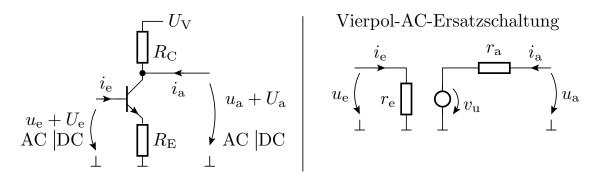

Elektronik II, Übungsblatt 4 (12P)

Prof. G. Kemnitz, Dr. C. Giesemann, TU Clausthal, Institut für Informatik
4. Mai 2016

Aufgabe 4.1


Gegeben sind die vier Widerstände in der nachfolgenden Ersatzschaltung:

Wie groß muss die Spannungsverstärkung $v_{\rm u}$ sein, damit die Amplitude der Ausgangsspannung $u_{\rm a}$ 10-mal so groß wie die der Generatorspannung $u_{\rm g}$ ist?

Aufgabe 4.2

Gegeben ist die nachfolgende Schaltung mit einem BC547C als Transistor, $U_{\rm V}=5\,{\rm V},\,R_{\rm E}=330\,\Omega$ und $R_{\rm C}=1\,{\rm k}\Omega$. Die Transistorverstärkung (Modellparameter Bf) soll im Bereich von 100 bis 300 liegen.

- a) Bestimmen Sie mit der Analyseart ».dc« den DC-Anteil der Eingangsspannung für den Arbeitspunkt $U_a=3\,\mathrm{V}$ für die beiden Wertebereichsgrenzen der Stromverstärkung.
 - Simulationskommando und Spice-Direktiven: 1P
 - Simulationsergebnisse: 1P

	$\beta = 100$	$\beta = 300$
$U_{\rm e}$	1,306 V	

b) Bestimmen Sie mit der Analyseart ».tr« den Eingangswiderstand, die Spannungsverstärkung und den Ausgangswiderstand der Vierpol-AC-Ersatzschaltung im berechneten Arbeitspunkt für die beiden Wertebereichsgrenzen der Stromverstärkung.

• Simulationskommando und Spice-Direktiven:

1P

• Simulationsergebnisse:

	$\beta = 100$	$\beta = 300$
$r_{ m e}$		
$r_{\rm a}$		
$v_{ m u}$		

Aufgabe 4.3

In der Schaltung zuvor sollen beide Widerstände einen Toleranzbereich von $\pm 5\%$, die Stromverstärkung einen Toleranzbereich von $200\pm 50\%$ und der DC-Anteil der Eingangsspannung einen Toleranzbereich von 1,2 V bis 1,4 V haben.

- a) Untersuchen Sie für alle steuenden Parameter, ob die Zielgrößen
 - Eingangswiderstand $r_{\rm e}$ und
 - Spannungsverstärkung $v_{\rm u}$

bei Parametervergrößerung vergrößert oder verkleinert werden. Tragen Sie dazu in die nachfolgende Tabelle »+« für Vergrößerung »-« für Verkleinerung und »0« für vernachlässigbarer Einfluss ein.

	$U_{ m e}$	$R_{ m C}$	$R_{ m E}$	β
$r_{ m e}$	-	-	+	+
$v_{ m u}$	-	-	+	-

 b) Bestimmen Sie mit Worst-Case-Simulationen für alle vier Zielparameter den Maximal- und den Minimalwert.

	$r_{ m e}$	$v_{ m u}$
Minimalwert		
Maximalwert		

Hinweis: Zur Einstellung der Verstärkung kann man sich mit »ako« ein neues Bauteilmodell mit angepasster Verstärkung definieren

.modell BC547C_beta_100 ako: BC547C Bf=100

oder ein Step-Kommando über die Verstärkungswerten laufen lassen:

.step NPN BC547C(Bf) 100 300 200