

Einführung in die Elektronik Große Übung 4

G. Kemnitz, C. Giesemann

Institut für Informatik, Technische Universität Clausthal 9. Dezember 2013

Aufgabe 4.1: MOS-Verstärker

- Stellen Sie die Übertragungsfunktion $U_{\rm a} = f\left(U_{\rm e}\right)$ mit dem Transistor im Einschnürbereich auf.
- Für welchen Bereich der Eingangsspannung gilt die Übertragungsfunktion im Aufgabenteil zuvor?
- Wie große ist die Verstärkung $v_{\rm u} = \frac{dU_{\rm a}}{dU_{\rm e}}$ in dem bestimmten Eingangsspannungsbereich?
- Bei welcher Eingangsspannung beträgt die Verstärkung $v_n = -5$?

Aufgabe 4.2: PWM

Für eine pulsbreitenmodulierte Leistungssteuerung mit einem NMOS-Transistor soll gelten:

- Versorgungsspannung: $U_{\rm V}=12\,{\rm V}$
- Lastwiderstand: $R_{\rm L} = 100 \,\Omega$
- Periode des pulsbreitenmodulierten Signals: $T_{\rm P} = 100 \,\mu{\rm s}$
- I Zeichnen Sie die Schaltung aus Schalttransistor und Lastwiderstand.
- 2 Bestimmen Sie die relative Pulsbreite η , die Ein- und die Ausschaltzeit bei dem der Leitungsumsatz $P_{\rm RL}$ im Lastwiderstand im Mittel $0.2\,{\rm W}$ beträgt.

Aufgabe 4.3: CMOS-Gatter

Entwickeln Sie je ein FCMOS-Gatter

1 mit der logischen Funktion:

$$y = \overline{(x_1 x_2) (x_3 \vee x_2)}$$


2 mit der logischen Funktion:

$$y = \bar{x}_1 \vee \bar{x}_2 \vee (\overline{x_1 \vee x_2 x_3} \wedge \bar{x}_3)$$

Hinweis: Versuchen Sie zuerst die Gleichungen soweit wie möglich zu vereinfachen.

Aufgabe 4.4: Arbeitsbereiche

Bestimmen Sie in der nachfolgenden Transistorschaltung für alle logischen Eingabebelegungen von x_1 und x_2 in welchem Bereich jeder der sechs Transistoren arbeitet und den logischen Ausgabewert von y.

y
j

A aktiver Bereich S Sperrbereich

S* Sperrbereich, wenn Paralleltransistor ein

Z hochohmig

Aufgabe 4.5: Verstärkerentwurf

Entwerfen Sie mit Hilfe von Operationsverstärkern Verstärker mit einem Eingangswiderstand, der gegen unendlich geht, und

- einer Verstärkung von +4
- **2** mit einer Verstärkung von -4.

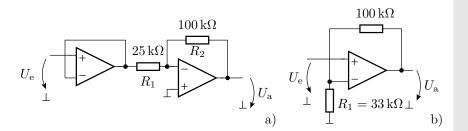
Aufgabe 4.6: Sensorverstärker

Entwerfen Sie einen Messverstärker für den Sperrstom einer Photodiode mit einer Verstärkung von 10 V/mA. Über der Photodiode soll während der Messung eine konstante, vom Messstrom unabhängige Spannung $U_D = -U_V$ anliegen.

Aufgabe 4.7: Analogrechner

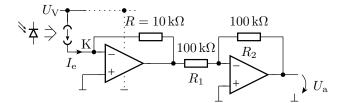
Gesucht ist eine Schaltung mit der Funktion:

$$U_{\rm a} = 2\,\mathrm{V} - 2\cdot U_{\rm e}$$


- 1 Entwerfen Sie die Schaltung unter Verwendung eines Operationsverstärkers.
- 2 In welchem Bereich muss die Eingangspannung liegen, wenn die Ausgangsspannung und die Spannungen an den beiden Eingängen nur im Bereich zwischen 0 und 5 V liegen dürfen?

Aufgabe 4.8: Schwellwertschalter

Entwerfen Sie unter Einbeziehung eines Operationsverstärkers einen invertierenden Schwellwertschalter mit Hysterese. Gegeben sei: $U_{\text{trig.r}} = 3 \text{ V}$, $U_{\text{trig.f}} = \frac{4}{3} \text{ V}$, $U_{\text{a0}} = 0 \text{ V}$ und $U_{\text{a1}} = 5 \text{ V}$.


Lösung zu Aufgabe 4.5

- Der hochohmige Eingang erfordert einen Spannungsfolger vor dem invertierenden Verstärker. Berechnung der Widerstandswerte wie üblich.
- 2 Lösbar mit einem normalen nichtinvertierenden Verstärker.

Lösung zu Aufgabe 4.6

Die Photodiode lässt sich als Stromquelle modellieren. Ein Stromverstärker lässt sich nach einem ähnlichen Prinzip wie ein invertierender Verstäker realisieren. Für K gilt $I_{\rm E} + \frac{U_{\rm A}}{R} = 0$. Wegen negativer Verstärkung zusätzlicher negierender Verstärker erforderlich.

