continues the normal operation to complete execution of the current add sO,s3
instruction.

0 At t 2 : PicoBlaze recognizes the interrupt and aborts the next instruction (sub s5,OI)
and implicitly executes the call 3FF instruction.

0 At t3: PicoBlaze asserts the interrupt-ack signal. It also saves the address of the
sub s5,OI instruction, preserves the zero and carry flags, and clears the interrupt flag
to 0.

0 At t4: PicoBlaze loads and executes the instruction in address 3FF, jump isr.
The external interrupt interface circuit acknowledges the interrupt -ack signal and
deasserts the interrupt signal.

408 PICOBLAZE INTERRUPT INTERFACE

int request - set flag -
+ clr

'flag FF

in-port out-port
reset port-id

readstrobe
write-strobe instruction

interrupt interrupt-ack
address

KCPSM3 >

Figure 17.3 Interrupt interface with a single request

0 At t5: PicoBlaze starts the interrupt service routine.
Note that it requires up to five clock cycles from the time that the interrupt signal is
asserted to the time that the first instruction of interrupt service routine is executed.

17.3 EXTERNAL INTERFACE

The nature of the interrupt request is similar to that of a single-access port discussed in
Section 16.3.2. After the request is accepted, it must be cleared so that the same request
will not be processed multiple times. The flag FF discussed in Section 7.2.4 can be used
for this purpose.

17.3.1 Single interrupt request

If there is only one I/O peripheral in a PicoBlaze system that can generate an interrupt
request, we just need a single flag FF in the interrupt interface circuit, as shown in Fig-
ure 17.3. When the service is required, the external I/O circuit asserted the int request
signal for one clock cycle, which sets the flag IT to '1' and activates the interrupt input
of PicoBlaze. If the interrupt is enabled in PicoBlaze, it acknowledges acceptance of the
request by asserting the interrupt-ack signal for one clock cycle, which clears the flag FF
to '0'.

17.3.2 Multiple interrupt requests

Processing a PicoBlaze system with two or more interrupt requests is more involved. The
PicoBlaze microcontroller must determine which peripheral issues the request and clear
the corresponding flag FF after the request is accepted. This needs the coordination of the
hardware interface and the interrupt service routine.

The interrupt interface with two requests is shown in Figure 17.4. The two individual
requests, int request0 and int requestl, are connected to two flag FFs, and the output
signals of the FFs are passed to an or gate to generate the final interrupt request signal. In
addition, the two signals are also routed to the input multiplexer. If at least one request
is asserted, the interrupt signal of PicoBlaze is asserted. When PicoBlaze senses the
request, it does not know which peripheral or whether both peripherals issue the request.
The interrupt service routine must first input the two request signals and check their values
according to the assigned priority, and then perform the corresponding service.

SOFTWARE DEVELOPMENT CONSIDERATIONS 409

Figure 17.4 Interrupt interface with two requests.

In addition, PicoBlaze also needs to clear the corresponding flag FF. The interrupt-ack
signal cannot be used for this purpose because it is not known which peripheral’s request
is accepted when the interrupt-ack signal asserted. Instead, we need to use a special
output decoding circuit to generate a clear tick. The clr signal of each flag FF is assigned
to a unique port id. In the interrupt service routine, we add an output instruction after
determining which interrupt request is accepted. The instruction does not actually output
any data. It is used to generate a single-clock-cycle tick to clear the corresponding flag FE

To reduce the software overhead and increase response speed, we can design an interrupt
controller to facilitate the process. This approach is discussed in Experiment 17.7.5.

17.4 SOFTWARE DEVELOPMENT CONSIDERATIONS

17.4.1 Interrupt as an alternative scheduling scheme

Recall that a microcontroller-based application usually follows a simple polling program
structure:

c a l l initialization-routine

c a l l taskl-routine;
c a l l task2-routine;

c a I I taskn-rout ine ;
jump forever ;

forever :

. . .

Some tasks may involve IiO operations. During execution, the microcontroller checks
the IiO status in turn and takes actions accordingly. The program structure implicitly
implements a round-robin schedule, in which each task waits in turn to be executed. This
scheme can work properly if the loop interval is short enough so that each I/O request can
be checked and processed in a timely manner. In some applications, there may exist one or
two time-critical IiO requests that require immediate attention. The interrupt mechanism
provides a way to alter the original schedule and gives certain tasks higher priorities.

Since an interrupt can occur at any time, the original loop must consider the frequency
of interrupt and the required service time of each interrupt request. This can be complicated
if there are multiple interrupt requests and the service routine is involved.

410 PICOBLAZE INTERRUPT INTERFACE

Figure 17.5 Interrupt interface with a timer.

17.4.2 Development of an interrupt service routine

The interrupt service routine is somewhat like a subroutine. It suspends normal program
execution, performs an independent task, and then resumes the previous execution. How-
ever, unlike a subroutine call, an interrupt can occur any time. To resume execution later,
the service routine must save the current state (also known as the context) of the PicoBlaze
processor. In other words, the service routine must save all registers used in service routine
computation and then restore them before returning to normal execution. This process is
known as context switching.

Since PicoBlaze is a compact 8-bit microcontroller, the hardware support for context
switching and scheduling is very limited. We should use the polling scheme in general and
keep the interrupt structure simple and straightforward. Instead of worrying about context
switching, we can allocate several dedicated registers to be used exclusively in the interrupt
service routine.

17.5 DESIGN EXAMPLE

The square circuit of Chapter 16 uses a seven-segment LED display to show the values of
input operands and result. We use the predesigned LED multiplexing module, dispmux,
for this purpose. The design of this module is discussed in Section 4.5.1. It consists of a
large counter to generate slow enable pulses and a multiplexing circuit to route the input
patterns.

To save hardware, we can implement this functionality in software and let PicoBlaze
control the 4-bit enable signal, an, and the 8-bit LED signal, sseg, of the four-digit LED
display directly. To generate a visually continuous pattern, the enable pulse and LED
patterns must be refreshed at a constant rate, as shown in Figure 4.6. While using pure
software to keep track of time is possible, the code is tedious and error-prone. We use
a dedicated hardware timer and PicoBlaze’s interrupt facility to perform the task. The
required hardware and software modifications are illustrated in the following subsections.

17.5.1 Interrupt interface

The block diagram of the timer and interrupt interface, as well as the new output buffers, is
shown in Figure 17.5. The timer is a mod-500 counter and generates a single-clock-cycle
tick every 500 clock cycles. Since the 50-MHz clock is used for the timer, the period of
the tick is 0.01 ms. Because there is only one interrupt request, we use the flag FF scheme

DESIGN EXAMPLE 41 1

discussed in Section 17.3.1 for the interrupt interface. The tick sets the flag FF and activates
the i n t e r r u p t signal of PicoBlaze.

17.5.2 Interrupt service routine development

To keep track of the elapsed time, PicoBlaze counts the number of timer ticks. As discussed
in Section 17.4.2, we want to keep the interrupt service routine simple and use two dedicated
registers, countlnsb and count-lsb, for this task. The two registers are cascaded as a
16-bit register and are incremented each time the interrupt service routine is called. They
can count to 0.6 second (i.e., 216 * 0.01 ms). The interrupt-related code segment is

namereg se, count-msb ; t i m e r t i c k c o u n t 8 MSBs
namereg s f , count-lsb ; t i m e r t i c k c o u n t 8 L S B s

; i n t e r r u p t s e r v i c e r o u t i n e
int-service-routine:

add count-lsb, 01 ; i n c 1 6 - b i t c o u n t e r
addcy count-msb, 00
returni enable

; i n t e r r u p t v e c t o r
address 3FF
jump int - s erv i c e -I out ine

17.5.3 Assembly code development

With the timing information available, we can derive a new subroutine, displayrmux-out,
for the LED display. This routine replaces the disp- led routine used in Chapter 16. Two
new output buffers are needed to store the an and sseg signals, as shown in Figure 17.5. The
main task of the subroutine is to store the an pattern, which can be "1 1 lo", "1 101", "101 l " ,
or "01 1 l", and the corresponding seven-segment LED pattern to the registers periodically.
As discussed in Section 4.5.1, the refreshing rate should be around from a few hundred to
a few thousand hertz. In our code we update these registers every 21° ticks, which is about
10 ms. We also use a register, led-pos, to keep track of the current display position (i.e.,
one of the four LED displays).

To incorporate the new interrupt feature into Listing 16.3, the code is modified as follows:
0 Add new port and register definitions.

Replace the original disp- led routine with the displaylnux-out routine.
Add the enable interrupt instruction in the i n i t routine to enable interrupt handling.
Initialize the led-pos, countlnsb, and count-lsb registers in the i n i t routine.
Add the interrupt service routine.

The modified portion of the assembly code is shown in Listing 17.1.

Listing 17.1 Square program with interrupt interface

; r e g i s t e r a l i a s
namereg sb, led-pos ; l e d d i s p p o s i t i o n (0 , I , 2 o r 3)
namereg se, count-msb ; t i m e r t i c k c o u n t 8 MSBs

5 namereg s f , count-lsb ; t i m e r t i c k c o u n t 8 LSBs
. . .

41 2 PICOBLAZE INTERRUPT INTERFACE

; o u t p u t p o r t d e f i n i t i o n s
c o n s t a n t an-port , 00
c o n s t a n t sseg-port , 01

; m a i n p r o g r a m
c a l l init

forever :
; m a i n l o o p b o d y

c a l l square ; c a l c u l a t e s q u a r e
c a l l load-led-pttn ; s t o r e l e d p a t t e r n s t o ram
c a l l display-mux-out ; m u l t i p l e x l e d p a t t e r n s
jump forever

10 . . .

; i n i t i a 1 i z a t i o n

15 c a l l proc-btn ; c h e c k & p r o c e s s b u t t o n s

20

,-______________________________________--_---_-----------
; r o u t i n e : i n i t

init :
,_______________________________________------------------

25 enable interrupt

load led-pos, 00
load count-msb, 00
load count-lsb, 00

30 re turn

.-------_-______________________________------------------ ,___-___________________________________------------------

; r o u t i n e : d i s p l a y - m u x - o u t
; f u n c t i o n : g e n e r a t e e n a b l e p u l s e & l e d p a t t e r n

; i n p u t r e g i s t e r :
35 ; f o r 4 - d i g i t 7 - s e g m e n t l e d d i s p l a y

c o u n t - m s b , c o u n t - l s b : t i m e r c o u n t
l e d - p o s : c u r r e n t l e d p o s i t i o n

40 ; l e d - p o s : u p d a t e d l e d p o s i t i o n
; o u t p u t r e g i s t e r :

; t m p r e g i s t e r : d a t a , a d d r

display-mux-out :

.-------________________________________------------------ ,------__--_____________________________------------------

compare count-msb , 0 2 ; c o u n t =00000100~00000000

; c l e a r t i m e c o u n t e r (c o u n t > 2 0)
load count-lsb, 00
load count-msb, 00
; u p d a t e 7 - s e g m e n t l e d p o s i t i o n

compare led-pos, 04
jump n z , gen-an-signal
load led-post 00 ; l e d - p o s w r a p s a r o u n d

45 jump c , mux-out-done

50 add led-pos, 01

gen-an-signal :
55 ; g e n e r a t e 4 - b i t a n o d e e n a b l e s i g n a l

load data, OE ; x x x x - 1 1 I 0
compare led-pos, 00
jump z , shift-an-0
compare led-pos, 0 1

DESIGN EXAMPLE 41 3

h~ jump z , shift-an-1
compare led-pos, 02
jump z , shift-an-2
s l l data ; s h i f t 1 1 1 0 3 t i m e s

65 s l l data ; s h i f t 1 1 1 0 2 t i m e s

s l l data ; s h i f t 1 1 1 0 1 t i m e s

output data, an-port
70 ; o u t p u t 7 - s e g l e d p a t t e r n

load addr, led0
add addr, led-pos
f e t c h data, (addr)
output data, sseg-port

75 mux-out-done :
return

shift-an-2:

shift-an-1:

shift-an-0 :

3' r o u t i n e : i n t e r r u p t s e r v i c e r o u t i n e
SO ; f u n c t i o n : i n c r e m e n t 1 6 - b i t c o u n t e r

; i n p u t r e g i s t e r :

; o u t p u t r e g i s t e r :
c o u n t - m s b , c o u n t - l s b : t i m e r c o u n t

c o u n t - m s b , c o u n t - l s b : i n c r e m e n t e d
85 ,'

int-service-routine:
add count-lsb, 01 ; i n c 1 6 - b i t c o u n t e r
addcy count-msb I 00
returni enable

90

; i n t e r r u p t

a d d r e s s
95 jump in

v e c

3FF
-se

o r

vice-routine

; T h e f o l l o w i n g a r e t h e same a s t h e p r e v i o u s L i s t i n g :
; p r o c - b t n , l o a d - l e d - p t t n ,

k e x - t o -1 e d ,
; s q u a r e , m u l t - s o f t

I~ ; g e t -10 w e r - n i b b l e , g e t - u p p e r - n i b b 1 e

, . . .
~~~~ ~~~~ ~~~~ ~~~~ ~~~~~ ~~~~ ~ 

17.5.4 VHDL code development 

The I/O interface of the interrupt-based square circuit includes three parts. The input 
interface is similar to that in Section 16.4. The output interface consists of a decoding 
circuit and two output registers for the an and sseg signals, as shown on the right of 
Figure 17.5. The interrupt interface consists of a timer and a flag FF, as shown on the 



414 PICOBLAZE INTERRUPT INTERFACE 

left of Figure 17.5. The HDL code basically follows the block diagram and is shown in 
Listing 17.2. 

Listing 17.2 

library ieee; 
use ieee. std-logic-1164. all ; 
use ieee. numeric-std. all ; 
entity pico-int is 

PicoBlaze-based square circuit with interrupt 

5 port( 
clk, reset: in std-logic; 
sw: in std-logic-vector ( 7  downto 0)  ; 
btn: in std-logic-vector (1 downto 0)  ; 
an: out std-logic-vector (3 downto 0)  ; 

10 sseg : out std-logic-vector ( 7  downto 0)  
1 ;  

end pico-int ; 

architecture arch of  pico-int is 
15 -- KCPSM3/ROM s i g n a l s  

signal address : std-logic-vector (9 downto 0)  ; 
signal instruction: std-logic-vector (17 downto 0)  ; 
signal port-id: std-logic-vector (7 downto 0)  ; 
signal in-port , out-port : std-logic-vector ( 7  downto 0)  ; 

signal interrupt , interrupt-ack: std-logic ; 
-- 1 / 0  p o r t  s i g n a l s  
__ o u t p u t  e n a b l e  
signal en-d: std-logic-vector (1 downto 0)  ; 

signal sseg-reg : std-logic-vector (7 downto 0)  ; 
signal an-reg : std-logic-vector (3 downto 0)  ; 
-- t w o  p u s h b u t t o n s  
signal btnc-f lag-reg , btnc-f lag-next : std-logic ; 

30 signal btns-f lag-reg , btns-f lag-next : std-logic; 
signal set-btnc-f lag, set-btns-f lag: std-logic; 
signal clr-btn-f lag: std-logic; 
__ i n t e r r u p t  - r  e 1 a t e d  
signal timer-reg , timer-next : unsigned(8 downto 0) ; 

signal timer-flag-reg , timer-flag-next : std-logic; 

20 signal write-strobe , read-strobe : std-logic; 

25 -- f o u r - d i g i t  s e v e n - s e g m e n t  l e d  d i s p l a y  

s i g  n a  1 s 

35 signal ten-us-tick: std-logic; 

begin 
__ 
__ 1 / 0  m o d u l e s  

btnc-db-unit: entity work.debounce 
40 -- 

port map( 
clk=>clk , reset=>reset , sw=>btn (0) , 
db-level=>open, db-tick=>set-btnc-flag); 

45 btns-db-unit : entity work. debounce 
port map( 

clk=>clk, reset=>reset , sw=>btn(l) , 
db-level=>open, db-tick=>set-btns-flag); 

_- 



DESIGN EXAMPLE 415 

55 

75 

90 

50 -- KCPSM and ROM i n s t a n t i a t i o n  
--==--------==-----------=-----------===--------======= 
proc-unit : e n t i t y  work. kcpsm3 

port  map( 
clk=>clk, reset =>reset, 
address=>address , instruction=>instruction , 
port-id=>port-id, write-strobe=>write-strobe, 
out-port=>out-port , read-strobe=>read-strobe, 
in-port =>in-port , 
interrupt-ack=>interrupt-ack); 

interrupt => interrupt , 

60 rom-unit : e n t i t y  work. int-rom 
port  map( 

clk = >  clk, address=>address , 
instruction=>instruction); 

___------__---_____---------------------------------- --______________________________________--------------- 
6s -- o u t p u t  i n  t e r f a  c e 

__----------------------------------------------------- 
-- o u t p o r t  p o r t  i d :  

0x00: an __ 
__ 0 x 0 1 :  s s g  

___------___--_____---------------------------------- 7” --______________________________________--------------- 
__ r e g i s t e r s  
p r o c e s s  (clk) 
begin  

i f  (clk ’ event and clk= ’ 1 ’ ) then 
i f  en-d(O)=’l’ then 

end i f  ; 
i f  en-d(l)=’l’ then sseg-reg <= out-port; end i f ;  

an-reg <= out-port(3 downto 0 ) ;  

end i f  ; 

an <= an-reg; 
sseg <= sseg-reg; 
-- d e c o d i n g  c i r c u i t  f o r  e n a b l e  s i g n a l s  
p r o c e s s  (port-id, write-strobe) 

80 end p r o c e s s ;  

85 begin  
en-d <= ( o t h e r s = > ’ O ’ ) ;  
i f  write-strobe=’l’ then 

c a s e  port-id(0) i s  
when ’ 0 ’  = >  en-d <=“01”; 
when o t h e r s  = >  en-d < = “ 1 0 “ ;  

end c a s e ;  
end i f  ; 

end p r o c e s s ;  
___--_---__________---------------------------------- --______________________________________--------------- 

95 -- i n p u t  i n t e r f a c e  

-- i n p u t  p o r t  id  
-- 0x00:  f l a g  
_- 0 x 0 1 :  s w i t c h  

_- i n p u t  r e g i s t e r  ( f o r  f l a g s )  
p r o c e s s  (clk) 

___------____----__---------------------------------- --__________________----------------------------------- 

,w ____________________----------------------------------- ____________________--------------------------------- 



41 6 PICOBLAZE INTERRUPT INTERFACE 

beg in  
i f  (clk ’ event and clk= ’ 1 ’ t h e n  

btnc-flag-reg <= btnc-flag-next; 
btns-flag-reg <= btns-flag-next; 

end i f  ; 
end p r o c e s s ;  

105 

125 

I30 

135 

I40 

145 

150 

15s 

btnc-flag-next <= ’ 1 ’  when set-btnc-flag=’l’ e l s e  
’ 0 ’  when clr-btn-f lag= ’ 1 ’ e l s e  
btnc-flag-reg; 

btns-flag-next <= ’ 1 ’  when set-btns-flag=’l’ e l s e  
’ 0 ’  when clr-btn-flag=’l’ e l s e  
btns-flag-reg; 

__ d e c o d i n g  c i r c u i t  f o r  c l e a r  s i g n a l s  
clr-btn-flag < = ’ l ’  when read-strobe=’l’ and 

port-id(O)=’O’ e l s e  
’ 0 ’ ;  

__ i n p u t  m u l t i p l e x i n g  
p r o c e s s  (port-id,btns-flag-reg,btnc-flag-reg,sw) 
beg in  

c a s e  port-id(0) i s  
when ’ 0 ’  = >  

in-port <= “000000” & 
btns-flag-reg & btnc-flag-reg; 

when o t h e r s  => 
in-port <= sw; 

end c a s e ;  
end p r o c e s s ;  

-_ i n t e r r u p t  i n  t e  r f a  c e  

-- 1 0  u s  c o u n t e r  
p r o c e s s  (clk) 
beg in  

-_________________________________________------------- _-______________________________________------------_ 

----------------__-_____________________------------- ---------_-__-__________________________------------- -_ 

i f  (clk ’ event and clk= ’ 1 ’ ) t h e n  

end i f ;  
end p r o c e s s ;  
timer-next <= ( o t h e r s = > ’ O ’ )  when timer_reg=499 e l s e  

timer-reg <= timer-next; 

timer-reg+l; 
ten-us-tick <= ’ 1 ’  when tirner_reg=499 e 
-- 1 0  us  t i c k  f l a g  
p r o c e s s  (clk) 
beg in  

i f  (clk’event and clk=’l’) t h e n  

end i f  ; 
end p r o c e s s ;  

timer-flag-reg <= timer-flag-next 

s e  ’ 0 ’ ;  

timer-flag-next <= ’1’ when ten-us-tick=’l’ e l s e  
’ 0 ’  when interrupt-ack= ’ 1 ’  e l s e  
timer-flag-reg; 

__ i n t e r r u p t  r e q u e s t  
interrupt <= timer-flag-reg; 



BIBLIOGRAPHIC NOTES 41 7 

end arch; 

17.6 BIBLIOGRAPHIC NOTES 

The bibliographic information for this chapter is similar to that for Chapters 14 to 16. 

17.7 SUGGESTED EXPERIMENTS 

17.7.1 Alternative timer interrupt service routine 

The interrupt service routine in Listing 17.1 uses two dedicated registers to record the 
number of timer ticks. The two registers thus cannot be used for other computation. An 
alternative is to use 2 bytes of the data RAM for this purpose and use the registers only 
temporarily in the service routine. Since interrupt can occur anytime, we must save and 
restore the corresponding registers. For example, if the SO and sl registers are used in the 
service routine for computation, their contents must be saved when the service routine is 
invoked and then restored later when the computation is completed. Derive the assembly 
and HDL codes, compile and synthesize the circuit, and verify its operation. 

17.7.2 Programmable timer 

We can replace the mod-500 counter of Section 17.5 with a general mod-rn counter and 
thus make the timer “programmable.” The new timer operates as follows: 

0 m is a 12-bit unsigned number. 
0 ThefourLSBsofrnis”1111”. 
0 The timer has an 8-bit register to store the eight MSBs of rn. The register is treated 

as a new output port of PicoBlaze. 
0 A new pushbutton controls the loading of the register. When it is pressed, PicoBlaze 

inputs the value from the 8-bit switch and outputs the value to the timer’s register. 
Design the new IiO interface, derive the assembly and HDL codes, and compile and syn- 
thesize the circuit. Load different values in the timer and observe what happens to the LED 
display. 

17.7.3 Set-button interrupt service routine 

In the square circuit discussed in Section 16.4, the s button is used to load the a and b 
operands from the 8-bit switch. Its status is polled continuously in the main loop. We can 
revise this portion of the code and use an interrupt mechanism to perform this task. The 
interrupt service routine involves several temporary registers, and they must be saved and 
restored properly, as discussed in Experiment 17.7.1. Design the new I/O interface, derive 
the assembly and HDL codes, compile and synthesize the circuit, and verify its operation. 

17.7.4 Interrupt interface with two requests 

Assume that we want to implement both the timer interrupt request of Listing 17.1 and 
the set-button interrupt request of Experiment 17.7.3 in a PicoBlaze system. Follow the 



418 PICOBLAZE INTERRUPT INTERFACE 

Figure 17.6 Interrupt interface with a four-request interrupt handler. 

discussion in Section 17.3.2 to design the new interrupt interface and interrupt service 
routine. Derive the assembly and HDL codes, compile and synthesize the circuit, and 
verify its operation. 

17.7.5 Four-request interrupt controller 

An interrupt controller helps the processor to process multiple interrupt requests. The 
block diagram of a four-request interrupt controller is shown in Figure 17.6. The interrupt 
controller should contain four flag FFs and a special priority encoding circuit. If one 
or more interrupt requests are activated, the controller determines which request has the 
highest priority, places its 2-bit code on the req-id port, and asserts the i n t  signal. When 
PicoBlaze asserts the interrupt-ack signal, the controller clears the corresponding flag. 
For simplicity, we assume that i n t  r e q u e s t  -3 has the highest priority and i n t r e q u e s t  -0 
has the lowest priority. 

Derive HDL code for the interrupt controller and repeat Experiment 17.7.4 using the 
new controller (the two unused interrupt requests can be tied to '0'). 




