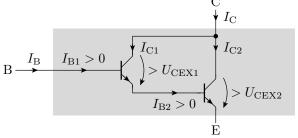

Einführung in die Elektronik Große Übung 3

G. Kemnitz, C. Giesemann

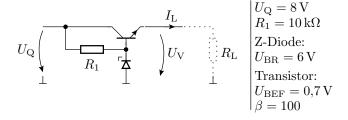
Institut für Informatik, Technische Universität Clausthal
2. Dezember 2015

TU Clausthal

Aufgabe 3.1


Gesucht sind:

- Ersatzschaltung mit dem Transistor im Normalbetrieb.
- Übertragungsfunktionen: $U_{\rm a} = f\left(U_{\rm e}\right)$ und $U_{\rm a} = f\left(U_{\rm g}\right)$ für $I_{\rm a} = 0$
- Spannungsbereich von $U_{\rm e}$ und $U_{\rm g}$, in dem das Modell gültig ist.
- Eingangswiderstand $R_{\rm e} = \frac{dU_{\rm g}}{dI_{\rm e}}$ für $I_{\rm a} = 0$
- Ausgangswiderstand $R_{\rm a} = \frac{d U_{\rm a}}{d I_{\rm a}}$


Aufgabe 3.2

Die Transistorschaltung in der nachfolgenden Abbildung wird als Darlington-Transistor bezeichnet.

- I Stellen Sie die lineare Ersatzschaltung für den Betriebsfall auf, dass beide Transistoren im Normalbetrieb arbeiten.
- 2 Vereinfachen Sie die lineare Ersatzschaltung soweit, dass sie nur noch aus einer Konstantspannungsquelle und einer stromgesteuerten Stromquelle besteht.

Aufgabe 3.3: Längsregler

Bestimmen Sie die linearen Ersatzschaltungen für die Arbeitsbereiche mit dem Transistor im Normalbetrieb und

- 1 der Z-Diode im Durchbruchbereich
- 2 der Z-Diode im Sperrbereich.

Wie verhält sich die Ausgangsspannung in Abhängigkeit vom Laststrom $I_{\rm L}$ in den Bereichen, in den die Ausgangsspannung und der Laststrom > 0 sind?

Aufgabe 3.4: PWM

Für eine pulsbreitenmodulierte Leistungssteuerung mit einem NMOS-Transistor soll gelten:

- Versorgungsspannung: $U_{\rm V} = 12 \, {\rm V}$
- Lastwiderstand: $R_{\rm L} = 100 \, \Omega$
- \blacksquare Periode des pulsbreitenmodulierten Signals: $T_{\rm P}=100\,\mu{\rm s}$
- I Zeichnen Sie die Schaltung aus Schalttransistor und Lastwiderstand.
- 2 Bestimmen Sie die relative Pulsbreite η , die Ein- und die Ausschaltzeit bei dem der Leitungsumsatz $P_{\rm RL}$ im Lastwiderstand im Mittel 0,2 W beträgt.

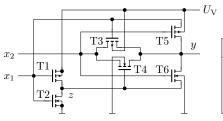
Aufgabe 3.5: CMOS-Gatter

Entwickeln Sie je ein FCMOS-Gatter

11 mit der logischen Funktion:

$$y = \overline{(x_1 x_2) (x_3 \vee x_2)}$$

2 mit der logischen Funktion:


$$y = \bar{x}_1 \vee \bar{x}_2 \vee (\overline{x_1 \vee x_2 x_3} \wedge \bar{x}_3)$$

Hinweis: Versuchen Sie zuerst die Gleichungen soweit wie möglich zu vereinfachen.

Aufgabe 3.6: Arbeitsbereiche

Bestimmen Sie in der nachfolgenden Transistorschaltung für alle logischen Eingabebelegungen von x_1 und x_2 in welchem Bereich jeder der sechs Transistoren arbeitet und den logischen Ausgabewert von y.

x_2	x_1	z	T1	T2	T3	T4	T5	T6	y
0	0								
0	1								
1	0								
1	1								

A aktiver Bereich S Sperrbereich \mathbf{S}^* Sperrbereich, wenn Paralleltransistor ein

Z hochohmig