Elektronik II Foliensatz 4: Halbleiter, Dioden

G. Kemnitz

12. Juli 2021

Contents

1	Halbleiter			
	1.1	Stromfluss in Halbleitern	1	
	1.2	$Undotiert (intrinsisch) \dots \dots \dots \dots \dots$	3	
	1.3	$Dotiert (extrinsisch) \dots \dots \dots \dots \dots$	5	
	1.4	Stromloser pn-Übergang	8	
	1.5	pn-Übergang, Sperrbereich	11	
	1.6	pn-Übergang Durchlassbereich	13	
		_		
2	Dio	den	16	

	2.1	Spice-Modell	16
	2.2	Durchlassbereich	17
	2.3	Sperr- und Durchbruchbereich	20
	2.4	Sperrschicht- und Diffusionskapazität	21
	2.5	Kleinsignalmodell	23
3	Spe	zielle Dioden	24
	3.1	Schottky-Diode	24
	3.2	Z-Dioden	28
	3.3	PIN-Diode	30
	3.4	Kapazitätsdiode	31

1 Halbleiter

1.1 Stromfluss in Halbleitern

Lernziel

Entwicklung eines quantitativen Verständnisses für

- die Leitungsvorgänge in undotierten und dotierten Halbleitern und
- die Strom-Spannungs-Beziehung an pn-Übergängen.

Die Leitungsvorgänge in Halbleitern und an pn-Übergängen bilden die Grundlage für das Verständnis der Verhaltens- und Simulationsmodelle für

- Dioden
- Bipolartransistoren,
- MOS-Transistoren und
- weitere Halbleiterbauteile.

Die betrachteten physikalischen Größen

	Symbol	Maßeinheit
Energie ^{(1)} , Fermienergie ^{(2)} , chemisches	$W, W_{ m F}, \zeta$	J (Joule) $eV=1,6 \cdot 10^{-19} J$
Potential		
mittlere thermische Energie	$k_{\rm B} \cdot T$	(eV – Elektronenvolt)
Temperatur	Т	K (Kelvin)
Boltzmannkonstante	$k_{\rm B}$	$1,38 \cdot 10^{-23} \frac{\text{J}}{\text{K}} = 8,62 \cdot 10^{-5} \frac{\text{eV}}{\text{K}}$
Potential ⁽³⁾ , Spannung ⁽⁴⁾	$\varphi = \frac{W}{q}, U$	V (Volt)
Elementarladung	q	$1,6 \cdot 10^{-19}C$
Temperaturspannung	$U_{\rm T} = \frac{k_{\rm B} \cdot T}{q}$	bei 300 K $\approx 26 \mathrm{mV}$

⁽¹⁾Energiedifferenz der Ladungsträger zu einem Bezugspotential; ⁽²⁾Energie, bis zu der die Elektronenzustände bei T = 0 besetzt sind; ⁽³⁾Energie der Ladungsträger pro Ladung; ⁽⁴⁾Potentialdifferenz.

Dichte der beweglichen Ladungsträger	p (der Löcher ⁽¹⁾), n (der bew.	m^{-3}
	$\operatorname{Elektr}^{(2)})$	
Driftgeschwindigkeit	$v_{\rm p/n.drift} = (-)\mu_{\rm p/n} \cdot E$	$\frac{m}{s}$
Beweglichkeit	$\mu_{ m n},\mu_{ m p}$	$\frac{m^2}{Vs}$
Diffusionsgeschwindigkeit	$v_{\mathrm{p/n.diff}} = D_{\mathrm{p/n}} \cdot \frac{\partial p/n}{p/n \cdot \partial x}$	$\frac{m}{s}$
Diffusionskoeffizient ⁽³⁾	$D_{\rm p/n} = U_{\rm T} \cdot \mu_{\rm p/n}$	$\frac{m^2}{s}$
$\operatorname{Strom}^{(4)}$	$I = \frac{dQ}{dt} = \frac{dQ}{dl} \cdot v$	А
${ m Leit} { m ungsquerschnitt}$	A	m^2
Stromdichte	$J = rac{I}{A} = q \cdot (p \cdot v_{ m p} - n \cdot v_{ m n})$	A/m^2
Raumladungsdichte	$ ho, \ \left(\frac{\partial E}{\partial x} = \frac{ ho}{arepsilon} ight)^{(5)}$	$\frac{As}{m^3}$
Dielektrizitätskonstante (Si)	$\varepsilon, \ \varepsilon_{\rm Si} \approx 100 {\rm pF\over m}$	$\frac{F}{m}$

⁽¹⁾freie Zustände im Valenzband; ⁽²⁾besetzte Zustände im Leitungsband; ⁽³⁾Einsteingleichung; ⁽⁴⁾bewegte Ladung pro Zeit, bewegte Ladungsdichte mal Fläche mal Geschwindigkeit. ⁽⁵⁾Poissongleichung

Ströme in Halbleitern

$$I = \frac{I}{A} = q \cdot p \cdot v_{\rm p} - q \cdot n \cdot v_{\rm r}$$

Die Stromdichte ist das Produkt aus der Elementarladung, den Dichten der beweglichen Ladungsträger n und p sowie deren Geschwindigkeiten. Die Geschwindigkeiten setzen sich zusammen aus den Driftgeschwindigkeiten

$$v_{\text{p.drift}} = \mu_{\text{p}} \cdot E, \quad v_{\text{n.drift}} = \mu_{\text{n}} \cdot E$$

und den Diffusionsgeschwindigkeiten:

 $v_{\mathrm{p.diff}} = D_{\mathrm{n}} \cdot \frac{\partial p}{p \cdot \partial x}, \quad v_{\mathrm{n.diff}} = D_{\mathrm{n}} \cdot \frac{\partial n}{n \cdot \partial x}$

Die Diffussionskoeffizienten $D_{p/n}$ sind nach Einsteingleichung das Produkt aus Temperaturspannung U_T und Beweglichkeit $\mu_{p/n}$:

$$v_{\text{p.diff}} = U_{\text{T}} \cdot \mu_{\text{p}} \cdot \frac{\partial p}{p \cdot \partial x}, \quad v_{\text{n.diff}} = U_{\text{T}} \cdot \mu_{\text{n}} \cdot \frac{\partial n}{n \cdot \partial x}$$

Eingesetzt in die Gleichung der Stromdichte:

$$J = q \cdot \left(\mu_{\rm P} \cdot \left(p \cdot E + U_{\rm T} \cdot \frac{\partial p}{\partial x} \right) - \mu_{\rm n} \cdot \left(n \cdot E + U_{\rm T} \cdot \frac{\partial n}{\partial x} \right) \right)$$
(1)

Die Feldstärkeänderung in Stromflussrichtung ist nach der Poissongleichung proportional zur Raumladungsdichte aus beweglichen und ortsfesten Ladungen:

$$\frac{\partial E}{\partial x} = \frac{\rho}{\varepsilon} \tag{2}$$

 $(\rho - \text{Raumladung}; \varepsilon - \text{Dielektrizitätskonstante}).$

Zusammenfassung

Die Stromdichte in einem Halbleiter

$$J = q \cdot \left(\mu_{\mathrm{p}} \cdot \left(p \cdot E + U_{\mathrm{T}} \cdot \frac{\partial p}{\partial x} \right) - \mu_{\mathrm{n}} \cdot \left(n \cdot E + U_{\mathrm{T}} \cdot \frac{\partial n}{\partial x} \right) \right)$$

Abhängig von:

- der Feldstärke E, der Temperaturspannung $U_{\rm T}$ sowie
- den Dichten und Gradienten der beweglichen Ladungsträger.

Der Gleichgewichtszustand für die Dichten und Gradienten der beweglichen Ladungen wird durch Dotierung eingestellt. Ungleichgewichte durch zu- und abfließende Ströme bauen sich innerhalb von µs bis ms ab.

Feldstärken E entstehen durch Aufladung und äußere Spannungen.

Empfohlene Literatur: Cordes, Waag und Heuck: Integrierte Schaltungen. Grundlagen - Prozesse - Design - Layout. Pearson Studium, 2011.

1.2 Undotiert (intrinsisch)

- Elektronen besitzen im Quantenmodell einen Zustand, dem eine Energie zugeordnet ist.
- Teilen sich Elektronen wie in einem Festkörper einen Raum, kann jeder Zustand nur mit einem Elektron besetzt sein.
- Der Zustandsraum ist in Bänder unterteilt und füllt sich bei T = 0 von der niedrigsten Energie bis zur Fermienergie $W_{\rm F}$.
- Das äußerste voll besetzte Band heißt Valenzband und das darauf folgende Leitungsband.
- Beweglichkeit von Ladungsträgern verlangt freie Elektronenstände in der energetischen Nachbarschaft. Bei T = 0 nur für Elektronen im Leitungsband erfüllt.
- Halbleiter sind Materialien mit beiT=0vollem Valenz- und leerem Leitungsband. Bandlücke ca. $1\ldots 2\,\mathrm{eV}.$

Undotierte Halbleiter bei Raumtemperatur

Bei T > 0 sind auch Zustände oberhalb der Fermienergie besetzt und Zustände unterhalb der Fermienergie frei. Die Besetztwahrscheinlichkeit gehorcht der Fermi-Verteilung:

$$P(W, T, \zeta) = \left(e^{\frac{W-\zeta}{q \cdot U_{\mathrm{T}}}} + 1\right)^{-1}$$

 $(q - \text{Elementarladung}; U_{\text{T}} = k_{\text{B}} \cdot T - \text{Temperaturspannung}; q \cdot U_{\text{T}} - \text{mittlere thermisch Energie der Elektronen.}$ Für Si bei 300 K ca. 26 meV.

Das chemische Potential ζ stellt sich so ein, dass die Anzahl der freien Zustände im Valenzband gleich der Anzahl der besetzten Zustände im Leitungsband ist. Ladungsneutralität.

Dichte der beweglichen Ladungsträger

Löcher: Zustandsdichte Valenzband mal 1 - P(...)

$$p = \int_{0}^{W_{V}} (1 - P(W, T, \zeta)) \cdot z(W) \cdot dW$$

Bewegliche Elektronen: Zustandsdichte Leitungsband mal P(...)

$$n = \int_{W_{\rm L}}^{\infty} P\left(W, T, \, \zeta\right) \cdot z\left(W\right) \cdot dW$$

Boltzmannnäherung

Wenn das chemische Potential um mehr als die doppelte mittlere thermische Energie von den Bandkanten entfernt ist:

$$P(W, T, \zeta) = \left(e^{\frac{W-\zeta}{q \cdot U_{\mathrm{T}}}} + 1\right)^{-1} \approx \begin{cases} 1 - e^{\frac{W-\zeta}{q \cdot U_{\mathrm{T}}}} & \frac{W-\zeta}{q \cdot U_{\mathrm{T}}} < -2\\ e^{-\frac{W-\zeta}{q \cdot U_{\mathrm{T}}}} & \frac{W-\zeta}{q \cdot U_{\mathrm{T}}} > 2 \end{cases}$$

Überschlag für konstante Zustandsdichten in den Bändern:

$$z(W) | \begin{array}{c} z_{\rm L} \\ Valenz-band \\ W_{\rm V} \ \zeta \ W_{\rm L} \end{array} | \begin{array}{c} p \\ Dichte \ der \ beweglichen \\ Löcher \\ n \\ Elektronen \\ tatsächlicher \ Verlauf \\ \dots \\ Näherung \end{array} |$$

$$p = z_{\mathcal{V}} \cdot \int_{0}^{W_{\mathcal{V}}} e^{\frac{W-\zeta}{q \cdot U_{\mathcal{T}}}} \cdot dW \qquad n = z_{\mathcal{L}} \cdot \int_{W_{\mathcal{L}}}^{\infty} e^{\frac{\zeta-W}{q \cdot U_{\mathcal{T}}}} \cdot dW$$

$$p = z_{\mathcal{V}} \cdot q \cdot U_{\mathcal{T}} \cdot e^{\frac{W_{\mathcal{V}}-\zeta}{q \cdot U_{\mathcal{T}}}} \qquad n = z_{\mathcal{L}} \cdot q \cdot U_{\mathcal{T}} \cdot e^{\frac{\zeta-W_{\mathcal{L}}}{q \cdot U_{\mathcal{T}}}}$$

$$p = N_{\mathcal{V}} \cdot e^{\frac{W_{\mathcal{V}}-\zeta}{q \cdot U_{\mathcal{T}}}} \qquad n = N_{\mathcal{L}} \cdot e^{\frac{\zeta-W_{\mathcal{L}}}{q \cdot U_{\mathcal{T}}}}$$

Silizium bei Raumtemperatur ($U_{\rm T} \approx 26 \, {\rm meV}$)

• Die Boltzmannnäherung für 300K ($U_{\rm T} \approx 26 \,{\rm meV}$) verlangt:

$$W_{\rm V} + 50 \,{\rm meV} < \zeta < W_{\rm L} - 50 \,{\rm meV}$$

- Für Si und 300K: $N_{\rm V} \approx 15 \cdot 10^{18} \cdot {\rm cm}^{-3}, N_{\rm L} \approx 24 \cdot 10^{18} \cdot {\rm cm}^{-3}$
- Daraus folgt, Näherung gilt für $n, p < 10^{18} \cdot \text{cm}^{-3}$.

Das Produkt $n \cdot p$ ist unabhängig vom chemischen Potential ζ

$$n \cdot p = n_{\rm i}^2 = N_{\rm V} \cdot N_{\rm L} \cdot e^{\frac{W_{\rm V} - W_{\rm L}}{q \cdot U_{\rm T}}} \tag{4}$$

 $(n_{\rm i} - {\rm intrinsische \ Ladungsträgerdichte})$. Mit unserem Überschlag nehmen $N_{\rm V}$ und $N_{\rm L}$ proportional mit der Temperatur zu, in Wirklichkeit eher mit Exponent 1,5. $n_{\rm i}^2$ ist sehr temperaturabhängig.

Generation und Rekombination

Generation: Durch Energieaufnahme wird eine Valenzbandelektron zu einem Leitungsbandelektron und hinterlässt einen unbesetzten Zustand (Loch).

Rekombination: Wechsel eines besetzten Leitungsbandelektrons in ein Loch durch Energieabgabe.

Valenzbandelektronen $\xrightarrow{\text{Generation}}$ Leitungsbandelektronen + Löcher Rekombination

Im Gleichgewicht:

 $n \cdot p = n_{\rm i}^2$

ist die Generations- gleich der Rekombinationsgeschwindigkeit.

Für Silizium beträgt die intrinsische Ladungsträgerdichte bei 300 K $n_i \approx 2 \cdot 10^9 \text{cm}^{-3}$ und nimmt mit $\approx 7\%/\text{K}$ zu.

Nettorekombinationsrate

Ungleichgewichte, z.B. durch Ladungszu- oder Abfluss bauen sich mit den Relaxationszeiten $\tau_{p/n}$ ab:

$$p(t) = p_0 - (p(t_0) - p_0) \cdot e^{-\frac{t - t_0}{\tau_p}}$$

$$n(t) = n_0 - (n(t_0) - n_0) \cdot e^{-\frac{t - t_0}{\tau_n}}$$

Die Nettorekombinationsraten ist die Differenzen zum stationären Zustand geteilt durch die Zeitkonstante:

$$r_{\rm p} = \frac{dp}{dt} = \frac{p - p_0}{\tau_{\rm p}}; \quad r_{\rm n} = \frac{dn}{dt} = \frac{n - n_0}{\tau_{\rm n}}$$
 (5)

sind im Gleichgewichtszustand null und ansonsten proportional zur Größe der Gleichgewichtsstörung $p - p_0$ bzw. $n - n_0$.

Für $p < p_0$ bzw. $n < n_0$ ist die Nettorekombinationsrate negativ und eigentlich eine Generationsrate.

1.3 Dotiert (extrinsisch)

Dotierung mit Akzeptoren (p-Gebiete)

Einbau von Atomen mit drei Außenelektronen, z.B. Bor, in das Diamantgitter von Silizium. Die Energie, ein viertes Außenelektron aufzunehmen, ist $\approx 2 \cdot q \cdot U_{\rm T}$ größer als die max. Energie im Valenzband $W_{\rm V}$.

Ladungsdichten und ζ_p in p-Gebieten

Das chemische Potential stellt sich so ein, dass die Löcheranzahl im Valenzband gleich der Anzahl der besetzten Akzeptor- und Leitungsbandzustände ist:

$$p = N_{\rm V} \cdot e^{\frac{W_{\rm V} - \zeta_{\rm P}}{q \cdot U_{\rm T}}} = N_{\rm A} \cdot P\left(W_{\rm A}, T, \zeta_{\rm P}\right) + n$$

$$\approx N_{\rm A} \cdot \left(1 - e^{\frac{W_{\rm A} - \zeta_{\rm P}}{q \cdot U_{\rm T}}}\right) \quad \text{wegen } n \ll N_{\rm A} \cdot \left(1 - e^{\frac{W_{\rm A} - \zeta_{\rm P}}{q \cdot U_{\rm T}}}\right)$$

$$\approx N_{\rm A} \quad (\text{Boltzmannnäherung für } \frac{W_{\rm A} - \zeta_{\rm P}}{q \cdot U_{\rm T}} < -2$$

Chemisches Potential für die Boltzmannnäherung:

$$\zeta_{\rm p} \approx W_{\rm V} + q \cdot U_{\rm T} \cdot \ln\left(\frac{N_{\rm V}}{N_{\rm A}}\right) \quad N_{\rm A} \ll N_{\rm V} \tag{6}$$

In einem mit Akzeptoren dotierten (p-) Gebiet sind Löcher die Majoritätsladungsträger.

Die Dichte der Minoritätsladungsträger strebt durch Generation bzw. Rekombination gegen Gl. 4:

$$n = \frac{n_{\rm i}^2}{p}$$

Richtwerte Si 300K:

	Akzeptordichte in cm^{-3}	10^{14}	10^{16}	10^{18}
ſ	Majoritätsladungsträgerdichte (p) in cm ⁻³	10^{14}	10^{16}	$5 \cdot 10^{17}$
ſ	Minoritätsladungsträgerdichte (n) in cm ⁻³	$4 \cdot 10^4$	$4 \cdot 10^2$	8

Für hohe Dotierung (ab $10^{18} {\rm cm}^{-3})$ sind die zusätzlichen Akzeptorzustände nur teilweise besetzt und pkleiner als die Akzeptordichte

$$p = N_{\rm A} \cdot \left(1 - e^{\frac{W_{\rm A} - \zeta_{\rm P}}{q \cdot U_{\rm T}}} \right) < N_{\rm A}$$

Dotierung mit Donatoren (n-Gebiete)

Einbau von Atomen mit fünf Außenelektronen, z.B. Phosphor, in das Diamantgitter von Silizium. Die Energie, das fünfte Außenelektron abzugeben, ist $\approx q \cdot U_{\rm T}$ kleiner als die min. Energie im Leitungsband $W_{\rm L}$.

Ladungsdichten und ζ_n in n-Gebieten

Das chemische Potential stellt sich so ein, dass die Elektronenanzahl im Leitungsband gleich der Anzahl der freien Donator- und Valenzbandzustände ist:

$$\begin{array}{ll} n & = & N_{\mathrm{L}} \cdot e^{\frac{\zeta_{\mathrm{n}} - W_{\mathrm{L}}}{q \cdot U_{\mathrm{T}}}} = N_{\mathrm{D}} \cdot \left(1 - P\left(W_{\mathrm{D}}, T, \zeta_{\mathrm{n}}\right)\right) + p \\ & \approx & N_{\mathrm{D}} \cdot \left(1 - e^{-\frac{W_{\mathrm{D}} - \zeta_{\mathrm{n}}}{q \cdot U_{\mathrm{T}}}}\right) & \text{wegen } p \ll N_{\mathrm{D}} \cdot \left(1 - e^{-\frac{W_{\mathrm{D}} - \zeta_{\mathrm{n}}}{q \cdot U_{\mathrm{T}}}}\right) \\ & \approx & N_{\mathrm{D}} & (\mathrm{Boltzmannn\"aherung firr} \; \frac{W_{\mathrm{D}} - \zeta_{\mathrm{n}}}{q \cdot U_{\mathrm{T}}} > 2 \end{array}$$

Chemisches Potential für die Boltzmannnäherung:

$$\zeta_n \approx W_{\rm L} - q \cdot U_{\rm T} \cdot \ln\left(\frac{N_{\rm L}}{N_{\rm D}}\right) \tag{7}$$

In einem mit Donatoren dotierten (n-) Gebiet sind bewegliche Elektronen die Majoritätsladungsträger.

Die Dichte der Minoritätsladungsträger strebt durch Generation bzw. Rekombination gegen Gl. 4:

$$p = \frac{n_{\rm i}^2}{n}$$

Richtwerte Si 300K:

Donator dichte in $\rm cm^{-3}$	10^{14}	10^{16}	10^{18}
Majoritätsladungsträgerdichte (n) in cm ⁻³	10^{14}	10^{16}	10^{18}
Minoritätsladungsträgerdichte (p) in cm ⁻³	$4 \cdot 10^4$	$4 \cdot 10^2$	4

Für hohe Dotierung (ab 10^{18} cm⁻³) sind die zusätzlichen Donatorzustände nur teilweise unbesetzt und n kleiner als die Donatordichte

$$n = N_{\rm D} \cdot \left(1 - e^{-\frac{W_{\rm D} - \zeta_{\rm n}}{q \cdot U_{\rm T}}} \right) < N_{\rm A}$$

Tiefe Störstellen

Gleichmäßig in der Bandlücke verteile zusätzliche Energiezustände durch Gitterfehler und Verunreinigungen.

- In der Regel erfolgt die Energieaufnahme und -abgabe in kleinen Schritten über die tiefen Störstellen.
- Je reiner ein Halbleiter, desto größer sind die Relaxationszeiten τ_p und τ_n , mit denen die Gleichgewichtsstörungen abgebaut werden.

Zusammenfassung

Mit der Boltzmannnäherung für Si und 300K ($U_{\rm T} \approx 26 \,{\rm meV}$, $W_{\rm V} + 50 \,{\rm meV} < \zeta < W_{\rm L} + 50 \,{\rm meV}$, $N_{\rm V} \approx 15 \cdot 10^{18} \cdot {\rm cm}^{-3}$ und $N_{\rm L} \approx 24 \cdot 10^{18} \cdot {\rm cm}^{-3}$) betragen im undotierten Halbleiter die Dichten der Löcher und der beweglichen Elektronen:

$$p = N_{\rm V} \cdot e^{\frac{W_{\rm V} - \zeta}{q \cdot U_{\rm T}}}$$
$$n = N_{\rm L} \cdot e^{\frac{\zeta - W_{\rm L}}{q \cdot U_{\rm T}}}$$

Im Gleichgewichtszustand:

$$n \cdot p = n_{\mathrm{i}}^2 = N_{\mathrm{V}} \cdot N_{\mathrm{L}} \cdot e^{\frac{W_{\mathrm{V}} - W_{\mathrm{L}}}{q \cdot U_{\mathrm{T}}}} = n_{\mathrm{i}}^2$$

 $n_{\rm i}$ – intrinsische Ladungsträgerdichte, für Si bei 300 K $n_{\rm i}\approx 2\cdot 10^9{\rm cm}^{-3}.$ Abnahme mit etwa 7% pro Kelvin zu.

Eine Akzeptordichte $N_{\rm A} \ll N_{\rm V}$ ändert das Gleichgewicht in:

$$p = N_{\rm A}; \quad n = \frac{n_{\rm i}^2}{N_{\rm A}}$$
$$\zeta_{\rm p} \approx W_{\rm V} + q \cdot U_{\rm T} \cdot \ln\left(\frac{N_{\rm V}}{N_{\rm A}}\right)$$

Eine Donatordichte $N_{\rm D} \ll N_{\rm L}$ ändert das Gleichgewicht in:

$$n = N_{\rm D}; \quad p = \frac{n_{\rm i}^2}{N_{\rm D}}$$
$$\zeta_{\rm n} \approx W_{\rm L} - q \cdot U_{\rm T} \cdot \ln\left(\frac{N_{\rm L}}{N_{\rm D}}\right)$$

Gleichgewichtsstörungen werden mit den Nettorekombinationsraten

$$r_{\mathrm{n}} = \frac{dn}{dt} = \frac{n - n_0}{\tau_{\mathrm{n}}}; \quad r_{\mathrm{p}} = \frac{dp}{dt} = \frac{p - p_0}{\tau_{\mathrm{p}}}$$

abgebaut ($\tau_{p/n}$ – Relaxionszeiten, bis zu Millisekunden).

1.4 Stromloser pn-Übergang

Suchen Sie die Gleichungen zusammen

Stromdichte für Halbleiter nach Gl. 1:

$$J = q \cdot (\mu_{\mathbf{p}} \cdot (\dots \dots \dots)) - \mu_{\mathbf{n}} \cdot (\dots \dots \dots))$$

Die Poisson-Gleichung, Gl. 2:

$$\frac{\partial E}{\partial x} = \dots$$

~ ---

Die Boltzmannnäherung für p und n als Funktion von ζ nach Gl. 3

$$p \approx N_{\rm V} \cdot \dots \dots \dots$$

 $n \approx N_{\rm L} \cdot \dots \dots \dots$

Die Nettorekombinationsraten nach Gl. 5:

$$p - Gebiet : r_p = \frac{dp}{dt} = \dots, n - Gebiet : r_n = \frac{dn}{dt} = \dots$$

Zur Kontrolle

Stromdichte für Halbleiter nach Gl. 1:

$$J = q \cdot \left(\mu_{\mathrm{p}} \cdot \left(p \cdot E + U_{\mathrm{T}} \cdot \frac{\partial p}{\partial x} \right) - \mu_{\mathrm{n}} \cdot \left(n \cdot E + U_{\mathrm{T}} \cdot \frac{\partial n}{\partial x} \right) \right)$$

Die Boltzmannnäherungen für die Elektronen- und die Löcherdichten nach Folie 4:

$$p = N_{\rm V} \cdot e^{\frac{W_{\rm V} - \zeta}{q \cdot U_{\rm T}}}$$
$$n = N_{\rm L} \cdot e^{\frac{\zeta - W_{\rm L}}{q \cdot U_{\rm T}}}$$

Die Poisson-Gleichung, Gl. 2:

$$\frac{\partial E}{\partial x} = \frac{\rho}{\varepsilon}$$

Die Nettorekombinationsraten nach Gl. 5:

p - Gebiet :
$$r_{\rm p} = \frac{dp}{dt} = \frac{p - p_0}{\tau_{\rm p}}, \ {\rm n-Gebiet} : r_{\rm n} = \frac{dn}{dt} = \frac{n - n_0}{\tau_{\rm n}}$$

Verbindung eines p- und eines n-Gebiets

- Der Dichtegradient an der Übergangsstelle bewirkt, das aus dem p-Gebiet Elektronen und aus dem n-Gebiet Löcher in das andere Gebiet diffundieren.
- Es entsteht ein elektrisches Feld, das einen Driftstrom verursacht, der den Diffusionsstrom kompensiert.
- Die im Verbindungsmoment durch Diffusion verursache Erhöhung von $n \cdot p \gg n_i^2$ wird innerhalb weniger Millisekunden durch Rekombination abgebaut.

Feldstärke und Ladungsdichte

Im stationären Gleichgewicht heben sich überall die Elektronen- und Löcherströme auf. Elektronenstromdichte nach Gl. 1:

$$J_{\rm n} = 0 = -q \cdot \mu_{\rm n} \cdot \left(n \cdot E + U_{\rm T} \cdot \frac{\partial n}{\partial x} \right) \tag{8}$$

Die Änderung der Elektronendichte ergibt sich aus der Änderung des Abstands des chemischen Potentials zum Leitungsband:

$$\frac{\partial n}{\partial x} = \frac{\partial \left(N_{\rm L} \cdot e^{\frac{\zeta_{\rm n} - W_{\rm L}}{q \cdot U_{\rm T}}} \right)}{\partial x} = \frac{n}{q \cdot U_{\rm T}} \cdot \left(\frac{\partial \zeta_{\rm n}}{\partial x} - \frac{\partial W_{\rm L}}{\partial x} \right) = -\frac{n}{q \cdot U_{\rm T}} \cdot \frac{\partial W_{\rm L}}{\partial x}^*$$

(*mit Festlegung $\zeta = \text{konst.}$). Eingesetzt in Gl. 8 ergibt sich, dass die Feldstärke im stromlosen pn-Übergang proportional zur Änderung der Leitungsbandenergie abnimmt:

$$0 = n \cdot E - U_{\rm T} \cdot \frac{n}{q \cdot U_{\rm T}} \cdot \frac{\partial W_{\rm L}}{\partial x}, \quad E = \frac{1}{q} \cdot \frac{\partial W_{\rm L}}{\partial x}$$

Diffusionsspannung und Raumladung

Die Diffusionsspannung

$$U_{\text{Diff}} = -\int_{-w_{\text{p}}}^{w_{\text{n}}} E \cdot dx = -\frac{1}{q} \cdot \int_{-w_{\text{p}}}^{w_{\text{n}}} \frac{\partial W_{\text{L}}}{\partial x} \cdot dx = \frac{\zeta_{\text{n}} - \zeta_{\text{p}}}{q}$$

ist das Intergral über die Feldstärke am stromlosen pn-Übergang.

In dem Bereich, in dem das chemische Potential von den Bandkanten weiter entfernt ist, ist die Dichte der beweglichen Ladungsträger klein gegenüber den ortsfesten Störstellenatomen. Näherungsweise konstante Raumladung:

• p-Gebiet:
$$\rho \approx -q \cdot N_{\rm A}$$

• n-Gebiet: $\rho \approx q \cdot N_{\rm D}$.

Feldstärke und Sperrschichtbreite

Bei konstanter Raumladung nimmt nach Gl. 2 (Poisson-Gl.):

$$\frac{\partial E}{\partial x} = \frac{\rho}{\varepsilon}$$

die Feldstärke im p-Gebiet proportional mit $-q \cdot N_A$ ab und im n-Gebiet mit $q \cdot N_D$ zu (Dreieckverlauf).

• Abfall p-Gebiet: $\frac{\partial E}{\partial x} = \frac{-q \cdot N_{\rm A}}{\varepsilon} = \frac{-E_{\rm max}}{w_{\rm p}}$

• Anstieg n-Gebiet:
$$\frac{\partial E}{\partial x} = \frac{q \cdot N_{\rm D}}{\varepsilon} = \frac{E_{\rm max}}{w_{\rm n}}$$

- Ladungsneutralität: $N_{\rm A} \cdot w_{\rm p} = N_{\rm D} \cdot w_{\rm n}$
- Diffusions spannung: $U_{\text{Diff}} = \frac{1}{2} \cdot E_{\text{max}} \cdot (w_{\text{p}} + w_{\text{n}})$

Auflösung des Gleichungssystems nach den Breiten der Raumladungszonen:

$$w = w_{\rm p} + w_{\rm n} = \sqrt{\frac{2 \cdot \varepsilon \cdot U_{\rm Diff}}{q} \cdot \left(\frac{1}{N_{\rm A}} + \frac{1}{N_{\rm D}}\right)}$$

$$w_{\rm p} = \frac{w \cdot N_{\rm D}}{N_{\rm D} + N_{\rm A}}, \quad w_{\rm n} = \frac{w \cdot N_{\rm A}}{N_{\rm D} + N_{\rm A}}$$
(9)

Maximale Feldstärke:

$$E_{\max} = \frac{w_{\mathrm{p}} \cdot q \cdot N_{\mathrm{A}}}{\varepsilon} = \frac{w_{\mathrm{n}} \cdot q \cdot N_{\mathrm{D}}}{\varepsilon} = \frac{2 \cdot U_{\mathrm{Diff}}}{w}$$

- Bei gleicher Dotierung: $w_{\rm p} = w_{\rm n}$.
- Je schwächer dotiert, desto breiter die Sperrschicht.
- Bei ungleicher Dotierung breitet sich die Raumladungszone hauptsächlich im niedriger dotierten Gebiet aus.
- Über $C = \varepsilon \cdot \frac{A}{w}$ verhält sich die Sperrschichtkapazität umgekehrt proportional zur Sperrschichtbreite w.

1.5 pn-Übergang, Sperrbereich

Sperrbereich

Eine Sperrspannung $U_{\rm S} > 0$ verbreitert die mit $\rho = q \cdot N_{\rm A}$ bzw. $\rho = q \cdot N_{\rm D}$ aufgeladene Raumladungszohne und $E_{\rm max}$. Das Integral über die Feldstärke ist jetzt die Summe aus Diffusions- und Sperrspannung:

$$U_{\text{Diff}} + U_{\text{S}} = \frac{1}{2} \cdot E_{\text{max}} \cdot (w_{\text{p}} + w_{\text{n}})$$

 $U_{S} \text{ (Sperrspannung)}$ $I_{S} \text{ (Sperrstrom)}$ $E \uparrow 0 \qquad -w_{p} \qquad 0 \qquad w_{n}$ $E \uparrow 0 \qquad -E_{max} \qquad 0 \qquad y_{n}$ $P_{q} \uparrow 0 \qquad N_{A} \qquad y_{p} \qquad 0 \qquad x_{n}$ $E \uparrow 0 \qquad -E_{max} \qquad y_{n} \qquad y_{n} \qquad y_{n} \qquad y_{n}$

In den Gleichungen zur Bestimmung von w, $w_{\rm p}$, $w_{\rm n}$ und $E_{\rm max}$ ist die Diffusionsspannung durch $U_{\rm Diff} + U_{\rm S}$ zu ersetzen:

$$E_{\rm max} = \frac{2 \cdot (U_{\rm Diff} + U_{\rm S})}{w}$$

$$E_{\max} = \frac{2 \cdot (U_{\text{Diff}} + U_{\text{S}})}{w} = \sqrt{\frac{2 \cdot q \cdot (U_{\text{Diff}} + U_{\text{S}})}{\varepsilon \cdot \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right)}}$$
(10)

$$w = \sqrt{\frac{2 \cdot \varepsilon \cdot (U_{\text{Diff}} + U_{\text{S}})}{q} \cdot \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right)}$$

$$w_{\text{p}} = \frac{w \cdot N_{\text{D}}}{N_{\text{D}} + N_{\text{A}}}, \quad w_{\text{n}} = \frac{w \cdot N_{\text{A}}}{N_{\text{D}} + N_{\text{A}}}$$
(11)

Lawinendurchbruch

Häufigste Durchbruchart. Bei hohen Feldstärken nehmen die bewegten Ladungsträger auf ihrem Weg bis zum nächsten Gitterzusammenstoß so viel Energie auf, das es für die Generierung eines Elektronen-Lochpaars ausreicht. Die Dichte der beweglichen Ladungsträger in der Raumladungszone steigt mit weiterer Erhöhung der Sperrspannung exponentiell an.

Spannungsfestigkeit

Die maximale Feldstärke E_{max} muss unterhalb des Wertes für den Durchbruch E_{BR} bleiben:

$$E_{\max} = \frac{2 \cdot (U_{\text{Diff}} + U_{\text{S}})}{w} = \sqrt{\frac{2 \cdot q \cdot (U_{\text{Diff}} + U_{\text{S}})}{\varepsilon \cdot \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right)}} < E_{\text{BR}}$$

Für gegebene $U_{\rm S}$

- große Breite
- niedrige Dotierung.

Einseitig niedrige Dotierung reicht, weil sich die Sperrschicht hauptsächlich im niedrig dotierten Gebiet ausbreitet.

Sanfte Dotierprofile und intrinsischer Übergang

Aus der Poisson-Gl. 2 $\frac{\partial E}{\partial x} = \frac{\rho}{\varepsilon}$ folgt, dass bei abnehmender Raumladung, die in der Verarmungszone gleich der Dotierdichte ist, E schwächer und in einer intrinsischen Zwischenschicht gar nicht zunimmt. Bei gleicher Sperrschichtbreite und Sperrspannung geringeres Feldstärkemaximum.

Sperrstrom

Der Sperrstrom ist ein Generierungsstrom mit der Stromdichte:

$$J_{\rm S} = \frac{I_{\rm S}}{A} \approx q \cdot (w_{\rm n} \cdot r_{\rm n} + w_{\rm p} \cdot r_{\rm p})$$

mit der Generationsrate¹ im p-Gebiet:

$$-r_{\rm p} = -\frac{\mathrm{d}p_{\rm p}}{\mathrm{d}t} = \frac{N_{\rm A} - p_{\rm p}}{\tau_{\rm p}} \approx \frac{N_{\rm A}}{\tau_{\rm p}}$$

und im n-Gebiet:

$$-r_{\rm n} = -\frac{\mathrm{d}n_{\rm n}}{\mathrm{d}t} = \frac{N_{\rm D} - n_{\rm n}}{\tau_{\rm n}} \approx \frac{N_{\rm D}}{\tau_{\rm n}}$$

 $(\dots_p-im$ p-Gebiet; $\dots_p;$ im n-Gebiet;
 τ – Relaxionszeit; Näherungsannahmen: Majoritäts
dichte viel kleiner Dotierdichten). Zusammen:

$$J_{\rm S} = \frac{I_{\rm S}}{A} \approx q \cdot \left(\frac{w_{\rm n} \cdot N_{\rm D}}{\tau_{\rm n}} + \frac{w_{\rm p} \cdot N_{\rm A}}{\tau_{\rm p}}\right) \tag{12}$$

Für einen abrupten Übergang mit sprunghafter Überrung der Änderung der Dotiertichte von $N_{\rm A}$ nach $N_{\rm D}$ nehmen die Breiten $w_{\rm p}$ und $w_{\rm n}$ der Raumladungszonen und damit auch der Sperrstom mit $\sqrt{U_{\rm Diff} + U_{\rm S}}$ zu:

$$J_{\rm S} \sim \sqrt{U_{\rm Diff} + U_{\rm S}}$$

Für die meisten Anwendungen ist der Sperrstrom vernachlässigbar klein.

Zusammenfassung

• Sperrschichtbreite:

$$w = \sqrt{\frac{2 \cdot \varepsilon \cdot (U_{\rm Diff} + U_{\rm S})}{q}} \cdot \left(\frac{1}{N_{\rm A}} + \frac{1}{N_{\rm D}}\right)$$

• Maximale Feldstärke:

$$E_{\max} = \frac{2 \cdot (U_{\text{Diff}} + U_{\text{S}})}{w} = \sqrt{\frac{2 \cdot q \cdot (U_{\text{Diff}} + U_{\text{S}})}{\varepsilon \cdot \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right)}}$$

- Bei zu hoher Feldstärke Durchbruch.
- Erhöhung der Spannungsfestigkeit durch einseitig niedrige Dotierung, sanfte Dotierprofile und/oder eine intrinsische Schicht zwischen den dotierten Gebieten.
- Sperrstrom vernachlässigbar.

¹Die Generierungsrate für $n \cdot p < n_i^2$ ist minus Nettorekombinationsrate.

1.6 pn-Übergang Durchlassbereich

Suchen Sie die Gleichungen zusammen

1. Stromdichte für Halbleiter nach Gl. 1:

$$J = q \cdot (\mu_{\mathbf{p}} \cdot (\dots \dots \dots)) - \mu_{\mathbf{n}} \cdot (\dots \dots \dots))$$

- 2. Die Boltzmannnäherungen für die Elektronen- und die Löcherdichten Gl. 3:
 - $p \approx N_{\rm V} \cdot \dots \dots \dots \dots$ $n \approx N_{\rm L} \cdot \dots \dots \dots$
- 3. Die Gleichgewichtsverscheibung des Produkts $n \cdot p$ unter der Annahme, dass sich die chemischen Potentiale für Löcher und Elektronen um $\zeta_n \zeta_p = q \cdot U_D$ unterscheiden ($\zeta_{p/n}$ chemisches Potential zur Löcher- / Elektronendichte; U_D Spannung in Durchlassrichtung; q Elemetarladung):

$$n \cdot p = n_i^2 \cdot \ldots \dots \dots$$

Zur Kontrolle

1. Stromdichte für Halbleiter nach Gl. 1:

$$J = q \cdot \left(\mu_{\mathrm{p}} \cdot \left(p \cdot E + U_{\mathrm{T}} \cdot \frac{\partial p}{\partial x} \right) - \mu_{\mathrm{n}} \cdot \left(n \cdot E + U_{\mathrm{T}} \cdot \frac{\partial n}{\partial x} \right) \right)$$

2. Die Boltzmannnäherungen für die Elektronen- und die Löcherdichten Gl. 3:

$$\begin{array}{rcl} p &\approx& N_{\mathrm{V}} \cdot e^{\frac{W_{\mathrm{V}} - \zeta_{\mathrm{P}}}{q \cdot U_{\mathrm{T}}}} & \mathrm{für} \ \mathrm{e}^{\frac{W_{\mathrm{V}} - \zeta_{\mathrm{P}}}{q \cdot U_{\mathrm{T}}}} < \mathrm{e}^{-2} \approx 0.1^{*} \\ n &\approx& N_{\mathrm{L}} \cdot e^{\frac{\zeta_{\mathrm{n}} - W_{\mathrm{L}}}{q \cdot U_{\mathrm{T}}}} & \mathrm{für} \ \mathrm{e}^{\frac{\zeta_{\mathrm{n}} - W_{\mathrm{L}}}{q \cdot U_{\mathrm{T}}}} < \mathrm{e}^{-2} \approx 0.1^{*} \end{array}$$

(*- Gültigkeitsvoraussetzung).

3. Gleichgewichtsverschiebung des Produkts $n\cdot p$ für $\zeta_{\rm n}-\zeta_{\rm p}=q\cdot U_{\rm D}$

$$n \cdot p = \underbrace{N_{\mathrm{V}} \cdot N_{\mathrm{L}} \cdot e^{-\frac{W_{\mathrm{L}} - W_{\mathrm{V}}}{q \cdot U_{\mathrm{T}}}}}_{n_{\mathrm{i}}^{2}} \cdot \underbrace{e^{\frac{\zeta_{\mathrm{n}} - \zeta_{\mathrm{p}}}{q \cdot U_{\mathrm{T}}}}}_{e^{\frac{U_{\mathrm{D}}}{U_{\mathrm{T}}}}}$$

Durchlassbereich

Eine Durchlassspannung $U_{\rm D} > 0$ verringert nach Gl. 11 das elektrische Feld und die Breite der Raumladungszone. Der Diffusionsstrom wird nicht mehr durch den Driftstrom kompensiert.

Unter der Annahme, keine Rekombination in der Sperrschicht², behalten die chemisches Potentiale der in das andere Gebiet diffundierenden Ladungsträger die Differenz $\zeta_n - \zeta_p = q \cdot U_D$. Vergrößerung von $n \cdot p$ bis zum Ende der Sperrschicht:

$$n \cdot p \approx n_{\rm i}^2 \cdot e^{\frac{\partial D}{U_{\rm T}}}$$

²Aufgrund der großen Dichtegradienten diffundieren die Ladungsträger sehr schnell durch die Sperrschicht.

Hinter der Raumladungszone

Majoritätsdichte:
$$p_{p} (x_{p} \ge 0) = N_{A}$$

 $n_{n} (x_{n} \ge 0) = N_{D}$

Minoritätsdichteerhöhung am Ende der Raumladungszone:

$$n_{\rm p} (x_{\rm p} = 0) = n_{\rm p0} \cdot e^{\frac{U_{\rm D}}{U_{\rm T}}} \text{ mit } n_{\rm p0} = \frac{n_{\rm i}^2}{N_{\rm A}}$$
$$p_{\rm n} (x_{\rm n} = 0) = p_{\rm n0} \cdot e^{\frac{U_{\rm D}}{U_{\rm T}}} \text{ mit } p_{\rm n0} = \frac{n_{\rm i}^2}{N_{\rm D}} \cdot e^{\frac{U_{\rm D}}{U_{\rm T}}}$$

Weiterdiffusion der Minioritätsladungsträger im Bahngebiet:

- Elektronen im p-Gebiet: $J_{n} = q \cdot \mu_{n} \cdot U_{T} \cdot \frac{d n_{p}(x_{p})}{d x_{p}}$
- Löcher im n-Gebiet: $J_{\rm p} = q \cdot \mu_{\rm p} \cdot U_{\rm T} \cdot \frac{d p_{\rm n}(x_{\rm n})}{d x_{\rm n}}$

Die Dichtegradienten $\neq 0$ entstehen durch Rekombination.

Minoritätendichten $x_{p/n} \ge 0$

$$J = J_{\rm n} + J_{\rm p}$$

	Diffusionsstromdichte	Abnahme durch Rekombination	
р	$J_{\rm n} = q \cdot \mu_{\rm n} \cdot U_{\rm T} \cdot \left. \frac{\partial n_{\rm p}(x_{\rm p})}{\partial x_{\rm p}} \right _{x_{\rm p}=0}$	$\frac{\partial J_{\mathrm{n}}}{\partial x_{\mathrm{p}}} = q \cdot r_{\mathrm{p}} = q \cdot \frac{n_{\mathrm{p}}(x_{\mathrm{p}}) - n_{\mathrm{p}0}}{\tau_{\mathrm{p}}}$	
n	$J_{\rm p} = q \cdot \mu_{\rm p} \cdot U_{\rm T} \cdot \left. \frac{\partial p_{\rm n}(x_{\rm n})}{\partial x_{\rm n}} \right _{x_{\rm n}} = 0$	$rac{\partial J_{\mathrm{p}}}{\partial x_{\mathrm{n}}} = q \cdot r_{\mathrm{n}} = q \cdot rac{p_{\mathrm{n}}(x_{\mathrm{n}}) - p_{\mathrm{n}0}}{\tau_{\mathrm{n}}}$	

- 1. DGL Min.-Dichte p-Gebiet: $\frac{\partial^2 n_p(x_p)}{\partial x_p^2} = \frac{n_p(x_p) n_{p0}}{\mu_n \cdot U_T \cdot \tau_p}$
- 2. DGL Min.-Dichte n-Gebiet: $\frac{\partial^2 p_n(x_n)}{\partial x_n^2} = \frac{p_n(x_n) p_{n0}}{\mu_p \cdot U_T \cdot \tau_n}$

Lösung der DGLs für die Minoritätendichten:

- 1. p-Gebiet: $n_{\rm p}(x_{\rm p}) = k_{\rm p} \cdot e^{[-]\frac{x_{\rm p}}{L_{\rm n}}} + n_{\rm p0} \text{ mit } L_{\rm n} = \sqrt{\mu_{\rm n} \cdot U_{\rm T} \cdot \tau_{\rm p}}$
- 2. n-Gebiet: $p_n(x_p) = k_n \cdot e^{[-]\frac{x_n}{L_p}} + p_{n0}$ mit $L_p = \sqrt{\mu_p \cdot U_T \cdot \tau_n}$

 $(L_{\rm n}$ – Diffusionslänge Elektronen im p-Gebiet; $L_{\rm p}$ – … Löcher im n-Gebiet).

 $L_{\rm p}$, $L_{\rm n}$ – Diffusionslängen, Wege, bis zur Verringerung der Minoritätsüberschüsse auf das 1/e-fache. Probe mit der Minioritätendichte im p-Gebiet:

$$\frac{\partial^2 \left(k_{\rm p} \cdot e^{[-]\frac{x_{\rm p}}{L_{\rm p}}} + n_{\rm p0} \right)}{\partial x_{\rm n}^2} = \frac{k_{\rm p} \cdot e^{[-]\frac{x_{\rm p}}{L_{\rm p}}}}{L_{\rm p}^2} \stackrel{!}{=} \frac{k_{\rm p} \cdot e^{[-]\frac{x_{\rm p}}{L_{\rm p}}}}{L_{\rm p}^2} + n_{\rm p0} - n_{\rm p0} \sqrt{\frac{1}{2}}$$

 $\dots e^{-\frac{x_n}{\dots}}$ physikalisch richtig, weil $p_n(x_n)$ mit x_n abnimmt.

$n_{\mathrm{p}}\left(x_{\mathrm{p}} ight), p_{\mathrm{n}}\left(x_{\mathrm{n}} ight)$	Minoritätendichte im p- bzw- n-Bahngebiet
$k_{ m p},k_{ m n}$	noch zu bestimmende Parameter
$ au_{ m p}, au_{ m n}$	Relaxionszeit im p- bzw- n-Gebiet
$\mu_{ m p},\mu_{ m p}$	Beweglichkeit im p- bzw- n-Gebiet
L _n	Diffusionslänge Elektronen im p-Gebiet
L _p	Diffusionslänge Löcher im n-Gebiet

n-Gebiet

 $0 x_n$

 $W_{\rm L}$

 $r_{\rm p}$

 $(U_{\rm Diff} - U_{\rm D})$

 $q \cdot U_{\rm D}$

Bestimmung $k_{\rm p}$ aus Randbedingung $n_{\rm p}\left(x_{\rm p}=0\right)=n_{\rm p0}\cdot e^{\frac{U_{\rm D}}{U_{\rm T}}}$:

$$n_{p0} \cdot e^{\frac{U_{D}}{U_{T}}} = k_{p} \cdot e^{-\frac{x_{p}=0}{L_{n}}} + p_{n0}$$

$$k_{p} = n_{p0} \cdot \left(e^{\frac{U_{D}}{U_{T}}} - 1\right)$$

$$n_{p} \left(x_{p}\right) = n_{p0} \cdot \left(e^{\frac{U_{D}}{U_{T}}} - 1\right) \cdot e^{-\frac{x_{p}}{L_{n}}} + n_{p0}$$

Bestimmung $k_{\rm n}$ aus Randbedingung $p_{\rm n}\left(x_{\rm n}=0\right)=p_{\rm n0}\cdot e^{\frac{U_{\rm D}}{U_{\rm T}}}$:

$$p_{\rm n}(x_{\rm n}) = p_{\rm n0} \cdot \left(e^{\frac{U_{\rm D}}{U_{\rm T}}} - 1\right) \cdot e^{-\frac{x_{\rm n}=0}{L_{\rm p}}} + p_{\rm n0}$$

Durchlass
strom gleich Summe der Diffusionsströme bei $x_{\rm p/n}=0{:}$

$$J = J_{n} + J_{p} = q \cdot \left(\left. \mu_{n} \cdot U_{T} \cdot \frac{\partial n_{p} \left(x_{p} \right)}{\partial x_{p}} \right|_{x_{p}=0} + \left. \mu_{p} \cdot U_{T} \cdot \frac{\partial p_{n} \left(x_{n} \right)}{\partial x_{n}} \right|_{x_{n=0}} \right)$$
$$= \left(\frac{n_{p0} \cdot q \cdot \mu_{n} \cdot U_{T}}{L_{n}} + \frac{p_{n0} \cdot q \cdot \mu_{p} \cdot U_{T}}{L_{p}} \right) \cdot \left(e^{\frac{U_{D}}{U_{T}}} - 1 \right)$$

Shockley-Gleichung

Durchlassstromdichte (Shockley-Gleichung):

$$J_{\rm D} = J_{\rm s} \cdot \left(e^{\frac{U_{\rm D}}{U_{\rm T}}} - 1 \right) \tag{13}$$

mit der Sättigungsstromdichte

$$J_{\rm s} = \left(\frac{n_{\rm p0} \cdot q \cdot \mu_{\rm n} \cdot U_{\rm T}}{L_{\rm n}} + \frac{p_{\rm n0} \cdot q \cdot \mu_{\rm p} \cdot U_{\rm T}}{L_{\rm p}}\right)$$

Gleichgewichts- minoritätendichten	$n_{\rm p0} = \frac{n_{\rm i}^2}{N_{\rm A}}$	$p_{\rm n0} = \frac{n_{\rm i}^2}{N_{\rm D}}$
Diffusionslängen:	$L_{\rm n} = \sqrt{U_{\rm T} \cdot \mu_{\rm n} \cdot \tau_{\rm p}}$	$L_{\rm p} = \sqrt{U_{\rm T} \cdot \mu_{\rm p} \cdot \tau_{\rm n}}$

die wegen $U_{\rm T} = \frac{k_{\rm B} \cdot T}{q}$ und $n_{\rm i}^2 \sim T^{2..3} \cdot e^{-\frac{15000 \, {\rm K}}{T}}$ sehr stark von der Temperatur T abhängt:

$$J_{\rm s} \sim T^{2,5..3,5} \cdot e^{-\frac{15000\,{\rm K}}{T}}$$

 $(U_{\rm D}-{\rm Spannung}$ in Durchlassrichtung; $U_{\rm T}-{\rm Temperaturspannung};$ $n_{\rm i}-{\rm instrinsische}$ Ladungsträgerdichte).

Zusammenfassung Durchlassstromdichte

$$J_{\rm D} = J_{\rm s} \cdot \left(e^{\frac{U_{\rm D}}{U_{\rm T}}} - 1\right)$$
$$J_{\rm s} = q \cdot U_{\rm T} \cdot n_{\rm i}^2 \cdot \left(\frac{1}{N_{\rm D}} \cdot \sqrt{\frac{\mu_{\rm p}}{\tau_{\rm n}}} + \frac{1}{N_{\rm A}} \cdot \sqrt{\frac{\mu_{\rm n}}{\tau_{\rm p}}}\right)$$
$$n_{\rm i}^2 = N_{\rm V} \cdot N_{\rm L} \cdot e^{\frac{W_{\rm V} - W_{\rm L}}{q \cdot U_{\rm T}}}$$

Die Faktoren $U_{\rm T}$ und n_i^2 bewirken, dass die Sättigungsstromdichte $J_{\rm S}$ stark temperaturabhängig ist.

$\tau_{\rm p}, \tau_{\rm n}$	Relaxionszeit im p- bzw- n-Gebiet			
$\mu_{ m p},\mu_{ m p}$	Beweglichkeit im p- bzw- n-Gebiet			
$N_{\rm A}, N_{\rm D}$	Akzeptor- und Donatordichte im p- bzw- n-Gebiet			
$U_{\rm T} = \frac{k_{\rm B} \cdot T}{q}$	Temperaturspannung			
q	Elementarladung			
$n_{\rm i}^2$	instrinsische Ladungsträgerdichte			

2 Dioden

2.1 Spice-Modell

Einführendes Beispiel

Das mit LT-Spice mitgelieferte Modell der Diode 1N4148 hat im Durchlassbereich folgende Strom-Spannungs-Beziehung:

Im Sperrbereich ist der simulierte Strom null.

Die Beschreibung dieser Diode lautet:

```
.model 1N4148 D(Is=2.52n Rs=.568,
N=1.752 Cjo=4p M=.4 Iave=200m
Tt=20n Vpk=75 mfg=OnSemi
type=silicon)
```

Alle anderen Parameter haben die Standardwerte.

- Was bedeuten diese Parameter?
- Wie bestimmen Sie das Simulationsergebnis?
- Wie gut stimmt das Modellverhalten mit der Wirklichkeit überein?

Das Lernziel in diesem und den nächsten Abschnitten ist das Kennenlernen der Spice-Modelle und Spice-Parameter

- ihren Zusammenhang zu den physikalischen Modellen und
- ihre praktische Bedeutung in Schaltungen.

Spice-Parameter einer Diode

Berkeley-Spice-Modell für Halbleiterdioden, erweitert um eine genauere Modellierung des Durchbruchverhaltens und des Rekombinationsstroms. Letzte Spalte Diode aus dem Beispiel.

Param.	Spice	Bezeichnung	Std-W+ME	1N4148
$I_{\rm S}$	Is	Sättigungsstrom	10^{14}A	2,52nA
$R_{\rm S}$	Rs	Bahnwiderstand	0 Ω	0.568Ω
	N	Emissionskoeffizient	1	1,75
	Tt	$\operatorname{Transitzeit}$	0 ns	20ns
$C_{\rm S0}$	Cjo	Kapazität für $U_{\rm D}=0$	$0 \mathrm{pF}$	4pF
$U_{\rm Diff}$	Vj	Diffusionsspannung	1 V	
	M	${ m Kapazit\"atskoeffizient}$	1	.4
$W_{\rm g}$	Eg	Bandabstand	$1,11^* eV$	

Param.	Spice	Bezeichnung	Std-W+E	1N4148
X _{TI}	Xti	Is-Temperaturkoeff.	3.0	
$k_{ m F}$	KF	Funkelrauschkoeff.	0	
$A_{\rm F}$	Af	Funkelrauschexp.	1	
$f_{ m S}$	FC	Koeff. Bereichswechs. $C_{\rm S}$	0.5	
	BV	Durchbruchspannung	∞ , V	
	Ibv	Strom bei $U_{\rm BR}$	10^{-10} A	
	Tnom	${ m Bezugstemperatur}$	27°C	
	Isr	RekombStromparam.	0 A	
	Nr	$I_{\rm SR}$ -Emmisionskoeff.	2	
	Ikf	Wechsel Hochstromber.	∞ A	
	Tikf	Ikf-Temperaturkoeff.	0/°C	
	Trs1	lin. Rs TempKoeff.	0/°C	
	Trs2	quad. Rs TempKoeff.	0/°C	

$\mathbf{Grenzwerte}$

Zulässige Maximalwerte zur Kontrolle, dass die Diode im zulässigen Bereich betrieben wird.

Param.	Spice	Bezeichnung Einheit		1N4148
	Vpk	${ m Spitzensperrspannung}$ (peak	V	75 V
		$\mathrm{voltage})$		
	Ipk	$\operatorname{Spitzenstrom}$	А	
	Iave	mittlerer Strom (average current)	А	200 mA
	Irms	Strom RMS	А	
	diss	max. Verlustleistung	W	
	mfg	Hersteller		onSemi
	type	$\operatorname{Diodenart}$		silicon

Weitere Angaben siehe [scad3.pdf]. Das Beispielmodell verwendet überwiegend die Standardwerte, z.B. Durchbruchspannung ∞ .

2.2 Durchlassbereich

Strom-Spannungsbeziehung im Durchlassbereich

- Normaler Durchlassbereich: Näherungsweise Gültigkeit der Shockley-Gl. 13.
- Niedrigstrombereich: Hier dominieren die winzigen Rekombinationsströme in der Sperrschicht.
- Hochstrombereich: Halbierter logarithmischer Anstieg.

Annäherung durch parametrierte Gleichungen

• Shockley-Gleichung mit Korrekturfaktor N für den log. Anstieg (normaler Durchlassbereich):

$$I_{\rm DD} = \operatorname{Is} \cdot \left(e^{\frac{U_{\rm D}}{\mathbb{N} \cdot U_{\rm T}}} - 1 \right)$$
(14)

• Der zusätzliche Rekombinationsstrom in der Sperrschicht:

$$I_{\rm DR} = {\rm Isr} \cdot \left(e^{\frac{U_{\rm D}}{{\rm Nr} \cdot U_{\rm T}}} - 1 \right)$$

• Halbierung des logarithmischen Anstiegs im Hochstrombereich:

$$I_{\rm DDH} = \frac{I_{\rm DD}}{\sqrt{1 + \frac{I_{\rm DD}}{\mathrm{Ikf}}}} \approx \begin{cases} I_{\rm DD} & I_{\rm DD} \ll \mathrm{Ikf} \\ \sqrt{I_{\rm DD} \cdot \mathrm{Ikf}} & I_{\rm DD} \gg \mathrm{Ikf} \end{cases}$$

 $(I_{\rm DD} - \text{Diffusionsstrom nach Gl. 14}; I_{\rm KF} - \text{Strom für den Übergang zum Hochstrombereich}).$

Zusätzliche Berücksichtigung der Bahnwiderstände

Bahnwiderstand Rs:

- typ. $10\,\mathrm{m}\Omega$ (Leistungsdioden) bis 10Ω (Kleinsignaldioden).
- Modellierung durch einen zusätzlichen Spannungsabfall:

$$U_{\rm D} = U'_{\rm D} + \operatorname{Rs} \cdot I_{\rm D}$$

 $(U'_{\rm D}$ – Spannungsabfall pn-Übergang; n^- – niedrig dotiertes n-Gebiet; n^+ – hoch dotiertes n-Gebiet).

Temperaturverhalten

In der angepassten Shockley-Gl. 13

$$I_{\rm D}\left(U_{\rm D}, T\right) = I_{\rm S}\left(T\right) \cdot \left(e^{\frac{U_{\rm D}}{\mathbb{N} \cdot U_{\rm T}(T)}} - 1\right)$$

sind die Temperaturspannung (eingeführt auf S. 2)

$$U_{\mathrm{T}}(T) = \frac{k_{\mathrm{B}} \cdot T}{q} = 86,142 \frac{\mu \mathrm{V}}{\mathrm{K}} \cdot T$$

und nach Gl. 13 und 4 die Sättigungsstromdichte

$$I_{\rm S} \sim n_{\rm i}^2 \left(T \right) = N_{\rm V} \cdot N_{\rm L} \cdot e^{\frac{W_{\rm L} - W_{\rm V}}{q \cdot U_{\rm T}}}$$

(k - Boltzmannkonstante, q - Elementarladung) und darin wieder N_{V} und N_{L} stark temperaturabhängig. Empirisches Modell:

$$I_{\mathrm{S}}\left(U_{\mathrm{D}},T
ight) = \mathrm{Is}\left(\mathrm{Tnom}
ight)e^{\left(rac{T}{\mathrm{Tnom}}-1
ight)\cdotrac{\mathrm{Eg}}{\mathbb{N}\cdot U_{\mathrm{T}}(T)}}\cdot\left(rac{T}{\mathrm{Tnom}}
ight)^{rac{\mathrm{Eg}}{\mathbb{N}}}$$

(Is - Sättigungsstrom; Eg - Bandabstand; Tnom - Bezugstemperatur, Xti - Temperaturkoeffizient von Is).

Temperaturverhalten für Überschläge

Relative Stromzunahme mit der Temperatur:

$$\frac{1}{I_{\rm D}} \cdot \left. \frac{\mathrm{d} I_{\rm D}}{\mathrm{d} T} \right|_{U_{\rm D}=\mathrm{const.}} \approx 0.04 \dots 0.08 \,\mathrm{K}^{-1} \tag{15}$$

• Bei einer Temperaturerhöhung von $\approx 11 \,\mathrm{K}$ verdoppelt sich der Strom bei gleicher Spannung.

Spannungsabnahme bei konstantem Strom:

$$\left. \frac{\mathrm{d} U_{\mathrm{D}}}{\mathrm{d} T} \right|_{I_{\mathrm{D}}=\mathrm{const.}} \approx -1.7 \,\mathrm{mV/K}$$

• Bei einer Temperaturerhöhung von $\approx 60\,{\rm K}$ verringert sich die Durchlassspannung bei gleichem Strom um 100 mV.

Bei höherem Leistungsumsatz sind Halbleitertemperaturen von 50...100°C normal.

Parameterbeispiele

Die nachfolgenden Werte sind aus [1] und nicht von den Modellen aus dem Simulator.

Param.	Bezeichnung	1N4148	1N4001
Is	Sättigungsstrom	2,68 nA	$14,1\mathrm{nA}$
N	Emissionskoeffizient	1,84	$1,\!99$
Isr	RekombStromparam.	$1,57\mathrm{fA}$	0
Nr	Isr-Emissionskoeffizient	2	2
Ikf	Wechsel Hochstromber.	$0,041\mathrm{A}$	$94,8~\mathrm{A}$
Rs	Bahnwiderstand	$0,6~\Omega$	$0,\!034\Omega$

Der Temperaturkoeffizient I_S , der Temperaturkoeffizient Tikf des Hochstromübergangs und die Temperaturkoeffizienten I_{rs1} und I_{rs2} des Bahnwiderstands haben die Standardwerte.

Simulation mit zwei Modellen desselben Bauteils

Für die Diode 1N4148, die auch im Praktikum eingesetzt wird, hat der Simulator andere Parameter, als in [1] angegeben sind.

Das Modell des Simulators » $LT \ll$ und das Modell » $TS \ll$ aus [1] verhalten sich auch unterschiedlich. Fertigungsstreuungen? Schaltungen so entwerfen, dass die Unterschiede nicht stören.

2.3 Sperr- und Durchbruchbereich

Sperrstrom

Der Sperrstrom ist ein Generierungsstrom, der proportional zur Sperrschichtbreite zunimmt. Für einen abrupten Übergang Zunahme mit der Wurzel der Sperrspannung $U_{\rm S} = -U_{\rm D}$:

$$I_{\rm S} \sim \sqrt{{\tt Vj} + U_{\rm S}}$$

(vergl. Gl. 12). Empirische Spice-Annäherung:

$$I_{\rm S} = -\operatorname{Isr} \cdot \left(\left(1 + \frac{U_{\rm S}}{\mathrm{Vj}} \right)^2 + 0,005 \right)^{\frac{n}{2}}$$
(16)

Param.	Bezeichnung	1N4148	1N4001
Isr	RekombStromparam.	$1,57\mathrm{fA}$	0
Vj	Diffusionsspannung	$0.5~{ m V}$	$0,325~{ m V}$
М	Kapazitätskoeffizient	0,333	0,44

(Lawinen-) Durchbruch

Modellierung als exponentielle Stromzunahme mit zunehmender Sperrspannung $-U_{\rm D}$ abzüglich der Durchbruchspannung BV:

$$I_{\rm BR} = Ibv \cdot e^{\frac{U_{\rm S} - bv}{U_{\rm T}}} \tag{17}$$

Param.	Bezeichnung	1N4148	$1\mathrm{N}4001$
ΒV	Durchbruchspannung	$100 \mathrm{V}$	$75\mathrm{V}$
Ibv	Strom bei BV	100 µA	10 µA

Für den Sperrbereich vervollständigtes Modell mit den Parametern aus [1]:

.model 1N4148_TS D(Is=2.68n Rs=.6, N=1.84 Isr=1.57f Ikf=41m Vj=0.5 M=0.333 BV=100 Ibv=100µ)

2.4 Sperrschicht- und Diffusionskapazität

${f Sperrschichtkapazit}$ ät

Die Sperrschichtkapazität leitet sich aus dem Modell des Plattenkondensators ab:

$$C = \varepsilon \cdot \frac{A}{w}$$

Der Abstand ist die Sperrschichtbreite w. Für den abrupten pn-Übergang gilt nach Gl. 11:

$$w = \sqrt{\frac{2 \cdot \varepsilon \cdot (U_{\text{Diff}} + U_{\text{S}})}{q} \cdot \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right)}$$

Das angelehnte Spice-Modell versteckt die Parameter ε , A, q, N_A und N_D in der Kapazität Cjo für $U_S = 0$:

$$C_{\rm S} = C_{\rm jo} \cdot \frac{1}{\left(1 + \frac{U_{\rm S}}{V_{\rm j}}\right)^{\rm M}} \tag{18}$$

Der Kapazitätskoeffizient M hängt vom Dotierverlauf ab. In Gl. 11 für den abrupten Übergang Quadratwurzel (M=0,5).

Bei zur Sperrschicht abnehmender Dotierung und instrischer Zwischenschicht ist M < 0.5. Gl. 18 gilt auch im schwach durchlässigen Bereich bis $U_{\rm S} > -FC \cdot Vj$.

Für größere Durchlassspannungen $U_{\rm S}=-U_{\rm S}>-{\tt FC}\cdot{\tt Vj}$ lineare Annäherung:

$$C_{\rm S} = {\rm Cjo} \cdot \begin{cases} \frac{1}{\left(1 + \frac{U_{\rm S}}{V_{\rm j}}\right)^{\rm H}} & \text{für } U_{\rm S} > -{\rm FC} \cdot {\rm Vj} \\ \frac{1 - {\rm FC} \cdot (1 - {\rm M}) - \frac{{\rm M} \cdot U_{\rm S}}{V_{\rm j}}}{(1 - {\rm FC})^{(1 + {\rm M})}} & \text{für } U_{\rm S} \leq -{\rm FC} \cdot {\rm Vj} \end{cases}$$
(19)

Param.	Spice	Bezeichnung	1N4148	1N4001
$C_{\rm S0}$	Cjo	Kapazität für $U_{\rm D}=0$	$4 \mathrm{pF}$	$25,9\mathrm{pF}$
$U_{\rm Diff}$	Vj	Diffusionsspannung	$0,5\mathrm{V}$	$0,325~\mathrm{V}$
	М	${ m Kapazit}$ ätskoeffizient	0,333	0,44
	FC	Koeff. Bereichswechsel $C_{\rm S}$	$0,\!5$	0,5

1N4148 – Kleinsignaldiode; 1N4001 – Gleichrichterdiode aus [1].

Diffusionskapazität

Im Durchlassbereich befindet sich in der Verarmungszone eine vom Strom abhängige Diffusionsladung:

$$Q_{\rm D} = {\rm Tt} \cdot I_{\rm DD} \text{ mit } I_{\rm DD} \approx I_{\rm S} \cdot \left(e^{\frac{U_{\rm D}}{\aleph \cdot U_{\rm T}}} \right)$$

 $(I_{\rm DD} - \text{Diffusionsstrom nach Gl. 14}; \tau_{\rm T} - \text{Transitzeit})$. Die Diffusionskapazität beschreibt die Änderung der Diffusionsladung mit der Diodenspannung $U_{\rm D}$:

$$C_{\rm D} = \frac{d\,Q_{\rm D}}{d\,U_{\rm D}} \approx \frac{{\rm Tt}\cdot I_{\rm D}}{{\rm N}\cdot U_{\rm T}}$$

Parameter	Bezeichnung	1N4148	1N4001	
Tt	${ m Transitzeit}$	11,5	5700	ns
N	Emissionskoeffizient	1,84	1,99	

lineare Verlängerung

 $U_{\rm s}$

FC·Vj 0

Formen Sie selbst um

$$Q_{\rm D} = \mathrm{Tt} \cdot I_{\rm DD}$$
 mit $I_{\rm DD} = I_{\rm S} \cdot \left(e^{\frac{U_{\rm D}}{\mathrm{N} \cdot U_{\rm T}}} \right)$

1. Wie groß ist die Diffusionskapazität in Abhängigkeit von der Durchlassspannung:

$$C_{\rm D} = \frac{d \, Q_{\rm D}}{d \, U_{\rm D}} = \dots \dots$$

2. Wie groß ist die Durchlassspannung in Abhängigkeit vom Durchlassstrom I_{DD} :

$$U_{\rm D} = \ldots \ldots \ldots$$

3. Wie groß ist die Diffusionskapazität in Abhängigkeit vom Durchlassstrom:

 $C_{\rm D} = \ldots \ldots \ldots$

Zur Kontrolle

$$Q_{\rm D} = \mathrm{Tt} \cdot I_{\rm DD} \text{ mit } I_{\rm DD} = I_{\rm S} \cdot \left(e^{\frac{U_{\rm D}}{\mathbb{N} \cdot U_{\rm T}}} \right)$$

1. Diffusionskapazität in Abhängigkeit von der Durchlassspannung:

$$C_{\mathrm{D}} = \frac{d \, Q_{\mathrm{D}}}{d \, U_{\mathrm{D}}} = \frac{\mathrm{Tt}}{\mathrm{N} \cdot U_{\mathrm{T}}} \cdot I_{\mathrm{S}} \cdot \left(e^{\frac{U_{\mathrm{D}}}{\mathrm{N} \cdot U_{\mathrm{T}}}} \right)$$

2. Durchlass spannung in Abhängigkeit vom Durchlass strom $I_{\rm DD}$:

$$U_{\rm D} = \mathbb{N} \cdot U_{\rm T} \cdot \ln\left(\frac{I_{\rm DD}}{I_{\rm S}}\right)$$

3. Diffusionskapazität in Abhängigkeit vom Durchlassstrom:

$$C_{\rm D} = \frac{\mathrm{Tt}}{\mathrm{N} \cdot U_{\rm T}} \cdot I_{\rm DD}$$

Simulierte Kapazitäten der Diode 1N4148

- Kapazität: AC-Strom/ $(2\pi \cdot AC$ -Spannung)
- Nur Sperrschichtkapazität: Simulation mit Transitzeit ${\tt TT}{=}0$
- Nur Diffusionskapazität: Simulation mit Cjo=0.

$$C \approx \begin{cases} \texttt{Cjo} & \texttt{Cjo} > \frac{\texttt{Tt}}{\texttt{N} \cdot U_{\mathrm{T}}} \cdot I_{\mathrm{DD}} \\ \frac{\texttt{Tt}}{\texttt{N} \cdot U_{\mathrm{T}}} \cdot I_{\mathrm{DD}} & \text{sonst} \end{cases}$$

In späteren Überschlägen:

Schaltverhalten mit Diffusionskapazität

Die proportionale Zunahme der Diffusionskapazität mit dem Strom verursacht den im Bild dargestellten nahezu konstanten Strom während der Entladung der Diffusionskapazität.

Kontrolle mittels Simulation

- Beim Einschalten Signalverlauf ähnlich wie geschaltetes RC-Glied.
- Beim Ausschalten benötigt die Diode zusätzlich TT=11 ns zum entladen der Diffusionskapazität (Stromschleife).

2.5 Kleinsignalmodell

Kleinsignalmodell, Ersatzwiderstände

D – Durchlassbereich; $(2 \cdot)^*$ – Widerstandserhöhung im Hochstrombereich; BR – Durchbruchbereich; I_{DR} , r_{DR} – Rekombinationsstrom und zugehöriger Kleinsignalwiderstand (Berechnung analog zu r_{DD}); $C_{\text{S.A}}$, $C_{\text{D.A}}$ – Sperrschicht und Diffusionskapazität im Arbeitspunkt.

Formen Sie selbst um

Rekombinationsstrom in der Sperrschicht:

$$I_{\rm DR} = {\rm Isr} \cdot \left(e^{\frac{U_{\rm D}}{{\rm Nr} \cdot U_{\rm T}}} - 1 \right)$$

Kleinsignal- (AC-) Leitwertanteil:

$$\frac{1}{r_{\rm DR}} = \left. \frac{d I_{\rm DR}}{d U_{\rm D}} \right|_{U_{\rm D.A}} = \dots \dots$$

Kleinsignal- (AC-) Ersatzwiderstand:

Ersatzwiderstand der Diode 1N4148

- Im Sperrbereich bei $I_{\rm D} \approx 0$ ist der Ersatzwiderstand $\approx 17 \,\mathrm{M}\Omega$.
- Die Kapazität in Abhängigkeit von der Spannung über der Diode zeigt Seite 22.

3 Spezielle Dioden

3.1 Schottky-Diode

Schottky-Diode

- Eine Schottky-Diode ist ein Metall-Halbleiter-Übergang, z.B. Aluminium zu einem niedrig dotierten n-Gebiet.
- Dasselbe Grundmodell wie eine pn-Diode mit
- geringerer Flussspannungen,

 $\begin{array}{c|c}
 A \\
 A \\
 Metall \\
 n \\
 ung. K \\
 K \\$

Δ

• ohne Diffussionskapazität und damit kürzerer Ausschaltverzögerung. K

Physik an Metall-Halbleiter-Kontakten

Bei Verbindung eines Metalls mit einer Fermi-Energie $W_{\rm F}$ mit einem n-dotierten Halbleiter mit einem chemischen Potential $\zeta > W_{\rm F}$

- verbiegt sich das Leitungsband des Halbleiters nach oben,
- die Leitungsbandelektronen diffundieren in das Metall und geben Energie ab.

- Die Elektronen aus dem Halbleiter sammeln sich an der Metalloberfläche und hinterlassen über eine Breite w_n ortsfeste Donatorionen im Halbleiter.
- Eine positive Spannung $U_{\rm D}$ drängt Elektronen in die Verarmungszohne. Die Potentialbarriere $\zeta W_{\rm F}$ wird kleiner. Wie bei pn-Übergang exponentieller Stromanstieg mit der Spannung.
- Eine negative Spannung $U_{\rm D}$ erhöht die Potentialbarriere und die Sperrschichtbreite. Es fließt ein geringer Sperrstrom.

• Bei zu hohen Sperrspannungen Durchbruch.

Im Vergleich zu pn-Übergängen:

- kleinere Flusspannungen.
- wesentlich kürzere Ausschaltzeiten³.

Verhaltensmodell

Gleiches Spice-Grundmodell wie pn-Übergang:

Spice	Bezeichnung	1N4148	BAS40	BAT43
Is	Sättigungsstrom	2,68 nA	0*	481 µA
Rs	Bahnwiderstand	$0,6~\Omega$	$0,1\Omega$	$40 \text{ m}\Omega$
N	Emissionskoeffizient	1,84	1	5
Tt	Transitzeit	$11,5\mathrm{ns}$	$0,025~{ m ns}$	0
Cjo	Kapazität für $U_{\rm D}=0$	4	4	14 pF
М	${ m Kapazit}$ ätskoeffizient	0,333	0,333	$_{0,5}$

(1N4148 - Kleinsignaldiode; BAS40, BAT43 - Schottky-Dioden). Schottky-Dioden haben nur

- etwa die halbe Flussspannung, simuliert durch kleinere Sättigungsströme und
- kurze Ausschaltzeiten, modelliert durch kleine Transitzeiten.
- (* Modellierung durch die Rekombinationsstromparameter Isr und Nr.)

³ Die Minoritätsladungsträger tragen nicht zum Ladungstransport bei. Die Majoritätsladungsträger folgen dem Feld sehr schnell.

Spice	Bezeichnung	1N4148	BAS40	BAT43
Vj	Diffusionsspannung	$0,5~{ m V}$	$0,5 \mathrm{V}$	$0,385~{ m V}$
FC	Koeff. Bereichswechsel $C_{\rm S}$	0,5	0,5	0,5
BV	Durchbruchspannung	100 V	40 V	∞
Ibv	Strom bei $U_{\rm BR}$	100 µA	10 µA	10^{-10} A
Isr	RekombStromparam.	$1,57~{ m fA}$	$254\mathrm{fA}$	10^{-21} A
Nr	$I_{\rm SR} ext{-}{\rm Emmisionskoeff}.$	2	2	$4,\!995$
Ikf	Wechsel Hochstr.	41 mA	10 mA	∞

Für die Dioden 1N4148 und BAS40 sind die Parameter aus [1] übernommen. Für die Dioden BAT43 wurde folgendes Modell aus dem Internet verwendet [http://www.ee.siue.edu/...]:

.MODEL BAT43 D(IS=480.77E-6 N=4.9950 RS=40.150E-3

+ IKF=20.507 EG=.69 XTI=2 CJD=13.698E-12 M=.50005

+ VJ=.38464 ISR=10.010E-21 FC=0.5 NR=4.9950 TT=0)

Simulation des Schaltverhaltens

Schottky-Dioden haben nicht die charakteristische lange Ausschaltverzögerung von pn-Übergängen.

Spannungsverlauf über der geschalteten Diode

Die Simulationsergebnisse sind nicht vollständig plausibel. Die BAS40 hat eine Flussspannung größer 1 V (sollte nicht mehr als 0,5 V sein) und bei der BAT43 fließt laut Simulation ein Sperrstrom von 0,5 mA (sollte null sein). Nicht jedes Bauteilmodell, das man irgendwo findet, liefert glaubhafte Werte. Nachmessen!

Brückengleichrichter mit Schottky-Dioden

Mit dem vereinfachten Verhaltensmodell für Dioden aus Elektronik 1 und der Spannung als Ein- und Ausgabegröße:

$$U_{\rm a} \approx \begin{cases} 0 & {\rm sonst} \\ |U_{\rm e}| - 2 \cdot U_{\rm F} & |U_{\rm e}| > 2 \cdot U_{\rm F} \end{cases}$$

 $(U_{\rm F} - {\rm Flussspannung})$. Mit Strom als Ein- und Ausgabe:

 $I_{\rm a} = |I_{\rm e}|$

Exakte Betragsbildung, Einsatz als Messgleichrichter.

Simulation der Übertragungsfunktion

Über den Schottky-Dioden (BAT43) fällt weniger Spannung ab.

Zeitverhalten mit Schottky- und pn-Dioden

Bei hohen Frequenzen (hier 2 MHz) fließt durch die pn-Dioden nach jedem Polaritätswechsel aufgrund der Diffusionskapazität ein Strom in Sperrrichtung, bei Schottky-Dioden nicht.

Brückengleichrichter mit Glättungskondensator

3.2 Z-Dioden

Z-Dioden

Dioden mit niedrigen Durchbruchspannungen zum Betrieb im Durchbruchbereich.

Z-Diode linearisierte
$$I_{BR}$$

 U_{BR} I_{BR} I_{BR} I_{BR} I_{BR}
 I_{BR} I_{BR} I_{BR}
 I_{BR} I_{BR}
 I_{BR} I_{BR}
 I_{BR} I_{BR}
 I_{BR} I_{BR}
 I_{BR} I_{BR}
 I_{BR} I_{BR}
 I_{BR} I_{BR}
 I_{BR} I_{BR}
 I_{BR} I_{BR}

Die Durchbruchstom und-spannung im Durchbruchbereich: Kleinsignalersatzwiderstand:

$$\begin{split} I_{\rm BR} &= \mathrm{Ibv} \cdot e^{\frac{U_{\rm BR} - \mathrm{Rs} \cdot I_{\rm BR} - \mathrm{BV}}{U_{\rm T}}} \\ U_{\rm BR} &= \mathrm{BV} + \mathrm{Rs} \cdot I_{\rm BR} + U_{\rm T} \cdot \ln\left(\frac{I_{\rm BR}}{\mathrm{Ibv}}\right) \end{split}$$

Kleinsignalersatzwiderstand:

$$r_{\rm BR} = \frac{U_{\rm T}}{I_{\rm BR}} + {
m Rs}$$

Spannungsstabilisierung mit einer Z-Diode

Schaltung

$$U_{V}$$
 I_{L}
 U_{ref}
 U_{V}
 U_{ref}
 U_{V}
 U_{ref}
 U_{V}
 U_{ref}
 U_{V}
 U_{R}
 U_{V}
 U_{R}
 U_{ref}
 U

$$U_{\text{Ers}} = U_{\text{BR}} + \frac{r_{\text{BR}}}{R + r_{\text{BR}}} \cdot (U_{\text{V}} - U_{\text{BR}})$$
$$r_{\text{Ers}} = R \parallel r_{\text{BR}} = R \parallel \left(\frac{U_{\text{T}}}{I_{\text{BR}}} + \text{Rs}\right)$$

- Hohe Konstanz der Ausgangsspannung verlangt kleinen $r_{\rm BR}$.
- Kleiner $r_{\rm BR}$ verlangt einen Durchbruchstrom $I_{\rm BR} \gg \frac{U_{\rm T}}{R_{\rm S}}.$

Rauschen der stabilisierten Spannung

Effektivwerte der Rauschquellen:

• Wärmerauschen von Rs :

$$u_{\text{reff.Rs}} = \sqrt{2 \cdot k_{\text{B}} \cdot T \cdot \text{Rs} \cdot \Delta f}$$

• Stromrauschen der Z-Diode:

$$i_{\text{reff.sd}} = \sqrt{2 \cdot q \cdot I_{\text{BR}} \cdot \Delta f}$$

• äquivalentes Spannungsrauschen dazu:

$$u_{\text{reff.sd}} = r_{\text{BR}} \cdot i_{\text{reff.sd}} = \frac{U_{\text{T}}}{I_{\text{BR}}} \cdot \sqrt{2 \cdot q \cdot I_{\text{BR}} \cdot \Delta f} = \frac{k_{\text{B}} \cdot T \cdot \sqrt{2 \cdot \Delta f}}{\sqrt{q \cdot I_{\text{BR}}}}$$

• Äquivalente Rauschspannung am Ausgang für $R \gg r_{\rm BR}$: $u_{\rm reff, c} = u_{\rm reff, Re}^2 + (r_{\rm RR} \cdot i_{\rm reff, cd})^2$

$$u_{\text{reff.a}} = u_{\text{reff.Rs}}^2 + (r_{\text{BR}} \cdot i_{\text{reff.sd}})^2$$
$$= \sqrt{2 \cdot k_{\text{B}} \cdot T \cdot \text{Rs} \cdot \Delta f} + \frac{(k_{\text{B}} \cdot T)^2 \cdot 2 \cdot q \cdot \Delta f}{q \cdot I_{\text{BR}}}$$

Auch gegen Rauschen hilft ausreichender Durchbruchstrom $I_{\rm BR}$.

Durchbruchspannung abhängig von Temperatur

$$U_{\rm BR} = U_{\rm BR} \left(T_0 \right) \cdot \left(1 + \alpha_{\rm Z} \cdot \left(T - T_0 \right) \right)$$

 $U_{\rm BR}$ – Durchbruchspannung; T_0 – Bezugstemperatur; α_Z – Temperaturkoeffizient, für $U_{\rm BR} < 5$ V negativ, sonst positiv. Die Flussspannung von pn-Übergängen hat einen negativen betragsmäßig viel größeren Temperaturkoeffizient:

$$\frac{d U_{\rm D}}{d T} \bigg|_{I_{\rm D}=\,{\rm const.}} \approx -1.7\,{\rm mV/K}$$
$$\alpha_{\rm Z} = \frac{d U_{\rm D}}{U_{\rm D}\cdot d T} \approx -0.25\%/{\rm K}$$

Minderung der Temperaturabhängigkeit

Der OV hält den Strom durch D1 und D2 konstant und bildet

$$U_{\mathrm{a}} = \left(U_{\mathrm{BR,D1}} + U_{\mathrm{F,D2}}\right) \cdot \left(1 + \frac{R_1}{R_2}\right)$$

 $U_{\text{BR.D1}}$ nimmt mit der Temperatur T zu und $U_{\text{F.D2}}$ mit T ab.

3.3 PIN-Diode

$PIN-Diode \ (Schichtfolge: \ p-intrinsisch-n)$

$$r_{\rm D.Pin} \approx \frac{\mathbb{N} \cdot U_{\rm T}}{I_{\rm D}}$$

 $(\bar{I}_{\rm D}$ – Gleichstrom durch die Diode). Große Sper
rschichtbreite bedeutet, geringe Sper
rschichtkapazität.

Beispielmodell:

.MODEL DRN142S⁴ D(IS=127pA N=1.7 RS=.160hm IKF=.14A

+ CJO=386fF M=.12 VJ=.79 ISR=139pA NR=3 BV=60 TT=275ns)

Spannungsteiler für Wechselspannungen

• Für hohe Frequenzen hat die PIN-Diode einen einstellbaren Widerstand. Mit $I_{\rm D}$ einstellbares Spannungsteilerverhältnis:

$$u_{\mathbf{a}} = \frac{\mathbb{N} \cdot U_{\mathrm{T}}}{\mathbb{N} \cdot U_{\mathrm{T}} + I_{\mathrm{D}} \cdot R} \cdot u_{\epsilon}$$

• Weniger diodentypische Verzerrung für größer $u_{\rm e}$ -Amplituden als bei Dioden mit kurzer Transitzeit.

π -Dämpfungsglied mit 3 PIN-Dioden

- Bei $I_1 = 10 \text{ mA}$ und $I_2 = 0$ haben D1 und D3 $r_D \approx \frac{1.7 \cdot 26 \text{ mV}}{10 \text{ mA}} = 4.4 \Omega$ und D2 sperrt. Keine Signalweiterleitung.
- Bei $I_1 = 0$ und $I_2 = 10 \,\mathrm{mA}$ umgekehrt. Signal wird weitergeleitet.n der Simulation

|A

i (undotient)

p

 $^{^4 \,} http://w.rohem.vom/...$

3.4 Kapazitätsdiode

Kapazitätsdiode

Ausnutzung der Sperrschichtkapazität:

$$C_{\rm S} = {\rm Cjo} \cdot \frac{1}{\left(1+\frac{U_{\rm S}}{{\rm Vj}}\right)^{\rm M}} \ \, {\rm für} \ \, U_{\rm S} \geq 0$$

Kapazitätsdioden haben

- hyperabrupte Dotierung ($\mathbb{M} \approx 0, 3...0, 5$)
- geringe Bahnwiderstände

Anwendung: Frequenzabstimmung von LC-Bandpässen und -Oszillatoren.

$$\begin{split} \frac{\underline{U}_{\mathbf{a}}}{\underline{I}_{\mathbf{e}}} &= \underline{X} \quad = \quad 2 \cdot \left(\mathbb{Rs} + \frac{1}{j\omega C_{\mathbf{s}}} \right) \parallel j\omega L \\ &= \quad \frac{j\omega L - \omega^2 \cdot \mathbb{Rs} \cdot LC_{\mathbf{s}}}{1 + j\omega \cdot \mathbb{Rs} \cdot C_{\mathbf{s}} - \omega^2 \frac{LC_{\mathbf{s}}}{2}} \end{split}$$

mit $\omega_0 = \sqrt{\frac{2}{LC_s}}$ und $Q = \frac{1}{R_s} \cdot \sqrt{\frac{L}{2 \cdot C_s}}$:

$$\underline{X} = \frac{j\omega L \cdot \left(1 + j \cdot \frac{\omega}{Q \cdot \omega_0}\right)}{1 + j \cdot \frac{\omega}{Q \cdot \omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$$

Abschätzung des Frequenzgangs für $Q\gg 1$ d.h. $R_{\rm B}\ll \sqrt{\frac{L}{2\cdot C_{\rm s}}}:$

	$\frac{\omega}{\omega_0} \ll 1$	$\left(\frac{\omega}{\omega_0} = 1\right) \land (Q \gg 1)$	$\left(\frac{\omega}{\omega_0} \gg 1\right) \land \left(\frac{\omega}{Q \cdot \omega_0} \gg 1\right) \frac{\omega}{\omega_0} \gg$	Q
$\frac{\underline{U}_{a}}{\underline{I}_{e}}$	$j\omega L$	$\omega_0 L \cdot Q$	$-\frac{j\omega_0^2 L}{\omega}$ $\frac{\omega_0 \cdot L}{Q}$	

Resonanzfrequenz $\omega_0 = f(U_S)$:

$$\begin{split} \omega_0 &= \sqrt{\frac{2}{LC_{\rm s}}} \text{ mit } C_{\rm S} = {\rm Cjo} \cdot \frac{1}{\left(1 + \frac{U_{\rm s}}{{\rm Vj}}\right)^{\rm M}} \\ \omega_0 &= \sqrt{\frac{2}{L \cdot {\rm Cjo}}} \cdot \left(1 + \frac{U_{\rm s}}{{\rm Vj}}\right)^{\frac{\rm M}{2}} \end{split}$$

Beispielsimulation

Resonanzfrequenz in Abhängigkeit von der Steuerspannung:

V1 in V	0	2	4	6	8	10
f_0 in MHz	18,43	24,31	27,35	29,46	31,14	32,53

Literatur

References

[1] U. Tietze, Ch. Schenk, and L. Dümbgen. Halbleiterschaltungstechnik. Springer, 2002.