

Elektronik I, Foliensatz 2 Wiederholung Halbleiter, Dioden _{G. Kemnitz}

Institut für Informatik, Technische Universität Clausthal 12. Juli 2013

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 1/92

Inhalt des Foliensatzes

Wiederholung Halbleiter

- 1.1 Halbleiter
- 1.2 Dotierung
- 1.3 Kontrollfragen pn-Diode
- 2.1 Spannungsfreier pn-Übergang
- 2.2 Durchlassbereich
- 2.3 Sperrbereich
- 2.4 Durchbruchbereich
- 2.5 Temperaturverhalten
- 2.6 Schaltverhalten
- 2.7 Kleinsignalmodell
- 2.8 Kontrollfragen Spezielle Dioden
- 3.1 Schottky-Diode
- 3.2 Z-Diode
- 3.3 PIN-Diode
- 3.4 Kapazitätsdiode
- 3.5 Kontrollfragen

Wiederholung Halbleiter

1. Wiederholung Halbleiter

1. Halbleiter

Halbleiter

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 4/92

Halbleiter

Besetztwahrscheinlichkeit p(W, T) (Fermi-Verteilung):

$$p(W, T) = \left(e^{\frac{W-\zeta}{k_{\mathrm{B}}\cdot T}} + 1\right)^{-1}$$

- $\mathbf{k}_{\mathrm{B}} \cdot T$ mittlere thermische Energie, ca. 26 meV bei 300 K $(26.85^{\circ}C)$
- W_g Energetische Breite der Bandlücke, für Silizium: $W_{\rm g} = W_{\rm L} - W_{\rm V} \approx 1.1 \, {\rm eV}$ G. Kemnitz – Institut für Informatik, Technische Universität Clausthal

$\frac{W-\zeta}{k_{\rm B}\cdot T}$	-20	-10	0	10	20
p(W, T)	$1 - 2 \cdot 10^{-9}$	$1 - 4.5 \cdot 10^{-5}$	$0,\!5$	$4,5 \cdot 10^{-5}$	$2 \cdot 10^{-9}$

Dichte der beweglichen Elektronen (besetzte Zustände im Leitungsband):

$$n = \int_{W_{\rm L}}^{\infty} z\left(W\right) \cdot \frac{1}{e^{\frac{W-\zeta}{k_{\rm B} \cdot T}} + 1} \cdot dW$$

• Löcherdichte *p* (frei Zustände im Valenzband):

G. Kemnitzp $\operatorname{Herit}_{ut} \operatorname{füzIhWhatil}_{technicelle Universit} Willow (W) = 1 (W)$

1. Wiederholung Halbleiter

Das chemisches Potential ergibt sich aus der

Neutralitätsbedingung n=p .

Für Silizium mit einer Bandlücke von $W_{\rm g} = W_{\rm L} - W_{\rm V} \approx 1.12\,{\rm eV}:$

• für
$$T = 0$$
: $n = p = 0$

- für T = 300 K: $n = p = n_i \approx 2 \cdot 10^9$ cm⁻³ (n_i instrinsische Leitfähigkeit)
- exponentielle Zunahme mit der Temperatur um 7%/K.

Für andere Temperaturen:

$$n_i(T) = n_i (300 \,\mathrm{K}) \cdot (1 + 7\%)^{\frac{T - 300 \mathrm{K}}{1 \mathrm{K}}}$$

Verschiebung von ζ z.B. durch eine äußere Spannung nach

- \blacksquare rechts: $n \sim e^{\Delta \zeta}, \, p \sim e^{-\Delta \zeta}$
- \blacksquare links: $p \sim e^{\Delta \zeta}, \, n \sim e^{-\Delta \zeta}$

Eine exponentielle Abnahme/Zunahme der Dichte der beweglichen Ladungen erhöht/verringert den Widerstand des Halbleiters exponentiell.

Generation und Rekombination

Die Bildung beweglicher Elektronen und Löcher ist ein Gleichgewichtsprozess, der dem Massenwirkungsgesetz gehorcht:

- Generation: thermischen Anregung
- Rekombination: Energieabgabe

Valenzbandelektronen $\xrightarrow{\text{Generation}}$ Leitungsbandelektronen + Löcher Rekombination

- $(n \cdot p) \Uparrow \rightarrow$ Rekombinationsrate $\Uparrow \rightarrow (n \cdot p) \Downarrow$
- $\blacksquare \ (n \cdot p) \ \Downarrow \rightarrow \text{Rekombinations$ $rate} \ \Downarrow \rightarrow (n \cdot p) \ \Uparrow$
- Gleichgewichtskonstante:

$$n \cdot p = n_i \cdot p_i = n_i^2$$

 $(n_i - \text{instrinsische Ladungsträgerdichte}, Ladungsträgerdichte des undotierten Halbleiters; <math>n_i^2 (300 \,\text{K}) \approx 4 \cdot 10^{18} \,\text{cm}^{-6})$

1. Wiederholung Halbleiter

2. Dotierung

Dotierung

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 10/92

Dotierung

Halbleiter sind Kristalle mit einem regelmäßigen Gitter. Die technisch wichtigsten Halbleitermaterialen, Silizium und Germanium, besitzen vier Außenelektronen, mit kovalenten Bindungen zu Nachbaratomen (Diamantgitter).

- Bändermodell setzt idealen Kristall voraus
- Fremdatome, Gitterfehler \Rightarrow zusätzliche Energiezustände in der Bandlücke
- Dotierung
 - \Rightarrow gezielter Einbau von Fremdatomen
 - \Rightarrow ortsgebundene zusätzliche Energiezustände

Herstellung von p-Gebieten

- Dotierung mit Akzeptoren (Fremdatome mit 3 Außenelektronen)
- Es fehlt das Außenelektron der vierten kovalenten Bindung.

Ortsgebundene Energiezustände in der Bandlücke nahe am Valenzband.

Besetztwahrscheinlichkeit der zusätzlichen Energiezustände fast 100%

 Verschiebung des elektrochemischen Potenzials, so dass die Löcherdichte gleich der Akzeptordichte ist:

$$p = N_{\rm A}$$

• Gleichgewichtsdichte der beweglichen Elektronen:

$$n = \frac{n_i^2}{N_{\rm A}} \ll n_i$$

 typ. Akzeptor- bzw Löcherdichte: N_A ≈ 10¹⁴...10¹⁹ cm⁻³ ⇒ Löcher: Majoritätsladungsträger
 Dichte der beweglichen Elektronen: 0,4...4 · 10⁴ cm⁻³

 \Rightarrow Elektronen: Minoritätsladungsträger

Herstellung von n-Gebieten

- Dotierung mit Donatoren (Fremdatome mit 5 Außenelektronen).
- Ungebundenes 5. Außenelektron im Kristallgitter.

• Ortsgebundener Energiezustand in der Bandlücke nahe dem Leitungsband.

 Besetztwahrscheinlichkeit der zusätzlichen Energiezustände fast Null.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

 Verschiebung des elektrochemischen Potentials, so dass die Dichte der Leitungsbandelektronen gleich der Donatordichte ist:

$$n = N_{\rm D}$$

Gleichgewichtsdichte der beweglichen Löcher:

$$p = \frac{n_i^2}{N_{\rm D}} \ll n_i$$

- typ. Donator- bzw Elektronendichte: $N_{\rm D} \approx 10^{14} \dots 10^{19} \, {\rm cm}^{-3}$
 - \Rightarrow Elektronen: Majoritätsladungsträger
- \blacksquare Dichte der beweglichen Elektronen: $0,4\ldots 4\cdot 10^4\,{\rm cm}^{-3}$
 - \Rightarrow Löcher: Minoritätsladungsträger

Tiefe Störstellen

Gleichmäßig in der Bandlücke verteile zusätzliche Energiezustände durch Gitterfehler und Verunreinigungen.

- tiefe Störstellen
- Aufnahme/Abgabe der 40-fachen mittleren thermischen Energie bei Gitterzusammenstoß unwahrscheinlich.
- Energieaufnahme/-abgabe in kleineren Schritte
- Je reiner ein Halbleiter, desto länger bleiben Gleichgewichtsstörungen erhalten.

Kontrollfragen

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 19/92

- Wie groß sind die Löcher- und die Elektronendichte im undotierten Silizium bei 10 °C, bei 30 °C 60 °C?
- Wie groß sind die Elektronen- und Löcherdichten in Si bei 300 K bei einer Dotierung

1 mit
$$N_{\rm A} = 10^{18} \, {\rm cm}^{-3}$$
 Boratomen

2 mit $N_{\rm D} = 10^{19} \,\mathrm{cm}^{-3}$ Phosphoratomen?

pn-Diode

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 21/92

pn-Übergang

Ladungsträgerdichte/Dotierdichtep-Gebiet (Löcher/Akzeptoren):

$$p = N_{\rm A} \approx 10^{14} \dots 10^{19} \, {\rm cm}^{-3}$$

 Ladungsträgerdichte/Dotierdichte n-Gebiet (Elektronen/Donatoren):

$$n = N_{\rm D} \approx 10^{14} \dots 10^{19} \, {\rm cm}^{-3}$$

- Arbeitsbereiche:
 - Sperrbereich
 - Durchlassbereich
 - Durchbruchbereich.

1. Spannungsfreier pn-Übergang

Spannungsfreier pn-Übergang

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 23/92

Spannungsfreier pn-Übergang

- Diffusion: Ausgleich der Konzentrationsunterschiede beweglicher Ladungen durch die thermische Bewegung.
- Aufladung der Grenzschicht: p-Gebiet negativ; n-Gebiet positiv.

Gleichgewichtsstörungen $n \cdot p \gg n_i^2$: Abbau durch Rekombination.

Raumladung und Feldstärke

- Der pn-Übergang lädt sich auf.
- Die Ladungen verursachen ein elektrisches Feld.
- Die Ladungsträger im p- und n-Gebiet haben unterschiedliche Potentiale.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

Potenzial und Diffusionsspannung

Die Potential
differenz $U_{\rm Diff}$

- heißt Diffusionsspannung,
- ist ein Bauteilparameter, der von den Dotierungen abhängt,
- ist gleich der Differenz der chemischen Potentiale im n- und p-Gebietgeteilt durch die Elementarladung:

$$U_{\text{Diff}} = \int_0^l \mathbf{E}(x) \cdot dx = \frac{\zeta_{\text{n}} - \zeta_{\text{p}}}{q}$$

Param.	Spice	Bezeichnung	1N4148	1N4001	Einheit
$U_{\rm Diff}$	VJ	Diffusionsspannung	$0,\!5$	0,325	V

Durchlassbereich

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 27/92

2. Durchlassbereich

Durchlassbereich

- Spannung in Durchlassrichtung \Uparrow
 - Uberlagert/mindert Diffusionsspannung (Feldschwächung).
 - Exponentielle Zunahmen der in das andere Gebiet diffundierenden Ladungsträger.
 - Exponentielle Zunahme der in der Sperrschicht rekombinierenden Ladungsträger.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

2. Durchlassbereich

■ Leck- (Rekombinations-) strom:

$$I_{\rm DR} = I_{\rm SR} \cdot \left(e^{\frac{U_{\rm D}}{n_{\rm R} \cdot U_{\rm T}}} - 1 \right)$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 29/92

2. Durchlassbereich

Leckstrom:
$$I_{\rm DR} = I_{\rm SR} \cdot \left(e^{\frac{U_{\rm D}}{n_{\rm R} \cdot U_{\rm T}}} - 1 \right)$$

wegen $I_{\rm SR} \ll I_{\rm S}$ in Überschlägen oft vernachlässigbar.

Param.	Spice	Bezeichnung	1N4148	1N4001	
$I_{\rm S}$	IS	Sättigungssperrstrom	2,68	14,1	nA
$I_{\rm SR}$	ISR	Leck-Sättigungssperrst.	$1,\!57$	0	fA

Hochstrombereich:

Mit der Stromdichte $I_{\rm D}$ $10 \, {\rm mA}$ nimmt die Driftgeschwin- $100 \, \mu {\rm A}$ digkeit zu. Bei sehr hohe $10 \, \mu {\rm A}$ Driftgeschwindigkeiten $1 \, \mu {\rm A}$ verringert sich die Beweglichkeit.

Beobachtbares Verhalten: Ab einem Strom $I_{\rm K}$ halbiert sich der logarithmierte Anstieg.

Strom-Spannungsbeziehung im Durchlassstrom

$$I_{\rm D} \approx [I_{\rm DR} +] \frac{I_{\rm S} \cdot e^{\frac{U_{\rm D}}{n \cdot U_{\rm T}}}}{\sqrt{1 + \frac{I_{\rm S}}{I_{\rm K}} \cdot e^{\frac{U_{\rm D}}{n \cdot U_{\rm T}}}}}$$
(1)

 $([I_{DR}+] - Rekombinationsstrom, in Überschlägen vernachlägbar)$

Param.	Spice	Bezeichnung	1N4148	1N4001	
$I_{\rm S}$	IS	Sättigungssperrstrom	2,68	14,1	nA
n	Ν	Emissionskoeffizient	1,84	$1,\!99$	
$I_{\rm SR}$	ISR	Leck-Sättigungssperrst.	$1,\!57$	0	fA
$n_{ m R}$	NR	Emissionskoeffizient	2	2	
$I_{\rm K}$	IK	Kniestrom starke Injektion	0,041	94,8	А

$1N4148-Kleinsignaldiode;\ 1N4001-Gleichrichterdiode$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

Bahnwiderstand

Die Halbleitergebiet haben einen Widerstand zwischen $0,01\Omega$ bei Leistungsdioden und 10Ω bei Kleinsignaldioden.

Nicht in jeder Anwendung vernachlässigbar

$$\begin{array}{c}
\downarrow I_{\rm D} \\
\downarrow U_{\rm D} \\
\downarrow R_{\rm B} \\
\downarrow U_{\rm D} \\
\downarrow U_{\rm D}$$

$$U_{\rm D} = U_{\rm D}' + R_{\rm B} \cdot I_{\rm D}$$

 $U'_{\rm D}$ – Spannung über dem pn-Übergang. Bei Vernachlässigung von $R_{\rm B}$ ist $U'_{\rm D} = U_{\rm D}$.

Param.	Spice	Bezeichnung	1N4148	1N4001	Einheit
$R_{\rm B}$	RS	Bahnwiderstand	0,6	0,034	Ω

Sperrbereich

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 33/92

Sperrbereich

- Bewegliche Ladungsträge driften fort von der Sperrschicht.
- Verbreiterung der ladungsträgerfreien Schicht mit der Sperrspannung.

Absaugen der in der Sperrschicht generierten Ladungsträger.

- Generationsstrom, der mit dem Volumen und damit mit der Sperschichtbreite zunimmt.
- Empirische Gleichung für die Zunahme des Sper
rstroms für $U_{\rm D} < 0$:

$$I_{\rm DRS} = -I_{\rm SR} \left(\left(1 - \frac{U_{\rm D}}{U_{\rm Diff}} \right)^2 + 0,005 \right)^{\frac{m_{\rm S}}{2}}$$
(2)

 \blacksquare $I_{\rm SR}$ hängt stark von der Dichte der tiefen Störstellen ab, sehr klein, sehr toleranzbehaftet.

Param.	Spice	Bezeichnung	1N4148	1N4001	Einheit
$I_{\rm SR}$	IS	Leck-Sättigungssperrst.	$1,\!57$	0	fA
$U_{\rm Diff}$	VJ	Diffusionsspannung	$0,\!5$	0,325	V
$m_{\rm S}$	М	Kapazitätskoeffizient	0,333	0,44	

4. Durchbruchbereich

Durchbruchbereich

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 36/92

Durchbruchbereich (Lawinendurchbruch)

- Im Bereich $U_{\rm D} < -U_{\rm BR}$ nehmen die generierten Ladungsträger in der Sperrschicht soviel Energie auf, dass bei einem Zusammenstoß mit dem Gitter ein neues Elektronen-Loch-Paar generiert wird.
- Lawinenartige Vervielfachung der Ladungsträgerdichte in der Sperrschicht.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 37/92

Exponentielle Stromzunahme:

$$I_{\rm DBR} = -I_{\rm BR} \cdot e^{-\frac{U_{\rm D} - U_{\rm BR}}{n_{\rm BR} \cdot U_{\rm T}}} \tag{3}$$

Param.	Spice	Bezeichnung	1N4148	1N4001	Einheit
I _{BR}	IVB	Durchbruch-Kniestrom	100	10	μА
$n_{\rm BR}$	NBV	Emissionskoeffizient	1	1	
$U_{\rm BR}$	BV	Durchbruchspannung	100	75	V

Temperaturverhalten

Temperaturabhängigkeit

Die Kennlinie einer Diode ist stark temperaturabhängig:

$$I_{\rm D}\left(U_{\rm D}, T\right) = I_{\rm S}\left(T\right) \cdot \left(e^{\frac{U_{\rm D}}{n \cdot U_{\rm T}(T)}} - 1\right)$$

 mit

$$U_{\mathrm{T}}(T) = \frac{k \cdot T}{q} = 86,142 \frac{\mu \mathrm{V}}{\mathrm{K}}$$
$$I_{\mathrm{S}}(T) = I_{\mathrm{S}}(T_{0}) e^{\left(\frac{T}{T_{0}}-1\right) \cdot \frac{U_{\mathrm{G}}}{n \cdot U_{\mathrm{T}}(T)}} \cdot \left(\frac{T}{T_{0}}\right)^{\frac{x_{\mathrm{T,I}}}{n}}$$

 $(k - \text{Boltzmankonstante}, q - \text{Elementarladung}; U_{\text{G}} = \frac{W_{\text{G}}}{q} - \text{Bandabstandsspannung}, für Si \approx 1,12 \text{ V}; W_{\text{G}} - \text{Energiedifferenz}$ der Bandlücke des Halbleiters).

Temperaturabhängigkeit für Überschläge

Relative Stromzunahme mit der Temperatur:

$$\frac{1}{I_{\rm D}} \cdot \left. \frac{d I_{\rm D}}{d T} \right|_{U_{\rm D}={\rm const.}} \approx 0.04 \dots 0.08 \, {\rm K}^{-1} \tag{4}$$

Bei einer Temperaturerhöhung von $\approx 11\,{\rm K}$ verdoppelt sich der Strom bei gleicher Spannung.

Spannungsabnahme bei konstantem Strom:

$$\left. \frac{d U_{\rm D}}{d T} \right|_{I_{\rm D}={\rm const.}} \approx -1.7 \,{\rm mV/K}$$

- Bei einer Temperaturerhöhung von ≈ 60 K verringert sich die Durchlassspannung bei gleichem Strom um 100 mV.
- Schaltungen so wählen, dass das nicht stört.
- Bei hohem Leistungsumsatz sind Halbleitertemperaturen von 50...100°C normal.

Schaltverhalten

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 42/92

6. Schaltverhalten

Sperrschichtkapazität

$$C_{\rm S} = C_{\rm S0} \cdot \begin{cases} \frac{1}{\left(1 - \frac{U_{\rm D}}{U_{\rm Diff}}\right)^{m_{\rm S}}} \\ \frac{1 - f_{\rm S}(1 - m_{\rm S}) + \frac{m_{\rm S} \cdot U_{\rm D}}{U_{\rm Diff}}}{(1 - m_{\rm S})^{(1 + m_{\rm S})}} \end{cases}$$

für
$$U_{\rm D} < f_{\rm S} \cdot U_{\rm Diff}$$

für
$$U_{\rm D} \ge f_{\rm S} \cdot U_{\rm Diff}$$

Param.	Spice	Bezeichnung	1N4148	1N4001	
$C_{\rm S0}$	CJ0	Kapazität für $U_{\rm D}=0$	4	25,9	pF
$U_{\rm Diff}$	VJ	Diffisionsspannung	$0,\!5$	0,325	V
$m_{ m S}$	М	Kapazitätskoeffizient	0,333	0,44	
$f_{ m S}$	FC	Koeffizient für den Verlauf	$0,\!5$	$0,\!5$	
		der Kapazität			

1N4148 – Kleinsignaldiode; 1N4001 – Gleichrichterdiode

Diffusionskapazität

Diffusionsladung:

$$Q_{\rm D} = \tau_{\rm T} \cdot I_{\rm DD}$$
 mit $I_{\rm DD} = I_{\rm S} \cdot \left(e^{\frac{U_{\rm D}}{n \cdot U_{\rm T}}} \right)$

 $(I_{\rm DD} \approx I_{\rm D} - {\rm Diffusionsstrom}; U_{\rm T} - {\rm Temperaturspannung})$ Diffusionskapazität:

$$C_{\rm D} = \frac{d Q_{\rm D}}{d U_{\rm D}} \approx \frac{\tau_{\rm T} \cdot I_{\rm D}}{n \cdot U_{\rm T}}$$

• Diffusionskapazität und damit Ausschaltzeit ~ $I_{\rm D}$.

Param.	Spice	Bezeichnung	1N4148	1N4001	
$ au_{\mathrm{T}}$	TT	Transitzeit	$11,\!5$	5700	ns
n	Ν	Emissionskoeffizient	1,84	$1,\!99$	

6. Schaltverhalten

Schaltverhalten

Messschaltung:

$$u_{\rm E}\left(\begin{array}{c} & & & & & \\ & & & \\ & & & & & \\ & & & &$$

1) Entladen der Sperrschicht

2 Beseitigung der beweglichen Ladungen aus den Diffusionsgebieten

Kontrolle mittels Simulation

- Beim Einschalten Signalverlauf ähnlich wie geschaltetes RC-Glied.
- Beim Ausschalten Stromschleife (eingekreist).

Kontrollfragen

• Im Simulationsbeispiel ist die Dauer der Stromschleife etwa gleich der Transitzeit. Ist das Zufall oder gilt das auch für andere Werte von *R*?

Kleinsignalmodell

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 48/92

Groß- und Kleinsignalmodell einer Diode

Diodensymbole: Diffusions- und den RekombinationsstromDie Stromquelle beschreibt den Durchbruchstrom.

■ $C_{\rm S}$ - Sperrschichtkapazität; $C_{\rm D}$ - Diffusionskapazität Kleinsignalmodell:

$$\frac{u_{\rm D}}{i_{\rm D}} = r_{\rm D}$$

$(r_{\rm D} - {\rm Anstieg})$

Statisches Kleinsignalmodell

Ersatz der nichtlinearen Strom-Spannungsbeziehung durch die Tangente im Arbeitspunkt¹.

Im Durchlassbereich gilt nach Gl. 1:

$$I_{\rm D} = \frac{I_{\rm S} \cdot e^{\frac{U_{\rm D}}{n \cdot U_{\rm T}}}}{\sqrt{1 + \frac{I_{\rm S}}{I_{\rm K}} \cdot e^{\frac{U_{\rm D}}{n \cdot U_{\rm T}}}}} \approx \begin{cases} I_{\rm S} \cdot e^{\frac{U_{\rm D}}{n \cdot U_{\rm T}}} & I_{\rm S} \cdot e^{\frac{U_{\rm D}}{n \cdot U_{\rm T}}} < I_{\rm K} \\ \sqrt{I_{\rm S} \cdot I_{\rm K}} \cdot e^{\frac{U_{\rm D}}{2n \cdot U_{\rm T}}} & I_{\rm S} \cdot e^{\frac{U_{\rm D}}{n \cdot U_{\rm T}}} > I_{\rm K} \end{cases}$$

¹Die Linearisierung vereinfacht Überschläge im Zeitbereich und ist G. KVoraussetzung für die Analyse im Frequenzbereich al 11

12. Juli 2013 50/92

$$\frac{1}{r_{\rm D}} = \frac{d I_{\rm S} \cdot e^{\frac{U_{\rm D}}{[2 \cdot]n \cdot U_{\rm T}}}}{U_{\rm D}} \bigg|_{U_{\rm D} = U_{\rm D.A}}$$
$$= \frac{I_{\rm D.A}}{[2 \cdot]n \cdot U_{\rm T}}$$

 $r_{\rm D} = R_{\rm B} + \begin{cases} \frac{n \cdot U_{\rm T}}{I_{\rm D.A}} & I_{\rm D.A} < I_{\rm K} \text{ (normaler Durchlassbereich)} \\ \frac{2 \cdot n \cdot U_{\rm T}}{I_{\rm D.A}} & I_{\rm D.A} > I_{\rm K} \text{ (Hochstrombereich)} \end{cases}$

Im Sperrbereich gilt näherungsweise $I_{\rm D} \approx 0$, d.h. $r_{\rm D} \to \infty$ Im Durchbruchbereich folgt aus Gl. 3

$$I_{\text{DBR}} = -I_{\text{BR}} \cdot e^{-\frac{U_{\text{D}} - U_{\text{BR}}}{n_{\text{BR}} \cdot U_{\text{T}}}}}$$
$$r_{\text{D}} = R_{\text{B}} + -\frac{n_{\text{BR}} \cdot U_{\text{T}}}{I_{\text{D},\text{A}}}$$
(5)

7. Kleinsignalmodell

Simulation RD-Spannungsteiler

- Bestimmung der Transferfunktion f
 ür verschiedene DC-Eingabespannungen.
- Darstellung des Zweitor-Ausgangswiderstand:

$$r_{\rm a} = 500\,\Omega \parallel r_{\rm D}$$

Dynamisches Kleinsignalmodell

Zusätzliche Berücksichtigung der Kapazitäten:

Durchlassbereich: hauptsächlich Diffussionskapazität

$$C_{\rm D} \approx \frac{\tau_{\rm T}}{r_{\rm D}}; \quad r_{\rm D} \approx \frac{n \cdot U_{\rm T}}{I_{\rm D.A}};$$
 (6)

Sperrbereich: Sperrschichtkapazität max. $C_{\rm S0}$

$$C_{\rm D} \approx C_{\rm S0}; \quad r_{\rm D} \to \infty$$
 (7)

• Für hohe Frequenzen: Gehäuse
induktivität $L_{\rm G}\approx 1\ldots 10\,\rm nH,$ Gehäusekapazität $C_{\rm G}\approx 0.1\cdot 1\,\rm pF.$

RC-Glied mit gesperrter Diode als gesteuertes C

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

Übertragungsfunktion:

$$\underline{U}_{\rm a} = \frac{\underline{U}_{\rm e}}{1 + j\omega \cdot R \cdot C_{\rm D}}$$

Übergangsfrequenz f_0 (Betragsabsenkung auf $1/\sqrt{2}$, 3dB-Abfall²):

$$f_0 = \frac{1}{2\pi \cdot R \cdot C_{\rm D}}$$

Abschätzung von $C_{\rm D}$ aus der Übergangsfrequenz:

V1 (DC) in V	0	1	2	3	4	5
f_0 in MHz	78,8	104,1	123,1	138,7	151,5	162,2
$C_{\rm D} = \frac{1}{2\pi \cdot R \cdot f_0}$ in pF	4,04	$3,\!06$	$2,\!59$	$2,\!30$	$2,\!10$	1,96

²Auf Folie zuvor Abfall von -20 dB auf -23 dB. G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 56/92

Kontrollfragen

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 57/92

- Steigt der Spannungsabfall über einer Diode, wenn sie wärmer wird oder fällt sie? Wie groß ist etwa die Änderung je Kelvin?
- 2 Nimmt die Verlustleistung einer Diode in einem Gleicherichter bei Erwärmung zu oder ab?
- Welcher funktionale Zusammenhang besteht zwischen dem Kleinsignalersatzwiderstand einer Diode und dem Durchlassstrom im Arbeitspunkt
 - im Hochstrombereich
 - für kleinere Durchlassströme.
- Welcher Zusammenhang besteht zwischen der Diffusionskapazität einer pn-Diode und dem Kleinsignalersatzwiderstand?
- 5 Wie groß ist bei einer Diode 1N4001 der Durchlassstrom bei einer Spannung von 0,7 V?

Spezielle Dioden

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 59/92

Schottky-Diode

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 60/92

Schottky-Diode

- Eine Schottky-Diode ist ein Metall-Halbleiter-Übergang, z.B. Aluminium zu einem niedrig dotierten n-Gebiet.

А

- Kleinere Einschaltspannungen.
- Kürzere Verzögerungszeiten.

Physik am Metall-Halbleiter-Kontakten

- chemisches Potenial Leitungsband
 - Valenzband
 - Valenzband
- + ortsfeste Donatoren

- Θ bewegliche Elektronen
- Diffusion und Energieabgabe
- ρ Raumladung

Der n-dotierte Halbleiter hat ein höheres chemisches Potential. Bei Kontakt verbiegt sich das chemische Potenzial nach unten.

- \cdots chemisches Potenial
 - Leitungsband
 - Valenzband
- + ortsfeste Donatoren

- Θ bewegliche Elektronen
- Diffusion und Energieabgabe
- ρ Raumladung

Die Besetztwahrscheinlichkeit im Valenzband und damit auch die Leitfähigkeit nimmt in Richtung Metall exponentiell mit dem Abstand zur Bandkante ab.

Die Verbiegung des chemischen Potentials zur Mitte der Bandlük- ke verringert die Dichte der beweglichen Elektronen exponentiell.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 64/92

- $U_{\rm D} > 0$ verringert Verbiegung des chemischen Potentials. Exponentielle Zunahme der Leifähigkeit und des Stroms.
- \bullet $U_{\rm D} < 0$ erhöht Verbiegung des chemischen Potententials. Zunahme der Sperrschichtbreite und damit des Generationsstroms.
- Bei zu hoher Sperrspannung, zu hohe Feldstärke über der Sperrschicht. Durchbruch.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 65/92

Verhaltensmodell

- Gleiches Spiece-Modell wie pn-Übergang mit anderen Parameterwerten.
- Kein Diffusions strom $I_{\rm D} = 0$. Der Durchlass strom ist ein Leckstrom:

$$I_{\rm D} = I_{\rm DR} = I_{\rm SR} \cdot \left(e^{\frac{U_{\rm D}}{n_{\rm R} \cdot U_{\rm T}}} - 1 \right)$$

Param.	Spice	Bezeichnung	1N4148	BAS40	
I _S	IS	Sättigungssperrstrom	2,68	0	nA
n	Ν	Emissionskoeffizient	1,84	1	
$I_{\rm SR}$	IS	Leck-Sättigungssperrst.	$1,\!57$	254	fA
$n_{ m R}$	NR	Emissionskoeffizient	2	2	

1N4148 – Kleinsignaldiode; BAS40 – Schottky-Diode

3. Spezielle Dioden

Keine (kürzere) Transitzeit, da kein Diffisionsstrom:

Param.	Spice	Bezeichnung	1N4148	BAS40	
I_{K}	IK	Kniestrom starke Injektion	0,041	0,01	A
$I_{\rm BR}$	IVB	Durchbruch-Kniestrom	100	10	μА
$n_{\rm BR}$	NBV	Emissionskoeffizient	1	1	
$U_{\rm BR}$	BV	Durchbruchspannung	100	40	V
$R_{\rm B}$	RS	Bahnwiderstand	0,6	0,1	Ω
$C_{\rm S0}$	CJ0	Kapazität für $U_{\rm D} = 0$	4	4	pF
$U_{\rm Diff}$	VJ	Diffusionsspannung	$0,\!5$	$0,\!5$	V
$m_{ m S}$	М	Kapazitätskoeffizient	0,333	0,333	
$ au_{\mathrm{T}}$	ΤT	Transitzeit	11,5	0,025	ns

1. Schottky-Diode

3

5 V

Schottky-Dioden haben nicht die -10 mA - -10 mA

Beispielsimulation

Ersatz der Diode 1N4148 auf Folie Seite 46 durch eine Schottky-Diode BAT54.

Die Ausschaltzeit ist größer, weil in Durchlassrichtung die Sperrschicht schmaler und damit die Kapazität größer ist.

Anwendung Brückengleichrichter

Mit dem vereinfachten Verhaltensmodell für Dioden aus Elektronik 1:

$$u_{\rm A} \approx \begin{cases} 0 & \text{sonst} \\ |u_{\rm E}| - 2 \cdot U_{\rm F} & |u_{\rm E}| > 2 \cdot U_{\rm F} \end{cases}$$

Mit Strom als Ein- und Ausgabe \Rightarrow exakte Betragsbildung:

$$i_{\rm A} = |i_{\rm E}|$$

Einsatz als Messgleichrichter.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 70/92

Ersatzschaltungen aus Elektronik 1

G. Kemnitz Institut für Informatik, Technische Universität Clausthal 12. Juli 2013 71/92

D1

 $\pm C_{\rm D}$

D4

 $: C_{\mathrm{S}}$

 $R_{\rm B}$

 $u_{\rm A}$

Simulation der Kennlinie

Erkennbar:

- **\square** Zunahme der Flussspannung bei kleinen $I_{\rm a}$ (kleinen $U_{\rm a}$)
- Anstiegsbetrag < 1 durch Diodenwiderstand

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 73/92

Simulation des Zeitverhaltens

- $\blacksquare \approx \! 1,\! 6\,\mathrm{V}$ Spannungsabfall über den Dioden.
- 2 Bei höheren Frequenzen schaltet eine pn-Diode nicht schnell genug aus, so dass auch noch kurze Zeit in Sperrichtung ein Strom fließt (Stromschleife).

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 74/92

Ersatz pn-Diode durch Schottky-Diode

- **1** Nur ≈ 1 V Spannungsabfall über den Dioden.
- 2 Keine Stromschleife.

Für 50Hz-Gleichrichter mit geringen Strömen reichen pn-Dioden. Für hohe Frequenzen / geringe Verlustleistung Schottky-Dioden.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

Z-Diode

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 76/92

Z-Dioden

spezielle Dioden zum Betrieb im Durchbruchbereich

3. Spezielle Dioden

Spannungsstabilisierung mit einer Z-Diode

Die nachgebildete Quelle hat stromabhängigen Innenwiderstand, strom- und temperaturabhängige Quellspannung, ...

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 78/92

Simulation der Temperaturabhängigkeit

Temperaturkoeffizient:

$$\alpha = \left(\frac{U_{\rm Z1}}{U_{\rm Z0}} - 1\right) \cdot \frac{T_0}{T_1} = -0.09\%$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 79/92

Simulation $R_{\rm Ers}$ in Abhängigkeit von $U_{\rm V}$

Berechnung der Transferfunktion und Anzeige des Ausgangswiderstands für Versorgungsspannungen von 6 bis 10 V.

$$R_{\rm Ers}\left(U_{\rm V}\right) = R \parallel \frac{n_{\rm BR} \cdot U_{\rm T}}{I_{\rm ZD}} \approx 500 \,\Omega \parallel \left(500 \,\Omega \cdot \frac{50 \,\mathrm{mV}}{U_{\rm V} - 5.64 \,\mathrm{V}}\right)$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 80/92

Simulation $U_{\rm Ers}$ in Abhängigkeit von $U_{\rm V}$

Berechnung Arbeitspunkt für $U_{\rm V}$ von 6 bis 10 V. Anzeige von $U_{\rm a}.$

$$U_{\rm a} = 5.64 \,\mathrm{V} + \frac{r_{\rm Z}}{R + r_{\rm Z}} \cdot (U_{\rm V} - 5.64 \,\mathrm{V}) \text{ mit } r_{\rm Z} = 500 \,\Omega \cdot \frac{50 \,\mathrm{mV}}{U_{\rm V} - 5.64 \,\mathrm{V}}$$

PIN-Diode

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 82/92

PIN-Diode

- undotierte Schicht zwischen p- und n-Gebiet.
- besonders große Lebensdauer der Ladungsträger in der undotierten Schicht, typ. $\tau \approx 0, 1 \dots 5 \,\mu s$
- Für Frequenzen $f \gg \tau^{-1}$ vom Diodengleichstrom $\bar{I}_{\rm D}$ gesteuerter Widerstand:

$$r_{\mathrm{D.Pin}} \approx \frac{n \cdot U_{\mathrm{T}}}{\bar{I}_{\mathrm{D}}}$$

• geringe Sperrkapazität bei $\bar{I}_{\rm D} = 0;$

3. PIN-Diode

Spannungsteiler für Wechselspannungen

- Für hohe Frequenzen hat die PIN-Diode einen einstellbaren Widerstand statt der nichtlinearen Kennlinie.
- Ausgangswechselspannung:

$$u_{\mathrm{a}} = \frac{n \cdot U_{\mathrm{T}}}{n \cdot U_{\mathrm{T}} + I_{\mathrm{D.A}} \cdot R} \cdot u_{\mathrm{e}}$$

• Ohne diodentypische Verzerrung für größere $u_{\rm e}$.

Kapazitätsdiode

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 85/92

Kapazitätsdiode

Ausnutzung der Sperrschichtkapazität:

$$C_{\rm S} = C_{\rm S0} \cdot \frac{1}{\left(1 - \frac{U_{\rm D}}{U_{\rm Diff}}\right)^{m_{\rm S}}} \quad {\rm für} \ U_{\rm D} < 0$$

Kapazitätsdioden haben

- hyperabrupte Dotierung $(m_{\rm S} \approx 0, 5...1)$
- geringe Bahnwiderstände

Anwendung: Frequenzabstimmung LC-Kreise

$$-U_{\rm D} \left(\begin{array}{c} L_{\rm B} \gg L \\ \overbrace{} \\ \blacksquare \\ D_1 \end{array} \right) L_{\rm D} L_{\rm D}$$

$$\underline{X}_{\text{ges}} = 2 \cdot \left(R_{\text{B}} + \frac{1}{j\omega C_{\text{s}}} \right) \parallel j\omega L$$
$$= \frac{j\omega L - \omega^2 R_{\text{B}} L C_{\text{s}}}{1 + j\omega R_{\text{B}} C_{\text{s}} - \omega^2 \frac{L C_{\text{s}}}{2}}$$
mit $\omega_0 = \sqrt{\frac{2}{L C_{\text{s}}}}, \, \alpha = R_{\text{B}} \cdot \sqrt{\frac{2 \cdot C_{\text{s}}}{L}} \text{ und } \frac{\alpha}{\omega_0} = R_{\text{B}} C_{\text{s}}$
$$\underline{X}_{\text{ges}} = \frac{j\omega L \cdot \left(1 + j\alpha \cdot \frac{\omega}{\omega_0}\right)}{1 + j\alpha \cdot \frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 87/92

4. Kapazitätsdiode

Frequenzgang für $\alpha \ll 1$, $R_{\rm B} \ll \sqrt{\frac{L}{2 \cdot C_{\rm s}}}$:

Resonanzfrequenz $\omega_0 = f(U_D)$:

Beispielsimulation

Resonanzfrequenz in Abhängigkeit von der Steuerspannung:

	V1 in V	0	2	4	6	8	10
	f_0 in MHz	$18,\!42$	$24,\!30$	$27,\!32$	$29,\!45$	$31,\!16$	$32,\!52$
3. Kemnitz · Institut für Informatik, Technische Universität Clausthal							12

12. Juli 2013 89/92

Kontrollfragen

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 90/92

- Was sind die beiden wesentlichen Vorteile einer Schottky-Diode gegenüber einer pn-Diode bei Einsatz als Gleichrichter?
- Was ist die wesentliche Eigenschaft einer pin-Diode gegenüber einer normalen pn-Diode beim Einsatz als spannungsgesteuerter Widerstand für hochfrequente Signale? Gehen Sie bei dem Vergleich insbesondere auf den Zusammenhang zwischen der Amplitude der Wechselgröße und dem Klirrfaktor ein.
- Warum sind bei einer Kapazitätsdiode kleine Bahnwiderstände und große Kapazitätskoeffizienten wünschenswert?
- Warum ist für die Frequenzabstimmung eines Schwingkreises die linear mit dem Durchlassstrom zunehmende Diffusionskapazität einer pn-Diode nicht nutzbar?

3. Spezielle Dioden

- Bei pn-Dioden ist in Spannungsstabilisierungsschaltung genutzte Flussspannung und bei Z-Dioden die Durchbruchspannung temperaturabhängig.
 - Bei welchen Fluss- oder Durchbruchspannungen nimmt die für die Stabilisierung genutzte Knickspannung mit der Temperatur zu und bei welchen ab?
 - 2 Wie könnte man durch Reihenschaltung von Dioden in Durchlass- und Z-Dioden in Sperrichtung ein Bauelement konstruieren, dessen Knickspannung (fast) temperaturunabhängig ist?
 - 3 Für welche Werte der Knickspannung wäre das möglich?