

Elektronik II, Foliensatz 1 Wiederholung bis Bauteiltoleranzen _{G. Kemnitz}

Institut für Informatik, Technische Universität Clausthal 12. Juli 2013

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 1/134

TU Clausthal

Inhalt des Foliensatzes

Wiederholung, Kontrolfragen, Aufgaben DC-Analyse

- 2.1 Berechnung des Arbeitspunkts
- 2.2 Berechnung der Transferfunktion
- 2.3 Berechnung von Kennlinien
- 2.4 Aufgaben und Kontrollfragen AC-Analyse
- 3.1 Zeitdiskrete Simulation
- 3.2 Frequenzgang
- 3.3 RCL-Glieder
- 3.4 Verstärker
- 3.5 Spektralanalyse
- 3.6 Klirrfaktor
- 3.7 Rauschen
- 3.8 Stabilität
- 3.9 Aufgaben und Kontrollfragen Bauteiltoleranzen

Einleitung

- Die Elektronik entwickelt sich sehr schnell.
- Welches Wissen ist auch noch in 10 bis 20 Jahren nützlich?
 - Die physikalischen und technischen Grundlagen.
 - Grundtechniken für Modellbildung, Simulation und Entwurf.
 - Erarbeiten von Wissen aus Büchern etc.
 - gesundes Einschätzungsvermögen, was möglich und was Phantasie ist.
- Grundsäulen der Wissensvermittlung:
 - physikalische Grundlagen: Strom, Spannung, Widerstand, Halbleiter, Leitungen
 - \blacksquare System
theorie: Mathematik, lineare Systeme, Frequenz
raum,
 - Schaltungstechnik

. . .

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 4/134

Lernprozess als Iteration

Elektronik 1:

Wichtige Erkenntnisse aus der physikalischen Sicht:

 Solange Schaltungen mit Schaltplänen beschreibar sind, spielen die Geometrie und damit auch elektrische und magnetische Felder keine Rolle.

- Es es eine Beschränkung möglich auf:
 - Maschsatz
 - Knotensatz
 - Black-Box-Modelle für Bauteile.
- Für Halbleiterbauteile wurden in Elektronik I stark vereinfachte Modelle eingeführt, Schaltungen damit analysiert und die Modell physikalisch untermauert.
- Elektrisch lange Leitungen: Wellengleichungen, Ausbreitung, Reflexion
- Weiterführung in Elektronik II:
 - genauere Nachbildung der physikalischen Eigenschaften in Simulationsmodellen
 - weitere physikalische Effekte, z.B. Temperatureinfluss, Rauschen, ...
 - bisher nicht modellierte Bauteileigenschaften.

Fragen zu Wiederholung:

- Was ist Spannung und was ist Strom?
- Was besagen der Maschen- und der Knotensatz?
- Unter welcher Bedingung sind Elektronen in Halbleitern beweglich?
- Was sind bewegliche Löcher?
- Wie wird die Dichte der beweglichen Elektronen und Löcher in einem Halbleiter eingestellt?
- Spannungsänderungen zwischen Schaltungspunkten setzen eine dazu proportionale Ladungsänderungen voraus. Wie wird dieser Zusammenhang beschrieben und mit was für einem Schaltungselement wird er nachgebildet?

- Stromänderungen in Leitungen verursachen einen dazu proportionalen Spannungsabfall. Welche physikalische Größe beschreibt dieses Phenomen und mit welchen Bauteil wird es in einer Schaltung berücksichtigt?
- Was ist Eigen- und was ist Gegeniduktivität?
- Was ist eine elektrisch lange Leitung? Nennen Sie wichtigen Eigenschaften elektrisch langer Leitungen.

Wichtige Erkenntnisse aus der Systemtheorie

- Die Berechnung der Ströme und Spannungen in einer Schaltung erfordert die Lösung (großer) Gleichungssysteme.
- Mathematisch nur für lineare Systeme beherrschbar.
- Annäherung nichtlinearer Kennlinien durch lineare Kennlinienäste.
- Nachbildung von Kapazitäten und Induktivitäten durch Quellen, die ihre Werte in diskreten Zeitschritten ändern.
- Abschätzung von Zeitabläufen durch Rückführung auf geschaltete RC-Glieder.
- Für Quellenspannnungen /- ströme vom Typ $\underline{U} \cdot e^{j\omega t}$ / $\underline{I} \cdot e^{j\omega t}$ vereinfachen sich lineare Differentialgleichungssysteme zu linearen Gleichungssystemen.
- Jeder Spannungs- bzw. Stromverlauf lässt sich in eine Summe solcher komplexen Signale zerlegen und durch seinen Amplituden und Phasenfrequenzgang beschreiben

Weiterführung der Systemtheorie in Elektronik II

Genauere Modelle und Arbeit mit dem Simulator.

Gleichstromanalyse (DC-Analyse):

- Kennlinienen und DC-Transferfunktion
- Arbeitspunkt, Kleinsignalmodell
- Sensivitätsanalyse: Verhalten der Schaltung bei Variation der Bauteilparameter
- Monte-Carlo-Analyse (stochastisches Verfahren)

Wechselstromanalyse (AC-Analyse):

- Amplituden und Phasenfrequenzgang.
- Klirrfaktor
- Rauschsignale und Rauschanalyse
- passive und aktive Filter

Zeitdiskrete Berechnung von Signalverläufen

Arbeit mit dem Simulator.

Fragen zu Wiederholung:

- Wie können beim Aufstellen der Maschen und Knotengleichungen linear Abhängigkeiten vermieden werden?
- Welchen Problem muss bei einer Schaltung aus Bauteilen mit 2 bis n Anschlüssen gelöst werden, bevor die Spannungen und Ströme mit Hilfe von Maschen- und Knotengleichungen bestimmt werden können?
- Wie lauten die Strom-Spannungs-Beziehungen an den Zweipolen: (Konstant-) Spannungsquelle, (Konstant-) Stromquelle, Widerstand, Kapazität und Induktivität?
 Was besagt der Überlagerungssatz?

Übungsaufgaben

Stellen Sie eine ausreichend große Menge von linear unabhängigen Gleichungen auf, um in der nachfolgenden Schaltung alle Spannungen und Ströme zu berechnen.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 12/134

 Berechnen Sie mit Hilfe des Helmholzschen Überlagerungsprinzips die Ausgangsspannung U_a in Abhängigkeit von U_e und I_e.

Berechnen Sie mit dem Helmholzschen Überlagerungsprinzip $R_{\rm ers}$ und $U_{\rm ers}$ für den nachfolgenden Zweipol.

• Entwickeln Sie für die nachfolgende Schaltung die Ersatzschaltungen für $\omega = 0$ und $\omega > 0$.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 14/134

 Berechnen Sie die Ausgangsspannung in Abhängigkeit von der Eingangsspannung und der Frequenz.

Mit welcher Zeitkonstante τ laden sich die Kapazitäten um? Welchen Wert haben die Spannungen über den Kapazitäten vor dem Sprung und lange nach dem Sprung?

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 15/134

Schaltungstechnik

In Elektronik I wurden behandelt mit vereinfachten Modellen:

- Verstärkergrundschaltungen
- Schaltungen zur Spannungs- und Stromversorgung
- Logikgatter

Weiterführung in Elektronik II: Dieselben Schaltungstypen mit

- genaueren Modellen
- gezielter Entwurf
- professionelle Lösungen.

Fragen zu Wiederholung:

Welche logischen Funktion bildet die nachfolgenden Gatterschaltungen nach?

 Zeichen Sie die lineare Ersatzschaltung der nachfolgenden Transistorschaltung mit der gegeben Ersatzschaltung.
 Berechnen Sie die Verstärkung v_U. In welchem Bereich der Eingangsspannung gilt die Ersatzschaltung?

DC-Analyse

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 19/134

Berechnung des Arbeitspunkts

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 20/134

DC- / AC-Trennung

Aufspaltung der zu verarbeitenden Signale in

DC-Wert (Gleichanteil) und

■ AC-Teil (zeitveränderlicher (Wechselgrößen-) Anteil). Beispiel:

Getrennte Schaltungsanalyse für den Gleich- und Wechselspanungsanteil setzt nach Überlagerungssatz Linearität voraus. G. Kemnitz - Institut für Informatik, Technische Universität Clausthal 12. Juli 2013 21/134

Linearisierung im Arbeitspunkt

- Arbeitspunktbestimmung mit dem DC-Wert
- Annäherung nichtlinearere Elemente durch die Tangente im Arbeitspunkt.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 22/134

Kleinsignalmodell für die AC-Berechnung

- Für die AC-Berechnung DC-Anteile weglassen.
- Gute Näherung für kleine AC-Signale.
- Große AC-Signale werden verzerrt.

Arbeitspunkt einer Brückenschaltung

Entspricht der bisherigen Gleichspannungsanalyse. Berechnung der Knotenpotentiale und Zweigströme.

Mit Simulator LT-Spice (siehe Übung):

- graphische Schaltungseingabe
- Simulationskommando ».op« für »operation point«.
- Simulation starten.

Ergebnis:

- Netzliste der eingegebenen Schaltung
- Berechnete Ströme und Spannungen.

Netzliste

Netzliste:

R1	N001	N002	3k	
R2	N002	0	6k	
RЗ	N001	N003	7.61	
R4	N003	0	2k	
R5	N003	N002	1k	
V1	N001	0	10	
.op				

Spalte 1: Bauteilname; Spalte 2-3: Knoten; Spalte 4: Parameterwert in Ω bzw. V

- Die Knotennummern vergibt der Simulator.
- Der Bezugsknoten (Masse) hat Nummer null.
- Alle Knoten müssen eine Gleichspannungsverbindung zu Masse haben.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 25/134

Simulationsergebnis

Potentiale aller Knoten

V(n001):	10	voltage
V(n002):	4.66667	voltage
V(n003):	3.66667	voltage

Ströme durch alle Bauteile:

I(R5):	-0.001	$device_current$
I(R4):	0.00183333	$device_current$
I(R3):	0.000833333	$device_current$
I(R2):	0.000777778	$device_current$
I(R1):	0.00177778	$device_current$
I(V1):	-0.00261111	device_current

Probe:

$$R_2 = \frac{U_{\rm R2}}{I_{\rm R2}} = \frac{4,\!66667\,{\rm V}}{0,\!000777778\,{\rm A}} = 6\,{\rm k}\Omega$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 26/134

Berechnung der Transferfunktion

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 27/134

Kleinsignalmodell

Das Kleinsignalmodell

- ist die im Arbeitspunkt linarisierte Ersatzschaltung ohne DC-Quellen.
- gute N\"aherung f\"ur die Berechung kleiner Wechsel- (AC-) Gr\"o\"ben.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 28/134

Transferfunktion

In einem linearisierten, gleichanteilfreien Modell sind Ausgabesignale Linearkombinationen der Eingabesignale:

$$u_{a}(t) = k_{1} \cdot u_{e1}(t) + k_{2} \cdot u_{e2}(t) +$$

Die Abbildung <u>eines</u> Eingabesignals auf <u>ein</u> Ausgabesignal lässt sich durch ein \gg Zweitor« oder \gg Vierpol« beschreiben:

 \blacksquare rückwirkungsfrei $u_{\rm e} \neq f\left(u_{\rm a}\right)$ (typ. für Verstärker)

• mit Rückwirkung $u_{\rm e} = f(u_{\rm a})$ (Widerstandsnetzwerk)

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 29/134

2. DC-Analyse 2. Berechnung der Transferfunktion

$$i_{e} = \frac{u_{e} - v_{R} \cdot u_{a}}{r_{e}}$$
$$u_{a} = v_{U} \cdot u_{e} + r_{a} \cdot i_{a}$$

Berechnung der vier Parameter:

$$\begin{aligned} r_{\rm e} &= \left. \frac{u_{\rm e}}{i_{\rm e}} \right|_{u_{\rm a}=0} \\ v_{\rm R} &= \left. \frac{u_{\rm e}}{u_{\rm a}} \right|_{i_{\rm e}=0} \\ r_{\rm a} &= \left. \frac{u_{\rm a}}{i_{\rm a}} \right|_{u_{\rm e}=0} \\ v_{\rm U} &= \left. \frac{u_{\rm a}}{u_{\rm e}} \right|_{i_{\rm a}=0} \end{aligned}$$

2. DC-Analyse 2. Berechnung der Transferfunktion

rückwirkungsfreier Verstärker als Zweitor

• Widerstandsnetzwerk als Zweitor

- Ersatzwiderstand: Widerstand, wenn die Spannung auf der anderen Seite null ist.
- Ersatzquellspannung: Anschlussspannung, wenn der Strom auf derselben Seite null ist.

Verkettung von Zweitoren

Beschreibung der Signalverarbeitung als Folge von

- Dämpfungsgliedern (Spannungsteilern) und
- Verstärkern.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 32/134

Berechnung der Transferfunktion

(Parameter eines rückwirkungsfreien Zweitors.)

Vorgehen:

- Schaltung eingeben
- Analyseart »tr« für »transfer function« auswählen
- Ausgabesignal $V(a)^1$ und Eingabequelle V1 festlegen.

 $\underline{\mbox{Ergebnis}}$ hängt von dem mit V1 eingestellten Arbeitspunkt ab.

¹»voltage« von a

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

Was besagt das Ergebnis?

In der Regel wählt man

- Generatorwiderstand gleich Eingangswiderstand und
- Lastwiderstand gleich Ausgangswiderstand.

Die Eingangsspannung wird zweimal halbiert und einmal um den Faktor ≈ -4 verstärkt:

$$u_{\rm a} \approx -u_{\rm g}$$

3. Berechnung von Kennlinien

Berechnung von Kennlinien

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 35/134

2. DC-Analyse 3. Berechnung von Kennlinien

Kennlinienberechnung (DC sweep)

- Kennlinie: Abbildung einer Ein- auf einer Ausgabegröße.
- Kennlinienschar: Mehrere Kennlinienen in Abhängigkeit von weitereren Eingabegrößen.
- Beispiel: Berechnung $U_{\rm a} = f$ (V1, V2)

Benötigt z.B. zur Arbeitspunktbestimmung.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 36/134

- Q1 gesperrt: $U_a = V2$
- Q1 übersteuert: $U_{\rm a} = V1 U_{\rm BEF} + U_{\rm CEX}$
- Q1 Normalbetrieb: Verstärkung ca. -4
- Arbeitspunkt: Mitte Normalbereich

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 37/134

Diodenkennline

Näherungsweise exponentieller Verlauf:

$$I_{\rm D} \sim e^{\frac{U_{\rm D}}{U_{\rm m}}}$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 38/134

Transistorkennline

Enspricht nur grob dem Verhalten der bisherigen Ersatzschaltung.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 39/134

2 Draft4

20mA 18mA-

16mA-

Modellierung

Bisheriges Modell:

- Normalmodus Stromquelle
- Sättigung: Spannungsquelle

Genauere Annäherung:

- Im Normalmodus nimmt $I_{\rm C}$ mit $U_{\rm CE}$ $zu \Rightarrow zus \ddot{a}tzlicher$ $R_{\rm Ers}$ in parallel zur Ersatzstromquelle.
- In der Sättigung nimmt $U_{\rm CE}$ mit $I_{\rm C}$ zu \Rightarrow zusätzlicher $R_{\rm Ers}$

 $U_{\rm Q}$ 0mA -2mA++ 0.0 0.2V 0.4V 0.6V 0.8V 1.0V U_{Q} in Reihe zur Ersatzspannungsquelle

Weitere Modellverbesserungen folgen später.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

- - ×

4. Aufgaben und Kontrollfragen

Aufgaben und Kontrollfragen

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 41/134

Kontrollfragen

- Was ist ein Arbeitspunkt?
- Was ist ein Signal? Was ist der DC- und was ist der AC-Anteil eines Signals.
- Was ist ein Kleinsignalmodell? Bezieht sich das »klein« auf den DC- oder AC-Anteil?
- Zeichnen Sie die Schaltung, die durch folgende Netzliste beschrieben wird:

 V1
 N001
 0
 10

 R1
 N001
 N002
 1k

 R2
 0
 N002
 2k

 R3
 N002
 N003
 1k

 R4
 0
 N003
 1k

Kleinsignalersatzschaltung RD-Glied

- Wie groß sind die Ein- und Ausgangsspannung im Arbeitspunkt I = 1 mA?
- 2 Bestimmen der Kleinsignalersatzschaltung.
- ³ Wie groß ist die Amplitude des AC-Ausgangssignal bei einer Eingangsamplitude von 10 mV?

Zweitore, Transferfunktion

Berechnen Sie für die linke Schaltung (Spannungsteiler) die Parameter $r_{\rm e}$, $r_{\rm a}$, $v_{\rm U}$ und $v_{\rm R}$ in der Ersatzschaltung rechts.

Arbeitpunkt und Transferfunktion Verstärker

Für den nachfolgenden Transistorverstärker wurden messtechnisch im Arbeitspunkt folgende Ersatzschaltungsparameter bestimmt: $r_{\rm e} = 12 \, {\rm k}\Omega$, $r_{\rm a} = 0.9 \, {\rm k}\Omega$ und $v_{\rm U} = -20$:

2 Wie groß sind die Parameter $r_{\rm BE}$, $r_{\rm CE}$ und β des

G. Kemnitz**Transistors**?ormatik, Technische Universität Clausthal

1

12. Juli 2013 45/134

AC-Analyse

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 46/134

AC-Analyse

Abbildung zeitabhängiger Eingaben auf zeitabhängige Ausgaben. Zusätzliche Berücksichtigung

• der Ströme durch Kapazitäten:

• und Induktionsspannungen:

$$u_{\rm L} = \underline{L} \cdot \underbrace{\frac{d \, i_{\rm L}}{d \, t}}_{} i_{\rm L}$$

Zwei universelle Berechnungsverfahren

- zeitdiskrete Simulation und
- Analyse im Frequenzbereich.

1. Zeitdiskrete Simulation

Zeitdiskrete Simulation

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 48/134

Zeitdiskrete Simulation

 \blacksquare Nachbildung von C und L durch zeitveränderliche Quellen:

	Original	Ersatz
Kapazität	$\left(\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array} \right) u_{\rm C}$	$ (n+1) = u_{\mathcal{C}}(n) + \frac{\Delta t}{C} \cdot i_{\mathcal{C}}(n) $
Induktivität	i_{L}	$u_{\mathrm{L}} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right)^{t} i_{\mathrm{L}}(n+1) = i_{\mathrm{L}}(n) + \frac{\Delta t}{L} \cdot u_{\mathrm{L}}(n)$

Berechnung in diskreten Zeitschritten:

Wiederhole für jeden Zeitschritt: stationäre Schaltungsanalyse Berechnen der Quellwerte für den Folgeschritt • Auch für nichtlineare Schaltungen möglich.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

Impulsgatter

Abschätzen der Funktion:

- Wegen $R_2 \gg R_1$ Abschätzung $u_{\rm R1}$ unter Vernachlässigung von D und R_2 als geschaltetes RC-Glied mit $\tau = R_1 \cdot C = 1$ ms.
- Für negative $u_{\rm R1} < -U_{\rm F}$ subtrahiert die Diode etwa die Einschaltspannung.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 50/134

Beschreibung des stückenweise linearen Eingabesignals:

t in ms	0	0,3	0,3001	1,7	1,7001	2,7	2,7001	3,4	3,4001
$u_{\rm e}$ in V	0	0	6	6	0	0	6	6	2

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 51/134

Simulation

Abweichung vom geschätzen Verhalten: ■ Nadelpulse auf u_a(rote Kurve). Kapazität im Diodenmodell?

Programmierung der Signalquellen

Spannungs- und Stromquellen können für die zeitdiskrete Simulation eine breite Palette von Signalverläufen bereitstellen.

- periodischer Pulse mit den Parametern:
 - Einschaltzeit, Flankenanstieg und -abfall.
- Stückweise linear mit den Parameter:
 - Zeit-Wert-Punkte, auch als Datei
- Sinus mit den Parametern:
 - DC-Offset, Amplitude, Frequenz
 - Startverzögerung, Dämpfung, Startphase
 - Anzahl der Zyklen
- Exponential funktion
- Modulierte Signale

Frequenzgang

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 54/134

Frequenzbereich

Schaltungsanalyse für komplexe e-Funktionen:

 $\underline{X}\left(\omega\right) \cdot e^{j \cdot \omega \cdot t} = |\underline{X}\left(\omega\right)| \cdot \left(\cos\left(\omega \cdot t + \varphi\left(\underline{X}\left(\omega\right)\right)\right) + j \cdot \sin\left(\omega \cdot t + \varphi\left(\underline{X}\left(\omega\right)\right)\right)\right)$

Repräsentiert zusammen mit dem konjugiert komplexen Zeitsignal $\underline{X}(-\omega) \cdot e^{-j \cdot \omega \cdot t}$ ein skaliertes, phasenverschobenes Kosinussignal.

• Proportionalität von \underline{U} und \underline{I} auch an C und L:

$$\underline{X}_{C} = \frac{\underline{U}_{C}}{\underline{I}_{C}} = \frac{1}{j\omega C}$$
$$\underline{X}_{L} = \frac{\underline{U}_{L}}{\underline{I}_{L}} = j\omega L$$

 Strom- und Spannungsberechnung durch Lösung eines frequenzabhänigen Gleichungssystems.

$$\omega = 2 \cdot \pi \cdot f$$
 – Kreisfrequenz; $\varphi (\ldots)$ – Phase von ...

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 55/134

Für Überschläge:

$$\begin{pmatrix} 1+j \cdot \frac{f}{f_0} \end{pmatrix} \approx \begin{cases} 1 & \text{für } f \ll f_0 \\ 1+j & \text{für } f = f_0 \\ j \cdot \frac{f}{f_0} & \text{für } f \ge f_0 \end{cases}$$

	f	$< 3\mathrm{Hz}$	$10\mathrm{Hz}$	$30\mathrm{Hz}\dots300\mathrm{Hz}$	$1\mathrm{kHz}$	
	X	1	1+j	$j \cdot rac{f}{10\mathrm{Hz}}$	$\frac{j \cdot 100}{1+j} = \frac{100 \cdot (1+j)}{\sqrt{2}}$	
	$ \underline{X} $	1	$\sqrt{2}$	$\frac{f}{10\mathrm{Hz}}$	$\frac{100}{\sqrt{2}}$	
a v	$\varphi\left(\underline{X}\right)$	0	$1+j\mapsto \frac{\pi}{4}$	$j\mapsto \frac{\pi}{2}$	$1+j\mapsto \frac{\pi}{4}$	50/10/
G. Ker	hnitz • Insti	tut fur Infori	matik, Technische	Universitat Clausthal	12. Juli 2013	556/134

Amplituden- und Phasenfrequenzgang

■ Komplexe Widerstände, Übertragungsfunktionen, ... linearer Systeme sind Brüche von Termen $\left(1+j\cdot\frac{f}{f_0}\right)$, z.B.:

$$\underline{X} = \frac{1 + \frac{j \cdot f}{10 \, \text{Hz}}}{\left(1 + \frac{j \cdot f}{1 \, \text{kHz}}\right) \cdot \left(1 + \frac{j \cdot f}{100 \, \text{kHz}}\right)}$$

$$\begin{pmatrix} 1 & \text{für } f \ll f_0 \\ 1 + j \cdot \frac{f}{f_0} \end{pmatrix} \approx \begin{cases} 1 & \text{für } f \ll f_0 \\ 1 + j & \text{für } f = f_0 \\ j \cdot \frac{f}{f_0} & \text{für } f \ge f_0 \end{cases}$$

$$\underline{X} = \frac{1 + \frac{j \cdot f}{10 \,\mathrm{Hz}}}{\left(1 + \frac{j \cdot f}{1 \,\mathrm{kHz}}\right) \cdot \left(1 + \frac{j \cdot f}{100 \,\mathrm{kHz}}\right)}$$

f	$3\mathrm{kHz}\dots30\mathrm{kHz}$	3 kHz30 kHz 100 kHz	
X	100	$\frac{100}{1+j} = \frac{100 \cdot (1-j)}{\sqrt{2}}$	$\frac{100}{\frac{j \cdot f}{100 \text{ kHz}}} = -\frac{j \cdot 10 \text{ MHz}}{f}$
$ \underline{X} $	100	$\frac{100}{\sqrt{2}}$	$\frac{10\mathrm{MHz}}{f}$
$\varphi\left(\underline{X}\right)$	0	$1-j\mapsto -\frac{\pi}{4}$	$-j \mapsto -\frac{\pi}{2}$

Betrags- und Phasenfrequenzgang (logarithmisch):

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 57/134

Dezibel

Kennzeichnung des dekadischen Logarithmus des Verhältnisses zweier Energie- oder Leistungsgrößen:

$$L = 10 \cdot \lg \left(\frac{P_2}{P_1}\right) \, \mathrm{dB}$$

Für die Quadrate der Verhältnisse der Effektivwerte von Strom oder Spannung:

$L = 10 \cdot \lg \left(\frac{U_{\text{eff},2}^2}{U_{\text{eff},1}^2}\right) \mathrm{dB} = 20 \cdot \lg \left(\frac{U_{\text{eff},2}}{U_{\text{eff},1}}\right) \mathrm{dB}$						
$\frac{\underline{P_2}}{\underline{P_1}}$	0,25	$0,\!5$	1	2	4	100
$\frac{U_{\rm eff.2}}{U_{\rm eff.1}}$	0,5	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	2	10
L	≈ -6	≈ -3	0	≈ 3	≈ 6	20

3. AC-Analyse

Für Abschätzungen setzt sich der Amplitudenfrequenzgang (Betragsfunktion) zusammen:

- aus Geradenstücken, deren Anstieg ein ganzzahliges Vielfaches von 20dB ist, und
- Punkten an den Knicken mit 3dB Abstand.

$$\underline{X} = \frac{1 + \frac{j \cdot f}{10 \text{ Hz}}}{\left(1 + \frac{j \cdot f}{1 \text{ kHz}}\right) \cdot \left(1 + \frac{j \cdot f}{100 \text{ kHz}}\right)}$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

RCL-Glieder

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 60/134

RC-Spannungsteiler (Tiefpass)

Spektralanteile mit tiefen Frequenzen können passieren (Kapazität sperrt). Spektralanteile mit hohen Frequenzen werden gedämpft (Kapazität leitet).

$$\frac{\underline{U}_{\mathbf{a}}}{\underline{U}_{\mathbf{e}}} = \frac{\frac{1}{j \cdot \omega \cdot C}}{R + \frac{1}{j \cdot \omega \cdot C}} = \frac{1}{1 + j \cdot \omega \cdot R \cdot C} = \frac{1}{1 + j \cdot \frac{f}{f_0}}$$

 $f_0 = 1/2\pi \cdot R \cdot C$ – Übergangsfreqenz. Charakteristische Werte:

	$f \ll f_0$	$f = f_0$	$f \gg f_0$
$\underline{U}_{\rm a}/\underline{U}_{\rm e}$	1	$\frac{1-j}{\sqrt{2}}$	$-j \cdot \frac{f_0}{f}$
$ \underline{U}_{\mathrm{a}}/\underline{U}_{\mathrm{e}} $	1	$\frac{1}{\sqrt{2}}$	$\frac{f_0}{f}$
$\varphi\left(\underline{U}_{\mathrm{a}}\right) - \varphi\left(\underline{U}_{\mathrm{e}}\right)$	0	$1-j\mapsto -rac{\pi}{4}$	$-j\mapsto -\frac{\pi}{2}$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 61/134

CR-Spannungsteiler (Hochpass)

Spektralanteile mit tiefen Frequenzen werden gedämpft (Kapazität sperrt). Spektralanteile mit hohen Frequenzen können passieren (Kapazität leitet).

$$\frac{\underline{U}_{\mathbf{a}}}{\underline{U}_{\mathbf{e}}} = \frac{R}{R + \frac{1}{j \cdot \omega \cdot C}} = \frac{1}{1 + \frac{1}{j \cdot \omega \cdot R \cdot C}} = \frac{1}{1 - j \cdot \frac{f_0}{f}}$$

 $f_0 = 1/2\pi \cdot R \cdot C$ – Übergangsfreqenz. Charakteristische Werte:

	$f \ll f_0$	$f = f_0$	$f \gg f_0$
$\underline{U}_{\rm a}/\underline{U}_{\rm e}$	$j \cdot rac{f}{f_0}$	1+j	1
$ \underline{U}_{\mathrm{a}}/\underline{U}_{\mathrm{e}} $	$\frac{f}{f_0}$	$\frac{1}{\sqrt{2}}$	1
$\varphi\left(\underline{U}_{\rm a}\right) - \varphi\left(\underline{U}_{\rm e}\right)$	$j\mapsto \frac{\pi}{2}$	$1+j\mapsto \frac{\pi}{4}$	0

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 62/134

RC-Glieder mit Trennverstärker

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 63/134

Reihenschwingkreis (Bandpass)

Nach Spannungsteilergesetz:

3. AC-Analyse

$$\begin{array}{rcl} \underline{U}_{\mathrm{a}} & = & \underline{U}_{\mathrm{e}} \cdot \frac{\overline{j \cdot \omega \cdot C}}{R + j \cdot \omega \cdot L + \frac{1}{j \cdot \omega \cdot C}} \\ & = & \underline{U}_{\mathrm{e}} \cdot \frac{1}{1 + j \cdot \frac{f}{Q \cdot f_0} - \left(\frac{f}{f_0}\right)^2} \end{array}$$

 $(f_0 = 1/2\pi \cdot \sqrt{L \cdot C} - \text{Resonanz frequenz}; Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}} - \text{Güte}).$

Charakteristische Werte:

	$f \ll f_0$	$f = f_0$	$f \gg f_0$
$\underline{U}_{\mathrm{a}}/\underline{U}_{\mathrm{e}}$	1	$-j \cdot Q$	$-\left(rac{f_0}{f} ight)^2$
$ \underline{U}_{\mathrm{a}}/\underline{U}_{\mathrm{e}} $	1	Q	$\left(\frac{f_0}{f}\right)^2$
$\varphi\left(\underline{U}_{\rm a}\right) - \varphi\left(\underline{U}_{\rm e}\right)$	0	$-j\mapsto -\frac{\pi}{2}$	$-1 \mapsto -\pi$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 64/134

3. RCL-Glieder

Simulation des Frequenzgangs

Resonanzfrequenz:

$$f_0 = 1/2\pi \cdot \sqrt{L \cdot C} = 503 \,\mathrm{kHz} \sqrt{}$$

Verstärker

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 66/134

Frequenzgang eines Transistorverstärkers

- Die Kapazitäten C_1 und C_3 entkoppeln den Ein- und Ausgang gleichspannungsmäßig und begrenzen den Frequenzbereich nach unten.
- Die Transistorschaltung zwischen C_1 und C_3 kann durch ein Zweitor mit $r_e = 17 \text{ k}, r_a \approx 2 \text{ k}$ und $v_U \approx -4$ ersetzt werden (Rechnung auf Folie Zweipolparameterberechnung)

Der Transistor begrenzt das Übertragungsband mit ω_{0.T} (Übergangsfrequenz des Transistorverstärkers) nach oben.
 Das Ein- und das Ausgangs-RC-Glied begrenzen das Übertrgungsband mit ω_{0.1} und ω_{0.2} nach unten.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 68/134

■ Übergangsfrequenzen der RC-Glieder:

$$f_{0.1} = \frac{1}{2\pi \cdot 30 \,\mathrm{k}\Omega \cdot 1 \,\mu\mathrm{F}} = 5.3 \,\mathrm{Hz}$$

$$f_{0.2} = \frac{1}{2\pi \cdot 4 \,\mathrm{k}\Omega \cdot 10 \,\mu\mathrm{F}} = 4.0 \,\mathrm{Hz}$$

Verstärkung im mittleren Bereich (z.B. 1 kHz):

$$|\underline{v}| = \left| \frac{17 \,\mathrm{k}\Omega}{30 \,\mathrm{k}\Omega} \cdot (-4) \cdot \frac{2 \,\mathrm{k}\Omega}{4 \,\mathrm{k}\Omega} \right| = 1.133 \ (\approx 1 \,\mathrm{dB})$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 69/134

4. Verstärker

Simulationsergebnis

- Untere Bandgrenze ca. 5 Hz $\sqrt{.}$
- Verstärkung ca. -4 dB statt 1 dB (?).

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 70/134

3. AC-Analyse

Übergangs- und Grenzfrequenzen eines Verstärkers

Verstärker ohne C- und L-Beschaltung haben im allgemeinen für niedrige Frequenzen eine konstante Verstärkung und ab einer Frequenz f_0 wie ein RC-Glied einen Verstärkungsabfall von 20dB pro Dekade:

$$\underline{v} = \frac{v_0}{1 + j \cdot \frac{f}{f_0}} \tag{1}$$

- Die Übergangsfrequenz ist die Frequenz f_0 , bei der Betrag der Verstärkung auf $\frac{1}{\sqrt{2}}$ abgefallen ist.
- Die Grenzfrequenz ist die Frequenz, bei der der Betrag der Verstärkung auf 1 abgefallen ist:

$$f_{\rm g} = \left. f \right|_{|\underline{v}|=1}$$

Für Verstärker mit Frequenzgang nach Gl. 1:

$$\left| v_0 \cdot \frac{1}{1 + j \cdot \frac{f}{f_0}} \right| = 1 \implies f_g \approx v_0 \cdot f_0$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 71/134

Spektralanalyse

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 72/134

Fouriertransformation

Jedes bandbegrenzte periodische Signal lässt sich als Summe komplexer Exponentialterme darstellen:

$$x(t) = \sum_{m=-\frac{N}{2}}^{\frac{N}{2}-1} \underline{X}(m) \cdot e^{j \cdot m \cdot \omega_0 \cdot t}$$

- $f_0 = 1/T$ Grundfrequenz des Signals
- \blacksquare T Periode des Signals
- $\underline{X}(m)$ Spektrakwert bestehend aus Betrag und Phase ■ $\left(\frac{N}{2}-1\right) \cdot f_0$ – höchste Frequenz, für die der Spektralwert ≠ 0 sein darf².
- **D**ie Berechnung der N Spektralwerte erfordert N (äquidistante) Zeitwerte.
- \blacksquare Nlinear unabhängige Gleichungen mit N Unbekannten; numerisch lösbar.

²Sonst ist das berechnete Spekrum nur eine Näherung. G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

■ Für reele x(t) sind alle Spektralwertpaare Paare $\underline{X}(m), \underline{X}(-m)$ zueinander konjugiert komplex und $\underline{X}\left(-\frac{N}{2}\right) = 0$:

$$x(t) = X(0) + 2 \cdot \sum_{m=1}^{\frac{N}{2}-1} |\underline{X}(m)| \cdot \cos\left(m \cdot 2\pi \cdot f_0 \cdot t + \text{Phase}\left(\underline{X}(m)\right)\right)$$

X(0) – Gleichanteil.

Annäherung nichtperiodischer Signale durch

•
$$T \to \infty$$
 und $f_0 = 1/T \to 0$

• diskrete Spektralfunktion \rightarrow kontinuierliche Spektralfunktion, z.B. Impuls:

$$x(t) = \lim_{T \to \infty} \begin{cases} k \cdot T & t = 0\\ 0 & \text{sonst} \end{cases} \rightarrow \underline{X} \left(\frac{1}{T}\right) = k$$

$$+ \wedge \wedge + \wedge \wedge + \wedge \wedge \wedge = \wedge \wedge + \dots = - \wedge \wedge$$

Beispiel

- Stückweise lineare Funktion mit den Eckpunkten 0,0; ... und Periode 1
- Erzeugung und Darstellung der Abtastfolge mit Matlab

Berechnung des Spektrums

3. AC-Analyse

 Nicht stetige Zeitfunktionen haben kein bandbegrenztes Spektrum. Berechnung des Zeitsignals zum berechneten Spektrum:

■ Gibbsches Phänomen: Ripple an Unstetigkeitsstellen.

Spektrumberechnung mit LTSpice

- Zeitdiskrete Simulation
- Dartstellungs des Spektrum mit Menü: »view«, »fft«, Auswahl des Signals.

3. AC-Analyse

Mit der zusätzlichen Spice-Anweisung

.four 1kHz 10 V(a)

werden die Spektralwerte für 1kHz und 10 Oberwellen berechnet und im ErrLog-File gespeichert:

Harmonic	Frequency	7 Fourier	Normalized	Phase	Normalized
Number	[Hz]	Component	t Component	[degree]	Phase [deg]
1	1.000e+03	6.366e-01	1.000e+00	-0.36°	0.00°
2	2.000e+03	2.000e-03	3.142e-03	89.28°	89.64°
3	3.000e+03	2.122e-01	3.333e-01	-1.08°	-0.72°
4	4.000e+03	2.000e-03	3.141e-03	88.56°	88.92°
5	5.000e+03	1.273e-01	2.000e-01	-1.80°	-1.44°
6	6.000e+03	2.000e-03	3.141e-03	87.84°	88.20°
7	7.000e+03	9.092e-02	1.428e-01	-2.52°	-2.16°
8	8.000e+03	2.000e-03	3.141e-03	87.12°	87.48°
9	9.000e+03	7.070e-02	1.111e-01	-3.24°	-2.88°
10	1.000e+04	1.999e-03	3.141e-03	86.40°	86.76°

Die Option

.option plotwinsize=0

deaktiviert eine interen Datenkomprimierung. Ohne diese Deaktivierung entstehen zu große numerische Fehler.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 79/134

 Das Spektrum eines Sinussignal ist nur f
ür eine Frequenz ungleich null.

 Mit der Option sind die Berechnungsfehler der Spektralwerte, die null sein müssten, um durchschnittlich etwa 30 dB geringer ³.

³Quelle und weitere Genauigkeitsverbesserrung: http://www.audioperfection.com/spice-ltspice/distortion-measurements-with-ltspice.html G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 80/134

Das Spektrum eines Impulses

• bis zur Frequenz $\gg 1/2\pi$ ·Pulsebreite« konstant.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 81/134

Klirrfaktor

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 82/134

Spektrum und Nichtlinearität

- Im Frequenzbereich wird ein im Arbeitspunkt linearisiertes System betrachtet.
- Alternative: Annäherung einer Kennlinie im Arbeitspunkt x_0 durch eine Tailorreihe:

$$f(x - x_0) = \underbrace{f(x_0) + \frac{f'(x_0)}{1!} \cdot x}_{\text{lineare N\"aherung}} + \underbrace{\frac{f''(x_0)}{2!} \cdot x^2 + \ldots + \frac{f^{(n)}(x_0)}{n!} \cdot x^n + \underbrace{\frac{f^{(n)}(x_0)}{2!} \cdot x^n + \underbrace{\frac{f^{(n)}(x_0)}{n!} \cdot x^n + \underbrace{\frac{f^{(n)}($$

mit \boldsymbol{x} als Signal, das sich als Summer von Kosinussignalen

$$\underline{X}|\cdot\cos\left(\omega t+\varphi\left(\underline{X}\right)\right)$$

darstellen lässt.

3. AC-Analyse

 Die n-te Potenzen eines Kosinussignal lässt sich in eine Summe von Kosinussignalen mit bis zur n-fachen Frequenz darstellen:

$$\cos\left(\omega t\right)^{n} = \frac{1}{2^{n}} \sum_{k=0}^{n} \left(\begin{array}{c} n\\ k \end{array}\right) \cos\left(\left(n-2k\right) \cdot \omega \cdot t\right)$$

Zu jedem Spektralanteil im Eingangssignal entstehen
 Oberwellen mit einem ganzzahligen Vielfachen der Frequenz.

6. Klirrfaktor

Herleitung:

$$\cos(\omega t)^{n} = \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} \cos\left((n-2k) \cdot \omega \cdot t\right)$$

$$\cos(\omega \cdot t)^n = \frac{1}{2} \cdot \left(e^{j \cdot \omega \cdot t} + e^{-j \cdot \omega \cdot t}\right)^n$$

Nach dem Binomischen Lehrsatz:

$$\left(e^{j\cdot\omega\cdot t} + e^{-j\cdot\omega\cdot t}\right)^n = \sum_{k=0}^n \left(\begin{array}{c}n\\k\end{array}\right) \cdot \underbrace{e^{j\cdot\omega\cdot t\cdot(n-k)} \cdot e^{-j\cdot\omega\cdot t\cdot k}}_{e^{j\cdot\omega\cdot t\cdot(n-2k)}}$$

Summe enthält paarweise konjugiert komplexe Terme, z.B für n = 4:

k	0	1	2	3	4
Exponent: $n - 2k$	4	2	0	-2	-4
$\left(\begin{array}{c} n \\ k \end{array} \right)$	1	4	6	4	1

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 85/134

Signalverzerrung an einer Diode

 Die Strom-Spannungskennlinie einer Diode ist näherungsweise eine Exponentialfunktion.

Der untere Teil wird gestaucht und der obere gestreckt.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

3. AC-Analyse

Phase [degree]

Spektralwerte des Diodenstroms berechnet mit:

.four	: 1	kHz	10	V (a	.)	
Harmonic	F	reque	enc	y	F	Courie	er
Number		[Hz]]	(Co	mpone	ent
1	1	000	- 1 0	о г	-	007-	01

-	1.0000.00	0.0210 01	0.01
2	2.000e+03	2.740e-04	-89.99°
3	3.000e+03	9.073e-05	-179.98°
4	4.000e+03	2.303e-05	90.03°
5	5.000e+03	4.649e-06	0.03°
6	6.000e+03	7.509e-07	-89.96°
7	7.000e+03	9.288e-08	-179.96°
8	8.000e+03	6.882e-09	89.99°
9	9.000e+03	4.010e-10	-178.20°

10 1.000e+04 2.657e-10 90.08° Total Harmonic Distortion: 48.864496%

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

Klirrfaktor (Harmonic Distortion)

- Maß der Verzerrung. Bei Audiosignalen als »klirren« wahrnehmbar.
- Anteil der Energie der Oberwellen an der Gesamtenergie. Verhältnis der Effektivwerte:

$$k = \sqrt{\frac{\sum_{i=2}^{\infty} |\underline{X} (i \cdot f_0)|^2}{\sum_{i=1}^{\infty} |\underline{X} (i \cdot f_0)|^2}}$$

Im Beispiel:

$$k = \sqrt{\frac{(2,740e \cdot 10^{-4})^2 + (9,073 \cdot 10^{-5})^2 + \dots}{(5,927 \cdot 10^{-4})^2 + (2,740e \cdot 10^{-4})^2 + (9,073 \cdot 10^{-5})^2 + \dots}}$$

= 48,8

 Das Ergebnis steht unter den Spektralwerten im SPICE Error Log:

Total Harmonic Distortion: 48.864496%

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 88/134

Der Klirrfaktor eines Verstärkers

• Für zu große Werte der Eingangsspannung geht der Transistor in die Übersteuerung.

Anderung der Verstärkung von -2 nach 1.

3. AC-Analyse

6. Klirrfaktor

Fourier-Koeffizienten und Klirrfaktor aus dem SPICE Error Log:

Harmoni	.c Frequency	Fourier	Normalized	Phase
Number	[Hz]	Component	Component	[degree]
1	1.000e+03	7.883e-01	1.000e+00	-180.00°
2	2.000e+03	1.396e-01	1.770e-01	-90.04°
3	3.000e+03	8.518e-02	1.081e-01	179.96°
4	4.000e+03	3.380e-02	4.287e-02	90.03°
5	5.000e+03	1.275e-04	1.618e-04	44.24°
6	6.000e+03	1.318e-02	1.671e-02	89.62°
7	7.000e+03	1.124e-02	1.426e-02	-0.06°
8	8.000e+03	3.207e-03	4.068e-03	-88.60°
9	9.000e+03	3.201e-03	4.060e-03	-1.90°
10	1.000e+04	4.716e-03	5.983e-03	-90.54°
Total H	larmonic Dist	tortion: 21	1.307795%	

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 90/134

Rauschen

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 91/134

Rauschen

u_{rff} u_{reff} u_{reff}

Ein Rauschsignal ist ein Zufallssignal, verursacht durch die thermische Bewegung der Ladungsträger.

 Kenngröße Effektivwert / Leistungsmittelwert: quadratischer Mittelwert im betrachteten Zeitfenster:

$$u_{\mathrm{reff}}^2 = \frac{1}{t_2 - t_1} \cdot \int_{t_1}^{t_2} u_{\mathrm{r}}^2 \cdot dt$$

 Im Spektralbereich hat Rauschen einen vorhersagbaren Amplituden- und einen zufälligen Phasenfrequenzgang:

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 92/134

Effektivwertberechnung aus dem Spektrum

Das Quadrat des Effektivwertes ist das Integral über alle Effektivwertquadrate:

$$u_{\text{reff}}^{2} = \int_{f_{u}}^{f_{o}} |\underline{u}_{r}(f)|^{2} \cdot df$$
$$i_{\text{reff}}^{2} = \int_{f_{u}}^{f_{o}} |\underline{i}_{r}(f)|^{2} \cdot df$$

 $(|\underline{u}_{\mathbf{r}}(f)| - \text{Betrag Rauschspannungsdichte}; |\underline{i}_{\mathbf{r}}(f)| - \text{Betrag Rauschstromdichte}; f_{\mathbf{u}}, f_{\mathbf{o}}$ – untere und obere Grenze des Frequenzbereichs, für den das Rauschen bestimmt wird).

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 93/134

Rauschquellen

Ursache für das Rauschen sind thermische Bewegung der Ladungsträger. Rauscharten:

- weißes Rauschen: Rauschdichte für alle Frequenzen gleich.
- 1/f-Rauschen: Rauschdichte nimmt umgekehrt proportional mit der Frequenz ab.

Elektronische Schaltungen haben eine begrenzte Bandbreite. Es interessiert nur das Rauschen im genutzten Frequenzbereich.

Widerstände haben eine temperaturabhängige Rauschleistung.

Rauschspannungsdichte:

$$\left|\underline{u}_{\mathrm{r.R}}\left(f\right)\right| = \sqrt{4 \cdot k \cdot T \cdot R}$$

Rauschstromdichte:

$$\left|\underline{i}_{\mathrm{r.R}}\left(f\right)\right| = \sqrt{\frac{4\cdot k\cdot T}{R}}$$

(k - Boltzmannkonstate; T - Temperatur).

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 94/134

pn-Ubergänge generieren einen vom (Diffusions-) Strom abhängigen Rauschstrom:

weißes Rauschen:

$$|\underline{i}_{\mathrm{r.sd}}(f)| = \sqrt{2 \cdot q \cdot I_{\mathrm{D}}}$$

■ 1/f – Rauschen (Schrotrauschen): $\left|\underline{i}_{\mathrm{r.fd}}\left(f\right)\right| = \sqrt{\frac{k_{1/f} \cdot I_{\mathrm{D}}^{\gamma_{1/f}}}{f}}$

Kleinsignalersatz schaltung Diode mit Rauschstromquelle

(q – Elementarladung; $I_{\rm D}$ – Diodenstrom; $k_{1/f}$ – Schrotrauschkoeffizient, experimentell zu bestimmen (in Spice Kf); $\gamma_{1/f}$ – Schrotrauschexponent, typ 1...2 (in Spice Af)).

Der Simulator berechnet f
ür jede Rauschquelle einzeln und für alle Rauschquellen zusammen die verursachten effektiven Rauschspannung- /-stromdichten am Schaltungsausgang.

• Berechnung der Effektivwerte $u/i_{\text{reff}} = \sqrt{\int_{f_u}^{f_o} (...)^2 \cdot df}$ mit »integ« oder »strg-mouseklick« G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 95/134

Signalquelle mit Innenwiderstand

 Simulation zur Bestimmen der effektiven Rauschspannung für unterschiedliche Generatorwiderstände im Frequenzbereich von 10 Hz bis 10 MHz.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 96/134

Kontrolle des Simulationsergebnisses

In der Schaltung entsteht weißes Rauschen an $R_{\rm g}~(T=300\,{\rm K}):$

$$\begin{aligned} u_{\text{reff}} \left(R_{\text{g}} \right) &= \sqrt{\int_{f_{\text{u}}}^{f_{\text{o}}} 4 \cdot k \cdot T \cdot R_{\text{g}} \cdot \left(f_{\text{o}} - f_{\text{u}} \right)} \\ &= \sqrt{4 \cdot 1,38 \cdot 10^{-23} \,\text{J/K} \cdot 300 \,\text{K} \cdot R_{\text{g}} \cdot \left(10 \,\text{MHz} - 10 \,\text{Hz} \right)} \\ &= 4,07 \cdot 10^{-7} \,\sqrt{W} \cdot \sqrt{R_{\text{g}}} \\ \hline \hline R_{\text{g}} \text{ in } \Omega & 10 \quad 100 \quad 1\text{k} \quad 10\text{k} \\ \hline u_{\text{reff}} \left(R_{\text{g}} \right) \text{ in } \mu\text{V} \quad 1,29 \quad 4,07 \quad 12,9 \quad 40,7 \end{aligned}$$

Die Rauschspannungsquelle liegt in Reihe zum Ausgang:

$$u_{\text{reff.a}} = u_{\text{reff}} \left(R_{\text{g}} \right)$$

 \blacksquare Rechenergebnis identisch mit Simulationsergebnis. \checkmark

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 97/134

Rauschen an einer Diode

7. Rauschen

Kontrolle

• Rauschspannung an $R_{\rm g}$ (Frequenzbereich 1 Hz bis 1 MHz):

 $\begin{aligned} u_{\rm reff} \left(R_{\rm g} \right) &= \sqrt{4 \cdot 1.38 \cdot 10^{-23} \, {\rm J/K} \cdot 300 \, {\rm K} \cdot 1 \, {\rm k} \Omega \cdot \left(1 \, {\rm MHz} - 1 \, {\rm Hz} \right) } \\ &= 4.07 \, \mu {\rm V} \end{aligned}$

• multipliziert mit dem Spannungsteilerverhältnis $g = \frac{r_{\rm D}}{R + r_{\rm D}}$:

$$u_{\rm reff.a}\left(R_{\rm g}\right) = u_{\rm reff}\left(R_{\rm g}\right) \cdot g = 266\,{\rm nV}\,\surd$$

■ Weißes Rauschen von D1:

$$i_{\text{reff}}(I_{\text{SD}}) = \sqrt{2 \cdot 1.6 \cdot 10^{-19} \,\text{C} \cdot 370 \,\mu\text{A} \cdot (1 \,\text{MHz} - 1 \,\text{Hz})}$$

= 10.9 nA

multipliziert mit dem Ausgangswiderstand $r_{\rm a}=65,2\,\Omega;$

$$u_{\rm reff.a}\left(I_{\rm SD}\right) = 710\,{\rm nV}\,{\rm V}$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 99/134

■ 1/f-Rauschen der Diode:

$$\begin{aligned} i_{\text{reff}} \left(I_{\text{FD}} \right) &= \sqrt{\int_{f_{u}}^{f_{o}} \frac{k_{1/f} \cdot I_{\text{D}}^{\gamma_{1/f}}}{f} \cdot df} = \sqrt{k_{1/f} \cdot I_{\text{D}}^{\gamma_{1/f}} \cdot \ln\left(\frac{f_{o}}{f_{u}}\right)} \\ &= \sqrt{10^{-15} \sqrt{\text{A}} \cdot I_{\text{D}}^{1,5} \cdot \ln\left(10^{6}\right)} = 314 \, \text{pA} \end{aligned}$$

• multipliziert mit dem Ausgangswiderstand $r_{\rm a} = 65,2\,\Omega$:

$$u_{\text{reff.a}}\left(I_{\text{FD}}\right) = 20,5 \,\text{nV}\,\sqrt{}$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 100/13

Rauschen als Funktion von $I_{\rm D}$

- Änderung von $I_{\rm D}$ über die Generatorspannung
- Diodenmodell ohne 1/f-Rauschen (Kf=0)

3. AC-Analyse

Interpretation des Ergebnisses

■ $u_{\text{reff}}(R_{\text{g}})$ ist wie im Experiment zuvor 4,07 µV. Der am Ausgang ankommende Teil nimmt ab mit:

$$g = \frac{r_{\rm D}}{R_{\rm g} + r_{\rm D}}$$

Kontrolle: paraller Verlauf zu $3\,\mu {\rm V}\cdot g$

 \blacksquare Die Diode verursacht an a eine effektive Rauschspannung

$$u_{\rm reff.a}\left(I_{\scriptscriptstyle
m SD}
ight)pprox 4\,\mu{\rm V}\cdot\sqrt{g}$$

geteilt durch den Ausgangswiderstand

$$r_{\rm a} = R_{\rm g} \parallel r_{\rm D} = g \cdot R_{\rm g} \approx r_{\rm D}$$

beträgt der Rauschstrom der Diode:

$$\sqrt{2 \cdot 1, 6 \cdot 10^{-19} I_{\rm D} \cdot 1 \,\mathrm{MHz}} \approx \frac{4 \,\mu V}{\sqrt{R_{\rm g} \cdot r_{\rm D}}}$$

Ok. wenn
$$\frac{1}{r_{\rm D}} = \frac{dI_{\rm D}}{dU_{\rm D}} \sim I_{\rm D}$$
 d.h. $I_{\rm D} \sim e^{U_{\rm D}}$ gilt

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 102/13

Rauschanalyse an einem Verstärker

Bei der Rauschanalyse mit Spice ist immer eine Signalquelle und ein Ausgang anzugeben. Berechnet werden die Rauschdichten und -effektivwerte für alle Einzelquellen und für alle Quellen zusammen sowie der Betrag der Verstärkung g.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

7. Rauschen

Effektive Rauschspannung an a mit »Strg+Mouseklick«:

Quelle	Q1	$R_{\rm g}$	R_1	R_2	gesamt
$u_{\text{reff.a}}$ (Quelle) in μV	149,5	226,9	$58,\! 6$	138,1	310,4

Probe:
$$\sqrt{149, 5^2 + 226, 9^2 + 58, 6^2 + 138, 1^2} = 310, 4\sqrt{149, 5^2 + 226, 9^2 + 58, 6^2 + 138, 1^2}$$

Alle wichtigen Rauschquellen erfasst. G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 104/13

Signal-Rausch-Abstand (SNR – signal noise ratio)

Signalrauschabstand: Verhältnis der Leistung des Nutzsignal zur Leistung des Rauschsignals an einem Lastwiderstand. Identisch mit Verhältnis der Effektivwertquadrate:

$$SNR = \frac{u_{\text{eff}}^2}{u_{\text{reff}}^2}$$

Für einen Effektivwert der Ausgangsspannung $u_{\text{eff.a}}^2 = 1 \text{ mV}$ und im Beispiel $u_{\text{reff.a}} = 310,4 \,\mu\text{V}$:

$$SNR = \left(\frac{1\,\mathrm{mV}}{310,4\,\mu\mathrm{V}}\right)^2 = 10.4$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 105/13

Rauschzahl

Relative Verschlechterung des Signal-Rausch-Abstands durch eine (Verstärker-) Schaltung.

- Es gibt immer ein unvermeidliches Grundrauschen durch den Innenwiderstand des Generators, das mit verstärkt wird, und
- ein gesamtes Rauschen am Verstärkerausgang.
- Im Beispiel ist bei Ausgangsspannung $u_{\rm eff.a}^2 = 1\,{\rm mV}$

$$SNR = \frac{u_{\text{eff.a}}^2}{u_{\text{reff.a}}^2} = \left(\frac{1 \,\text{mV}}{310,4 \,\mu\text{V}}\right)^2 = 10.4$$

und wenn es außer $R_{\rm g}$ keine Rauschquelle geben würde:

$$SNR_{\rm Rg} = \frac{u_{\rm eff.a}^2}{u_{\rm reff.a}^2(R_{\rm g})} = \left(\frac{1\,{\rm mV}}{226,9\,\mu{\rm V}}\right)^2 = 19,4$$

Rauschzahl:

$$F = \frac{SNR_{\rm Rg}}{SNR} = \frac{u_{\rm reff.a}^2}{u_{\rm reff.a}^2(R_{\rm g})} = \frac{19,4}{10,4} = 1,87$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 106/13

7. Rauschen

Für Breitbandverstärker etwa gesamte Rauschspannungsdichte zur Rauschspannungsdichte bezüglich $R_{\rm g}$ ins Quadrat für Frequenzen $f_{\rm m}$ im mittleren Nutzfrequenzbereich:

$$F \approx \frac{\left|\underline{u}_{\rm r}\left(f_{\rm m}\right)\right|^2}{\left|\underline{u}_{\rm rg}\left(f_{\rm m}\right)\right|^2} = \left(\frac{245\,\mu{\rm V}/\sqrt{{\rm Hz}}}{180\,\mu{\rm V}/\sqrt{{\rm Hz}}}\right)^2 = 1.85$$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 107/13

3. AC-Analyse

Beeinflusst eine Spannungsteiler die Rauschzahl?

$$u_{\text{reff.a}} = u_{\text{reff.Rg}} \cdot \frac{r_{\text{e}}}{R_{\text{g}} + r_{\text{e}}} + u_{\text{reff.re}} \cdot \frac{R_{\text{g}}}{R_{\text{g}} + r_{\text{e}}}$$

Rauschzahl:

$$F = \left(\frac{u_{\text{reff.a}}}{u_{\text{reff.a}}(R_{\text{g}})}\right)^{2} = \left(1 + \frac{u_{\text{reff.re}} \cdot R_{\text{g}}}{u_{\text{reff.Rg}} \cdot r_{\text{e}}}\right)^{2}$$
$$F = \left(1 + \frac{\sqrt{4 \cdot k \cdot T \cdot r_{\text{e}} \cdot f_{\text{B}}} \cdot R_{\text{g}}}{\sqrt{4 \cdot k \cdot T \cdot R_{\text{g}} \cdot f_{\text{B}}} \cdot r_{\text{e}}}\right)^{2} = \left(1 + \sqrt{\frac{R_{\text{g}}}{r_{\text{e}}}}\right)^{2}$$

Für kleine Eingswiderstände Zunahme $F\sim 1/r_{\rm e}$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 108/13

7. Rauschen

Experiment zur Kontrolle

Die Kurve $\gg n/n_rg\ll$ entspricht \sqrt{F} . Abnahme mit $\sqrt{1/r_e}\sqrt{.}$

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 109/13

Stabilität

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 110/13

Stabilität

 Ein System, das nach einer Anregung in seinen ursprünglichen Zustand von selbst zurückkehrt, heißt stabil.

- Im Zeitbereich: Stabil, wenn nach Anregung mit einem Impuls der Ursprungszustand wieder von selbst erreicht wird.
- Komplexe Systeme schwingen bei Anregung:

G. Kemnitz – Institut für Informatik, Technische Universität Clausthal

3. AC-Analyse

In der Systemtheorie und Regelungstechnik gibt es für lineare Systeme ein einfach zu überprüfendes

»Die Pole müssen im Laplace-Raum in der linken Halbebene liegen.«

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 112/13

Laplace-Raum

• Ein lineares System hat eine gebrochen rationale Übertragungsfunktion bezüglich $j\omega$:

$$\underline{X}\left((\omega)\right) = \frac{a_n \cdot (j\omega)^n + a_{n-1} \cdot (j\omega)^{n-1} + \ldots + a_0}{b_m \cdot (j\omega)^m + b_{m-1} \cdot (j\omega)^{m-1} + \ldots + b_0}$$

Bei der Laplace-Transformation wird $j\omega$ um einen Dämpfungsterm erweitert zu:

$$s=\alpha+j\omega$$

Übertragungsfunktion im Laplace-Raum:

$$\underline{X}(s) = \frac{a_n \cdot s^n + a_{n-1} \cdot s^{n-1} + \ldots + a_0}{b_m \cdot s^m + b_{m-1} \cdot s^{m-1} + \ldots + b_0}$$

Die Funktion hat n Nullstellen und m – Polstellen, die reel oder konjugiert komplex sein können.

8. Stabilität

 Darstellung einer gebrochen rationalen
 Übertragungsfunktion durch n Nullstellen, m – Polstellen und einen Faktor:

$$\underline{X}(s) = \frac{a_n}{b_m} \cdot \frac{(s-q_1) \cdot (s-q_1) \cdot \dots (s-q_m)}{(s-p_1) \cdot (s-p_1) \cdot \dots (s-p_m)}$$

Pole und Nullstellen in der s-Ebene:

Fakt 1

Ein System ist stabil, wenn alle Pole in der linken Halbebene liegen. Rezept: Ersetze $j\omega$ durch s. Bestimme Pole. Kontrolliere $\alpha = \Re \{s\} < 0$. Theorie siehe Reglungstechnik.

12. Juli 2013 114/13

8. Stabilität

Beispiel: Pole eines Schwingkreises

Nach Spannungsteilergesetz:

3. AC-Analyse

$$\begin{array}{lcl} \underline{U}_{\mathrm{A}} & = & \underline{U}_{\mathrm{E}} \cdot \frac{\frac{1}{s \cdot C}}{R + s \cdot L + \frac{1}{s \cdot C}} \\ & = & \underline{U}_{\mathrm{E}} \cdot \frac{1}{1 + \alpha \cdot \frac{s}{\omega_{0}} + \left(\frac{s}{\omega_{0}}\right)^{2}} \\ & \mathrm{mit} & \alpha = R \cdot \sqrt{\frac{C}{L}}, \omega_{0} = 1/\sqrt{L \cdot C} \end{array}$$

Polstellen:

$$q_{1/2} = \omega_0 \cdot \left(-\frac{\alpha}{2} \pm \sqrt{\frac{\alpha^2}{4} - 1} \right)$$

Für $\alpha > 0$, d.h. für R > 0 liegen die Pole immer in der linken Halbebene. Für $\alpha \ge 2$ sind sie reel und für $\alpha < 2$ konjugiert komplex.

Fakt 2

Ein Schwingkreis mit R > 0 ist stabil und erzeugt für kleine α eine abklingende Schwingung und bei großem α abklingende stetiges Ausgabesignal.

Zusatzbemerkungen

- Von vielen Schaltungen wird Stabilität verlangt: Verstärker, insbesondere auch rückgekoppelte mit Operationsverstärkern, Spannungs- und Stromquellen, ...
- Die lineare Ersatzschaltung hängt vielfach vom Arbeitspunkt ab. Unterschiedliche Arbeitspunkte, unterschiedliche Übertragungsfunktionen und unterschiedliche Pole.
- Stabilitätskontrolle für alle erreichbaren Arbeitsbereiche erforderlich.
- Über Simulation ist Unstabilität erkennbar:
 - Im Zeitbereich, wenn das System nach Anregung mit einem Puls nicht in den Ausgangszustand (Arbeitspunkt) zurückkehrt.
 - Im Frequenzbereich: auszuprobieren, z.B. durch Simulation eines Schwingkreises mit R = 0

9. Aufgaben und Kontrollfragen

Aufgaben und Kontrollfragen

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 118/13

Kontrollfragen Frequenzbereich

- Sind die bei der Analyse im Frequenzbereich berechneten Imaginäranteile der Ströme und Spannungen in einer Schaltung messbar und, wenn ja, wie?
- Wie könnte man messtechnisch eine komplexe Spannung <u>U</u> für eine Frequenz ω bestimmen? Was braucht man dafür für Geräte, was muss man an den Geräten einstellen, was liest man ab?

Kontrollfragen Rauschen

- Welche Maßeinheiten haben die Rauschspannungs- und die Rauschstromdichte?
- Wie groß ist die Rauschspannungsdichte am Generatorwiderstand einer Signalquelle?
- Wie groß ist die Rauschstromdichte des Basis-Emitter-Übergangs eines Transistors bei einem Basisstrom vom 1 µA?
- Wie groß sind die effektive Rausschpannung und der effektive Rauschstrom an einem Widerstands von 1 kΩ bei einer Temperatur von 300 K im Frequenzbereich von 0 bis 1 MHz?
- Hängt die spektrale Rauschleistung eines Widerstands von seinem Widerstandswert ab?

Aufgabe Rauschen

Für einen Verstärker hat der Simulator folgende spektralen Rauschdichten für den Ausgang berechnet.

 Wie groß ist der Signal-Rausch-Abstand bei einer effektiven Ausgangsspannung des Nutzsignals von 1 mV?
 Wie groß ist die Rauschzahl des Verstärkers?

Aufgabe Frequenzgang

• Gegeben ist die komplexe Übertragungsungsfunktion eines Verstärkers:

$$\underline{v} = \frac{1 + \frac{j \cdot f}{10 \, \text{Hz}}}{\left(1 + \frac{j \cdot f}{1 \, \text{kHz}}\right) \cdot \left(1 + \frac{j \cdot f}{100 \, \text{kHz}}\right)}$$

- Schätzen Sie Betrag und Phase für die 7 Frequenzen 1 Hz, 10 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz, 1 MHz.
- 2 Skizzieren Sie damit den Amplituden- und den Phasenfrequenzgang.

Aufgabe Stabilität

Sind die beiden nachfolgenden Schaltungen mit Operationsverstärkern stabil?

I Kehren die Schaltungen nach Anregungung mit einem Impuls in den Arbeitspunkt $u_a = 0$ zurück?

- 2 Wo liegen die Pole im Laplace-Raum?
- 3 Liegen sie alle in der linken Halbeebene?

Bauteiltoleranzen

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 124/13

Bauteiltoleranzen

Die Parameter elektronischer Bauteile (Widerstand, Kapazität, Verstärkung, ...) streuen:

- fertigungsbedingt
- in Abhängigkeit von Umgebungsedingungen (Temperatur, Feuchte,...) und

verändern sich bei Alterung.

- Eine professionelle Schaltung ist so zu entwerfen, dass sie für alle zulässigen Variationen von Parameterwerten funktioniert.
- Dazu zählt auch die Festlegung der zulässigen Bauteiltoleranzen.

E-Reihe

- Toleranz: in der Regel ±-Bereich in Prozent relativ zum Nennwert.
- Für Widerstände, Kondensatoren Werteabstufung nach E-Reihe, z.B. E3, E6, E12, ...
- Nummer der E-Reihe ist die Zahl der Werte je Dekade:

Serie	Werte je Dekade	Toleranz
E3	1, 2,2, 4,7	$\mp 50\%$
E6	1, 1, 5, 2, 2, 3.3, 4, 7, 6.8	$\mp 20\%$
E12	$1, 1, 2, 1, 5, 1, 8, 2, 2, 2, 7 3.3, 3, 9, 4, 7, \dots$	∓10%

Die E-Reihen E24, E48, ..., E192 haben je doppelt so viele Werte und die halbe Toleranz der E-Reihe davor.

Festlegung der Toleranzbereiche

Ausgangspunkt: Schaltungsentwurf, der mit den Nennwerten der Bauteilparameter funktioniert. Weiteres Vorgehen:

- Definition der wesentlichen Kenngrößen der Schaltung, z.B. Verstärkung, Eingangswiderstand, Stromverbrauch, Bandbreite, ...
- Festlegung der Toleranzbereiche für diese Kenngrößen.
- Sensivitätsanalyse: Untersuchung, wie sich Änderungen einzelner Parameter auf die wichtigen Kenngrößen der Schaltung abbilden.
- Festlegung der Toleranzen entsprechend Sensibilität: je sensibler desto geringer die Toleranz.
- Kontrolle durch Monte-Carlo-Simulation oder Worst-Case-Analyse.
- Wenn Schaltungskenngrößen nicht im zulässigen Bereich, Toleranzen der Bauteilparameter verringern.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

Sensibilitätsanalyse

Simulation unter Variation eines Parameters:

.step <Parameter> <Anfangswert> <Endwert> <Schrittweite>

Beispiele: Arbeitspunkt unter Variation der Verstärkung.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

Kleinsignalparameter »Eingangswiderstand« und »Verstärkung« in Abhängigkeit von dem mit V_1 eingestellten Arbeitspunkt:

• Im Bereich $V_1 = 0$ bis 2,4 V gibt es eine geringe Abhängigkeit.

• Ab $V_1 > 2.5$ V wechselt der Arbeitsbereich. Die Verstärkung

Man kann auch

- die Werte mehrere Parameter aneinander koppeln (proportionale Änderung, gegenläufige Änderung, ...) und
- Kennlinien für jeden Parameterwert bestimmen.

Beispiel: Frequenzgang eines RC-Filters in Abhängigkeit einer Widerstandsabweichung dR:

Ändert offenbar nur die Ausgabeamplitude bei ansonsten gleichem Amplituden- und Phasenfrequenzgang. G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 130/13

Monte-Carlo-Simulation

Bei vielen unkorrelierten Parametern lässt sich nur eine Stichprobe möglicher Wertevariationen simulieren.

- Ersatz der Parameterwerte durch eine Funktion f
 ür eine zufällige Auswahl:
 - $\{mc(<\mu>, <t>)\}$
 - {normal($<\mu>$, $<\sigma>$ } * Normalverteilung
- * Gleichverteilung

 - $(\mu \text{Nennwert}; t \pm -\text{Bereich}; \sigma \text{Standardabweichung}).$
- Zählschleife, im nachfolgenden Beispiel für run=1 bis 50, Schrittweite 1

Ergebnis: Eine Menge möglicher Kennlinien, um die sich ein Toleranzschlauch legen lässt.

- Toleranzschlauch PhasenfrequenzgangToleranzschlauch Amplitudenfrequenzgang
- Wenn die Toleranzschläuche für den Amplituden- und Phasenfrequenzgang zu groß sind, Bauteiltoleranzen verringern.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 132/13

Worst-Case-Analyse

Im Simulator lassen sich zusätzliche Variablen und Funktionen definieren, mit denen:

- Kenngröße wie die Bandbreite
- Maximal und Minima

bestimmt werden können. Damit lassen sich auch automatisch die

- ungünstigsten Kennlinien oder
- Verteilungen

aus einer großen Menge von Simulationsergebnissen zufälligen Parameterwerten bestimmen.

Kontrollfragen

- Es wird ein Widerstand von 3 kΩ und 8,8 kΩ mit einer zulässigen Toleranz von ±2% benötigt. Aus welcher E-Reihe würden Sie die Widerstände nehmen und welche Nennwerte würden Sie wählen?
- In welchem Bereich muss in der Transistorschaltung auf Folie 128 die Verstärkung liegen, damit die Ausgangsspannung im Arbeitspunkt vom Nennwert $U_{\rm a} = 5$ V nicht mehr als $\pm 20\%$ abweicht.

G. Kemnitz · Institut für Informatik, Technische Universität Clausthal

12. Juli 2013 134/13