Elektronik 1, Foliensatz 6: geschaltete Systeme

G. Kemnitz

22. April 2021

Inhaltsverzeichnis

1	\mathbf{Ges}	schaltete Systeme	1
	1.1	Sprungantwort	2
	1.2	Geschaltetes RC-Glied	4
	1.3	RC-Glied, Abbildung auf	7
	1.4	Geschaltetes RL-Glied	12
	1.5	RL-Glied, Abbildung auf	14
	1.6	RC-Oszillator	16
	1.7	Aufgaben	18

1 Geschaltete Systeme

Geschaltete Systeme

Modell für Systeme, deren Eingaben oder Arbeitsbereiche sprunghaft wechseln:

- digitale Systeme, gepulste Ausgabe,
- Wechsel zwischen linearen Kennlinienästen,
- Abschätzung der Dauer von Ausgleichsvorgängen.

Rechtecksignal: Signal, dessen Wert sich zu den Zeitpunkten t_i sprunghaft ändert und sonst konstant bleibt¹.

Einheitssprung:

$$\sigma\left(t\right) = \left\{ \begin{array}{ll} 0 & t < 0 \\ 1 & t \ge 0 \end{array} \right.$$

Sprungantwort: Reaktion eines linearen Systems auf einen Einheitssprung:

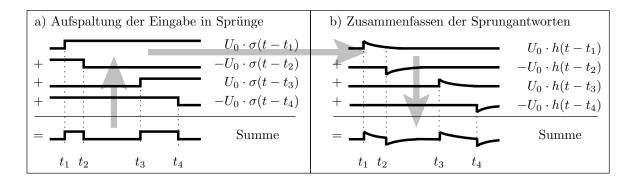
$$h\left(t\right) = f\left(\sigma\left(t\right)\right)$$

 $^{^{1}}$ Theoretisches Modell. Praktisch können sich Ströme und Spannungen wegen der immer vorhandenen L's und C's nicht sprunghaft ändern.

1.1 Sprungantwort

Bedeutung der Sprungantwort

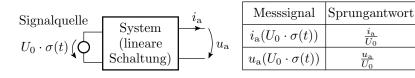
• Die Systemreaktion eines geschalteten linearen Systems ist eine Linearkombination zeitversetzter Sprungantworten.



$$f\left(X_{0} + \sum_{i=1}^{N} X_{i} \cdot \sigma(t - t_{i})\right) = f(X_{0}) + \sum_{i=0}^{N-1} X_{i} \cdot h(t - t_{i})$$

⇒ Erlaubt einfache Überschläge und Abschätzungen.

Messen der Sprungantwort



- Anlegen eines Eingabesprungs.
- Aufzeichnen der Systemreaktion:

$$f(U_0 \cdot \sigma(t)) = U_0 \cdot f(\sigma(t)) = U_0 \cdot h(t)$$

• Die Sprungantwort ist:

$$h\left(t\right) = \frac{f\left(U_0 \cdot \sigma\left(t\right)\right)}{U_0}$$

Anfangs- und Endwerte

Vor dem Sprung (t < 0):

$$I_0 \cdot \sigma(t)$$
 $\Rightarrow \stackrel{\downarrow}{\uparrow}$ $U_0 \cdot \sigma(t)$ $\downarrow \Rightarrow | = \stackrel{\downarrow}{\uparrow} \Rightarrow \stackrel{\downarrow}{\uparrow} U_{\rm C}^{(-)} | \Rightarrow \downarrow I_{\rm L}^{(-)}$

• $U^{(-)},\,I^{(-)}$ stationäre Spannungen und Ströme vor dem Sprung.

Stationärer Zustand² lange nach dem Sprung $(t \gg 0)$:

$$\boxed{I_0 \cdot \sigma(t) \circlearrowleft \Rightarrow I_0 \circlearrowleft \boxed{U_0 \cdot \sigma(t) \left(\circlearrowleft \Rightarrow U_0 \left(\circlearrowleft \right) \boxed{\pm} \Rightarrow \thickapprox \right) U_{\mathrm{C}}^{(+)} \boxed{} \Rightarrow \checkmark I_{\mathrm{L}}^{(+)}}$$

• $U^{(+)}$, $I^{(+)}$ stationäre Spannungen und Ströme nach dem Sprung.

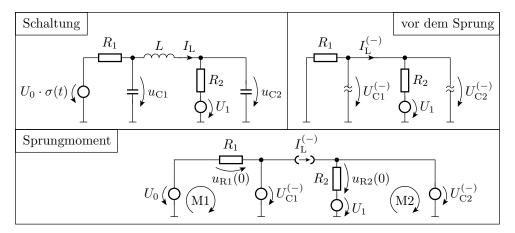
Im Moment des Sprunges (t = 0):

$$u_{\mathcal{C}}(0) = \frac{1}{C} \cdot \lim_{\Delta t \to 0} \int_{0}^{\Delta t} i_{\mathcal{C}}(t) \cdot dt + U_{\mathcal{C}}^{(-)} = U_{\mathcal{C}}^{(-)}$$

$$i_{\mathcal{L}}(0) = \frac{1}{L} \cdot \lim_{\Delta t \to 0} \int_{0}^{\Delta t} u_{\mathcal{L}}(t) \cdot dt + I_{\mathcal{L}}^{(-)} = I_{\mathcal{L}}^{(-)}$$

$$\downarrow \Rightarrow \diamondsuit U_{\mathcal{C}}^{(-)} \qquad \qquad \Rightarrow \diamondsuit I_{\mathcal{L}}^{(-)}$$

Anwendung auf ein Schaltungsbeispiel



• Stationärer Zustand vor dem Sprung:

$$U_{\text{C1}}^{(-)} = U_{\text{C2}}^{(-)} = U_1 \cdot \frac{R_1}{R_1 + R_2}$$
$$I_{\text{L}}^{(-)} = -\frac{U_1}{R_1 + R_2}$$

Im Sprungmoment

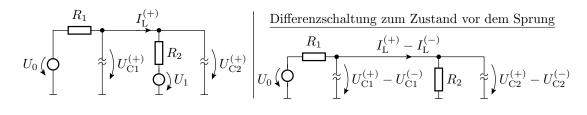
$$U_{0}\left(\begin{array}{c|c} R_{1} & I_{L}^{(-)} \\ \hline & u_{R1}(0) \\ \hline & (M1) \end{array}\right) U_{C1}^{(-)} & R_{2} \\ \hline \downarrow u_{R2}(0) \\ \hline \downarrow U_{1} & (M2) \end{array}\right) U_{C2}^{(-)}$$

$$u_{\text{R1}}(0) = U_0 - U_{\text{C1}}^{(-)}$$

 $u_{\text{R2}}(0) = U_{\text{C2}}^{(-)} - U_1$

²Es ist hier vorausgesetzt, dass die Schaltung den stationären Zustand erreicht, d.h. dass sie nicht schwing. Ob ein System schwingt oder nicht, kann man ausprobieren, simulieren, ... Mathematik dazu Laplace-Transformation, nicht in dieser Vorlesung.

Stationärer Zustand nach dem Sprung



$$U_{\text{C1}}^{(+)} - U_{\text{C1}}^{(-)} = U_{\text{C2}}^{(+)} - U_{\text{C2}}^{(-)} = U_0 \cdot \frac{R_2}{R_1 + R_2}$$

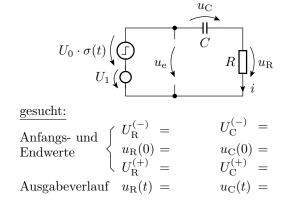
$$I_{\text{L}}^{(+)} - I_{\text{L}}^{(-)} = \frac{U_0}{R_1 + R_2}$$

Die Abschätzung der stationären Werte vor und lange nach einem Sprung sowie im Sprungmoment ist nützlich,

- um Simulationsergebnisse auf Glaubwürdigkeit zu untersuchen,
- Größenordnungen der Ströme und Spannungen abzuschätzen, ...

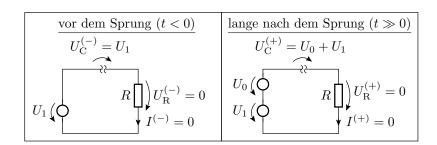
1.2 Geschaltetes RC-Glied

Das geschaltete RC-Glied



• Grundschaltung zur Abschätzung des dynamischen Verhaltens auch vieler anderer Schaltungen.

Anfangs- und Endwert



Ausgleichsvorgang

Anfangswerte:

- Kapazität: $u_{\rm C}(0) = U_1$ (behält Wert)
- Widerstand: $u_{\rm R}(0) = U_0 + U_1 u_{\rm C}(0) = U_0$ (Sprunghöhe)

Zeitdiskrete Berechnung

$$u_{\mathcal{C}}(n+1) = u_{\mathcal{C}}(n) + \frac{\Delta t}{R \cdot C} \cdot u_{\mathcal{R}}(n)$$

$$u_{\mathcal{R}}(n+1) = u_{\mathcal{R}}(n) - \frac{\Delta t}{R \cdot C} \cdot u_{\mathcal{R}}(n) = u_{\mathcal{R}}(n) \cdot \left(1 - \frac{\Delta t}{R \cdot C}\right)$$

mit
$$n = \frac{t}{\Delta t}$$
, $u_{\rm R}(0) = U_0$, $\frac{\Delta t}{R \cdot C} = -x$ und $x \to 0$

• Spannungsverlauf Widerstand:

$$u_{\mathrm{R}}\left(t\right) = U_{0} \cdot \lim_{\Delta t \to 0} \left(1 - \frac{\Delta t}{R \cdot C}\right)^{\frac{t}{\Delta t}} = U_{0} \cdot \left(\lim_{x \to 0} \left(1 + x\right)^{\frac{1}{x}}\right)^{-\frac{t}{R \cdot C}} = U_{0} \cdot e^{-\frac{t}{R \cdot C}}$$

• Spannungsverlauf Kapazität:

$$u_{\rm C}(t) = U_0 + U_1 - u_{\rm R}(t) = U_1 + U_0 \cdot \left(1 - e^{-\frac{t}{R \cdot C}}\right)$$

• Stromverlauf:

$$i(t) = \frac{u_{R}(t)}{R} = \frac{U_{0}}{R} \cdot e^{-\frac{t}{R \cdot C}}$$

• Beide Spannungsverläufe und auch der Stromverlauf sind abklingende Exponentialfunktionen mit der Zeitkonstanten:

$$\tau = R \cdot C$$

Zusammenfassung

• Die Strom- und Spannungsverläufe am geschalteten RC-Glied sind abklingende Exponentialfunktionen, bei denen die Differenz zum stationären Wert $X^{(+)} - x$ mit der Zeitkonstante $\tau = R \cdot C$ abnimmt:

$$x(t) = \begin{cases} X^{(-)} & t < 0 \\ X^{(+)} - (X^{(+)} - x(0)) \cdot e^{-\frac{t}{\tau}} & t \ge 0 \end{cases}$$

 $X^{(-)}$ stationärer Wert vor dem Sprung,

 $X^{(+)}$ stationärer Wert lange nach dem Sprung,

x(0) Wert im Moment des Sprungs.

 $\tau = R \cdot C$ Zeitkonstante.

• Der stationäre Wert wird nach ca. $3 \cdot \tau$ bis $5 \cdot \tau$ erreicht.

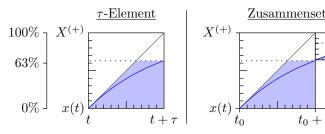
Graphische Konstruktion der Sprungantwort

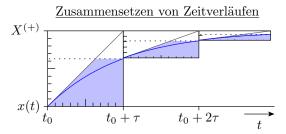
(Abschätzung der Ausgabe geschalteter RC-Glieder)

• Anstieg zum Zeitpunkt t

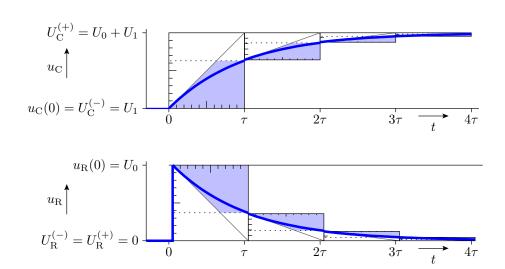
$$\frac{dx(t)}{dt} = \frac{X^{(+)} - x(t)}{\tau}$$

- Der Betrag des Anstiegs nimmt ab.
- Nach τ wird $1-e^{-1}\approx 63\%$ des Endwerts erreicht.



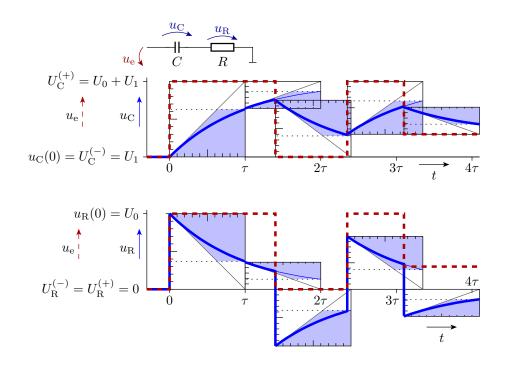


	$i\left(t ight)$	$u_{\mathrm{R}}\left(t\right)$	$u_{\mathrm{C}}\left(t\right)$
vor dem Sprung	$I^{(-)} = 0$	$U_{\rm R}^{(-)} = 0$	$U_{\mathcal{C}}^{(-)} = U_1$
Sprungmoment	$i\left(0\right) = \frac{U_0}{R}$	$u_{\mathbf{R}}\left(0\right) = U_{0}$	$u_{\mathbf{C}}\left(0\right) = U_{1}$
stat. nach Sprung	$I^{(+)} = 0$	$U_{\rm R}^{(+)} = 0$	$U_{\rm C}^{(+)} = U_0 + U_1$



Ausgabe für eine Folge von Schaltvorgängen

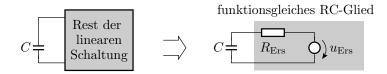
- Konstruktion $u_{\rm C}$: Anfangswert gleich Endwert im vorherigen τ -Element (Stetigkeit). $U_{\rm C}^{(+)}=u_{\rm e}$
- Konstruktion $u_{\rm R}$: Anfangswert resultiert aus der Maschengleichung $u_{\rm R}=u_{\rm e}-u_{\rm C}$. $U_{\rm R}^{(+)}=0$



1.3 RC-Glied, Abbildung auf

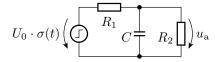
Transformation in ein geschaltetes RC-Glied

Alle linearen (oder abschnittsweise linearen) Schaltungen mit einer wesentlichen Kapazität und ohne (wesentliche) Induktivitäten lassen sich in ein funktionsgleiches RC-Glied umrechnen:

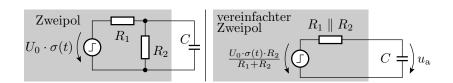


» Wesentlich« bedeutet, dass die Umladezeitkonstanten für alle anderen Kapazitäten und Induktivitäten viel keiner sind.

Belastetes RC-Glied



• Was bewirkt der Widerstand parallel zur Kapazität?



Der Widerstand parallel zur Kapazität bewirkt:

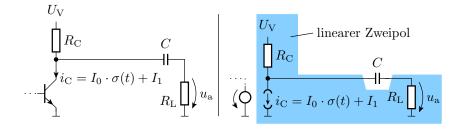
• eine Verringerung der Sprunghöhe:

$$u_{\mathrm{Ers}} = \frac{U_0 \cdot R_2}{R_1 + R_2} \cdot \sigma \left(t \right)$$

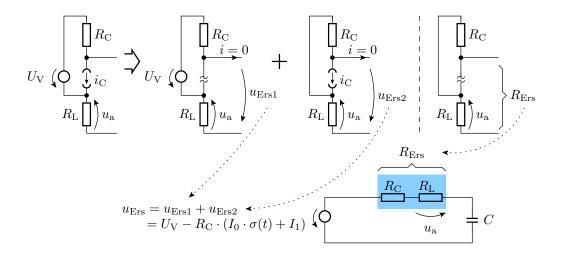
• eine Verkürzung der Zeitkonstante:

$$\tau = (R_1 \parallel R_2) \cdot C$$

Transistor als geschaltete Stromquelle



- Transistor durch lineare Ersatzschaltung ersetzen.
- Den blau unterlegten Zweipol in eine Reihenschaltung aus einer geschalteten Quelle, einer konstanten Quelle und einem Widerstand umrechnen.



Zeitkonstante:

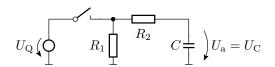
$$\tau = (R_{\rm C} + R_{\rm L}) \cdot C$$

Sprunghöhe von u_a :

$$u_{\mathrm{a}}\left(0\right) = -I_{0} \cdot \frac{R_{\mathrm{C}} \cdot R_{\mathrm{L}}}{R_{\mathrm{C}} + R_{\mathrm{L}}} = -I_{0} \cdot \left(R_{\mathrm{C}} \parallel R_{\mathrm{L}}\right)$$

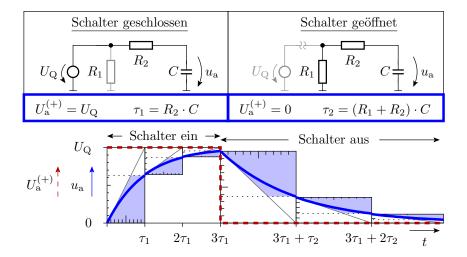
Abschnittsweise Annäherung durch geschaltete RC-Glieder

Die Abbildung auf ein geschaltetes RC-Glied ist auch für einzelne Arbeitsbereiche möglich.

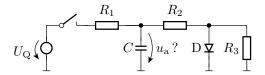


zwei lineare Arbeitsbereiche:

- Schalter geschlossen,
- Schalter geöffnet.



Gesucht: Zeitkonstanten und stationäre Endwerte



Arbeitsbereiche:

- A1 Schalter geschlossen, Diode gesperrt.
- A2 Schalter geschlossen, Diode leitend.
- A3 Schalter geöffnet, Diode leitend.
- A4 Schalter geöffnet, Diode gesperrt.

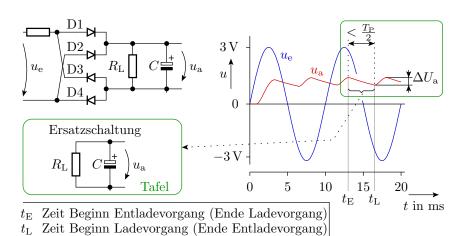
 $U_{\mathrm{a}.i}^{(+)},\ \tau_i$ für $R_1=R_2=R_3=R$ und $U_{\mathrm{Q}}=4\cdot U_{\mathrm{F}}\Rightarrow\mathrm{Tafel}$

Ausgabe für: $R_1 = R_2 = R_3 = R$; $U_Q = 4 \cdot U_F$

	A1	A2	A3	A4
Schalter	geschlossen	geschlossen	geöffnet	geöffnet
Diode	gesperrt	leitend	leitend	gesperrt
u_{a}	$\leq \frac{1}{2} \cdot U_{\mathrm{Q}}$	$> \frac{1}{2} \cdot U_{\mathrm{Q}}$	$> \frac{1}{2} \cdot U_{\mathrm{Q}}$	$\leq \frac{1}{2} \cdot U_{\mathrm{Q}}$
$ au_i$	$\frac{2}{3} \cdot R \cdot C$	$\frac{1}{2} \cdot R \cdot C$	$R \cdot C$	$2 \cdot R \cdot C$
$U_{\mathrm{a}.i}^{(+)}$	$\frac{2}{3} \cdot U_{\mathrm{Q}}$	$\frac{5}{8} \cdot U_{\mathrm{Q}}$	$\frac{1}{4} \cdot U_{\mathrm{Q}}$	0



Glättungskondensator hinter einem Gleichrichter



Entladefunktion:
$$u_{\rm a}\left(t\right) = u_{\rm a}\left(t_{\rm E}\right) \cdot e^{-\frac{t-t_{\rm E}}{R_{\rm L} \cdot C}}$$

Die Größe des Kondensators ergibt sich aus der zulässigen Restwelligkeit:

$$\Delta U_{\rm a.rel} = \frac{U_{\rm a.max} - U_{\rm a.min}}{U_{\rm a.max}}$$

Maximalwert: Beginn der Entladephase:

$$U_{\text{a.max}} = u_{\text{a}} (t_{\text{E}})$$

Minimalwert: Ende der Entladephase:

$$U_{\text{a.min}} = u_{\text{a}}(t_{\text{E}}) \cdot e^{-\frac{t_{\text{L}} - t_{\text{E}}}{R_{\text{L}} \cdot C}}$$

Relative Restwelligkeit:

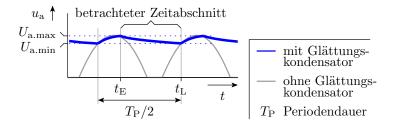
$$\Delta U_{\text{a.rel}} = 1 - e^{-\frac{t_{\text{L}} - t_{\text{E}}}{R_{\text{L}} \cdot C}}$$

Erforderliche Kapazität:

$$C \geq -\frac{t_{\rm L} - t_{\rm E}}{R_{\rm L} \cdot \ln\left(1 - \Delta U_{\rm a.rel}\right)}$$

$$C \ge -\frac{t_{
m L} - t_{
m E}}{R_{
m L} \cdot \ln\left(1 - \Delta U_{
m a.rel}\right)}$$

Worst Case: $t_{\rm L} - t_{\rm E} \leq \frac{T_{\rm P}}{2}$



Praktische Dimensionierung:

$$C \ge -\frac{T_{\rm P}}{2 \cdot R_{\rm L} \cdot \ln\left(1 - \Delta U_{\rm a.rel}\right)}$$

Beispiel

Wie groß ist der Glättungskondensator zu wählen:

- $R_{\rm L} \ge 100 \,\Omega$
- Wechselspannung mit einer Frequenz von 50 Hz
- maximale relative Restwelligkeit $\Delta U_{\text{a.rel}} \leq 10\%$

 $50 \text{ Hz} \Rightarrow \text{Periodendauer } T_{\text{P}} = 20 \text{ ms.}$

$$C \ge - \frac{20 \text{ ms}}{2 \cdot 100 \,\Omega \cdot \ln (1 - 10\%)} \approx 950 \,\mu\text{F}$$

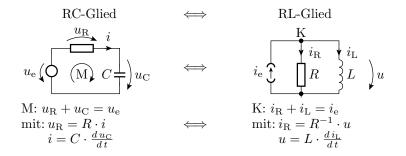
Der nächst größere verfügbare Standardwert ist $1000\,\mu\text{F}$.

1.4 Geschaltetes RL-Glied

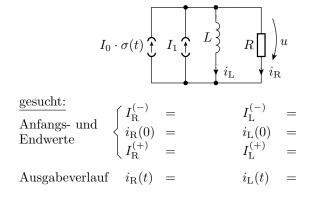
Duale Schaltung zum geschalteten RC-Glied

Vertauschen der Bedeutung von Strom und Spannung:

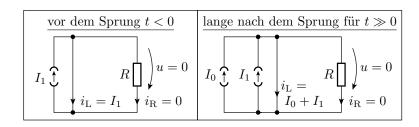
- Kapazität \Leftrightarrow Induktivität: $i = C \cdot \frac{du}{dt} \, \Rightarrow \, u = L \cdot \frac{di}{dt}$
- Widerstand \Leftrightarrow Leitwert: $u = R \cdot i \implies i = R^{-1} \cdot u$
- Spannungsquelle \Leftrightarrow Stromquelle
- Reihenschaltung \Leftrightarrow Parallelschaltung
- Masche \Leftrightarrow Knoten.



Grundschaltung eines geschalteten RL-Gliedes



Anfangs- und Endwert



	$u\left(t\right)$	$i_{\mathrm{R}}\left(t ight)$	$i_{ m L}\left(t ight)$
vor dem Sprung	$U^{(-)} = 0$	$I_{\mathbf{R}}^{(-)} = 0$	$I_{\rm L}^{(-)} = I_1$
Sprungmoment	$u\left(0\right) = I_0 \cdot R$	$i_{\mathbf{R}}\left(0\right) = I_{0}$	$i_{\rm L}\left(0\right) = I_1$
stationärer Wert nach dem Sprung	$U^{(+)} = 0$	$I_{\rm R}^{(+)} = 0$	$I_{\rm L}^{(+)} = I_0 + I_1$

Umladevorgang

$$i_{L}(n+1) = i_{L}(n) + \frac{\Delta t}{L} \cdot u(n)$$

$$u = R \cdot i_{R} \qquad i_{R}(n+1) = i_{R}(n) - \frac{\Delta t}{L} \cdot u(n)$$

$$I_{0} + I_{1}$$

$$(\leftarrow)$$

Anfangswerte:

• Induktivität: $i_{\rm L}\left(0\right)=I_{\rm L}^{\left(-\right)}=I_{\rm 1}$

• Widerstand: $i_{\rm R}\left(0\right) = I_0 + I_1 - i_{\rm L}\left(0\right) = I_0$

zeitdiskrete Berechnung:

$$i_{L}(n+1) = i_{L}(n) + \frac{R \cdot \Delta t}{L} \cdot i_{R}(n)$$

$$i_{R}(n+1) = i_{R}(n) - \frac{R \cdot \Delta t}{L} \cdot i_{R}(n) = i_{R}(n) \cdot \left(1 - \frac{R \cdot \Delta t}{L}\right)$$

$$\begin{split} i_{\mathrm{R}}\left(n+1\right) = i_{\mathrm{R}}\left(n\right) \cdot \left(1 - \frac{R \cdot \Delta t}{L}\right) \ \Rightarrow \ i_{\mathrm{R}}\left(n\right) = i_{\mathrm{R}}\left(0\right) \cdot \left(1 - \frac{R \cdot \Delta t}{L}\right)^{n} \\ \mathrm{mit} \ n = \frac{t}{\Delta t} \ , \ i_{\mathrm{R}}\left(0\right) = I_{0}, \ \frac{R \cdot \Delta t}{L} = -x \ \mathrm{und} \ x \rightarrow 0 \end{split}$$

• Stromverlauf Widerstand:

$$i_{R}(t) = I_{0} \cdot \lim_{\Delta t \to 0} \left(1 - \frac{R \cdot \Delta t}{L} \right)^{\frac{t}{\Delta t}} = I_{0} \cdot \left(\lim_{x \to 0} \left(1 + x \right)^{\frac{1}{x}} \right)^{-\frac{R \cdot t}{L}}$$
$$= I_{0} \cdot e^{-\frac{t}{\tau}}$$

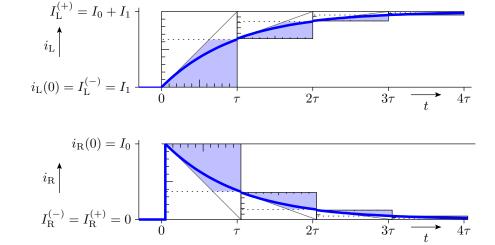
mit der Zeitkonstanten:

$$\tau = \frac{L}{R}$$

• Stromverlauf Induktivität:

$$i_{\mathrm{L}}\left(t\right) = I_{1} + I_{0} \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$

Konstruktion der Sprungantwort

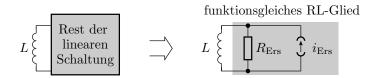


(Zusammensetzen aus τ -Elementen)

1.5 RL-Glied, Abbildung auf

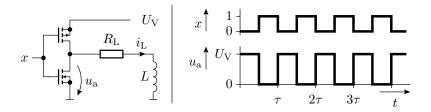
Transformation in ein funktionsgleiches geschaltetes RL-Glied

Alle linearen (oder abschnittsweise linearen) Schaltungen mit einer wesentlichen Induktivität und ohne (wesentliche) Kapazität lassen sich durch ein funktionsgleiches RL-Glied annähern:



» Wesentlich« bedeutet, dass die Umladezeitkonstanten für alle anderen Induktivitäten und Kapazitäten viel kleiner sind.

Ansteuerung eines Elektromagneten mit einem CMOS-Inverter



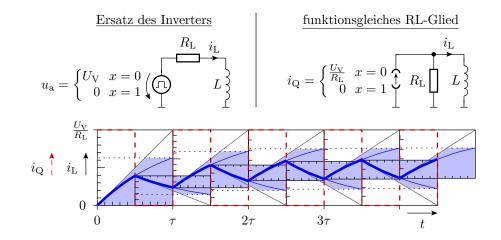
Wie lauten die Parameter des funktionsgleichen RL-Gliedes?

Welchen Signalverlauf hat der Strom $i_{\rm L}$?

Das Modell des CMOS-Inverters sei:

$$u_{\mathbf{a}} = \left\{ \begin{array}{ll} U_{\mathbf{V}} & \text{für} & x = 0 \\ 0 & \text{für} & x = 1 \end{array} \right.$$

Lösung

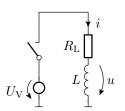


Abschnittsweise Annäherung durch geschaltete RL-Glieder

Die Abbildung auf ein geschaltetes RL-Glied ist auch für einzelne lineare Arbeitsbereiche möglich.

Zwei lineare Arbeitsbereiche:

- Schalter geschlossen,
- Schalter geöffnet.



Funktionsgleiches RL-Glied für Schalter geschlossen

$$U_{\mathbf{V}} \left(\begin{array}{c} R_{\mathbf{L}} & i_{1} \\ \\ \end{array} \right) U_{\mathbf{I}} \left(\begin{array}{c} U_{\mathbf{V}} \\ \\ \end{array} \right) \left(\begin{array}{c} I_{\mathbf{V}} \\ \\ \end{array} \right) \left(\begin{array}{c} I_{\mathbf{V}} \\ \\ \end{array} \right) U_{\mathbf{I}} \left(\begin{array}{c} I_{\mathbf{V} \\ \\ \end{array} \right) U_{\mathbf{I}} \left(\begin{array}{c} I_{\mathbf{V}} \\ \\ \end{array} \right) U_{\mathbf{I}} \left(\begin{array}{c} I_{\mathbf{V}$$

$$I_1^{(+)} = \frac{U_{\rm V}}{R_{\rm L}}$$
$$\tau_1 = \frac{L}{R_{\rm L}}$$

Funktionsgleiches RL-Glied für Schalter geöffnet

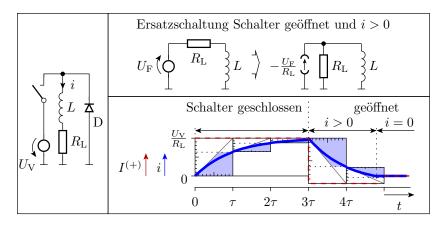
$$U_{V} \left(\begin{array}{c} & i_{2} \\ & \\ & \\ R_{S} \end{array} \right) U_{2} \left(\begin{array}{c} & i_{2} \\ & \\ & \\ R_{S} + R_{L} \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ & \\ R_{L} \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ & \\ R_{L} \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ & \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array} \right) U_{2} \left(\begin{array}{c} & U_{V} \\ & \\ \end{array}$$

Problem: Ausschaltmoment

$$i_{2}\left(0\right) = I_{1}^{(+)} = \frac{U_{V}}{R_{L}}$$
 $u_{V2}\left(0\right) = \lim_{R_{S} \to \infty} \left(\left(R_{L} + R_{S}\right) \cdot i_{2}\left(0\right) \right) \to \infty$

Bevor eine Spannung unendlich wird, gibt es einen dielektrischen Durchschlag (Funkenüberschlag am Schaltkontakt).

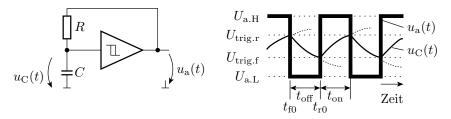
Freilaufdiode



1.6 RC-Oszillator

Einfacher RC-Oszillator

- Prinzip: Periodisches Umladen eines RC-Gliedes.
- Beispiel: Umladesteuerung mit einem Schwellwertschalter mit Hysterese.



Entladefunktion:

$$u_{\rm C}(t) = U_{\rm a.L} - (U_{\rm a.L} - U_{\rm trig.r}) \cdot e^{-\frac{t - t_{\rm f0}}{R \cdot C}}$$

Ladefunktion:

$$u_{\rm C}\left(t\right) = U_{\rm a.H} - \left(U_{\rm a.H} - U_{\rm trig.f}\right) \cdot e^{-\frac{t - t_{\rm r0}}{R \cdot C}}$$

Entladezeit t_{off} , in der die Ausgangsspannung »0« ist:

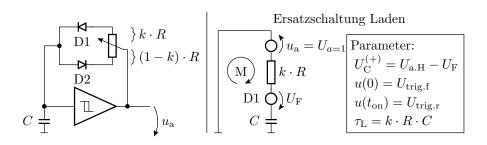
$$\begin{array}{lcl} U_{\rm trig.f} & = & U_{\rm a.L} - (U_{\rm a.L} - U_{\rm trig.r}) \cdot e^{-\frac{t_{\rm off}}{R \cdot C}} \\ t_{\rm off} & = & R \cdot C \cdot \ln \left(\frac{U_{\rm a.L} - U_{\rm trig.r}}{U_{\rm a.L} - U_{\rm trig.f}} \right) \end{array}$$

Die Aufladezeit t_{on} , in der die Ausgangsspannung »1« ist:

$$U_{\text{trig,r}} = U_{\text{a.H}} - (U_{\text{a.H}} - U_{\text{trig,f}}) \cdot e^{-\frac{t_{\text{on}}}{R \cdot C}}$$

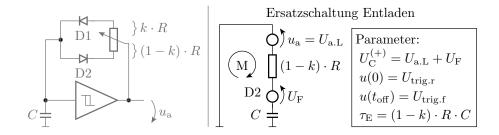
$$t_{\text{on}} = R \cdot C \cdot \ln \left(\frac{U_{\text{a.H}} - U_{\text{trig,f}}}{U_{\text{a.H}} - U_{\text{trig,r}}} \right)$$

Rechteckgenerator mit einstellbarer Pulsweite



Ladezeit:

$$t_{\rm on} = k \cdot R \cdot C \cdot \ln \left(\frac{U_{\rm a.H} - U_{\rm F} - U_{\rm trig.f}}{U_{\rm a.H} - U_{\rm F} - U_{\rm trig.r}} \right)$$



$$t_{\text{off}} = (1 - k) \cdot R \cdot C \cdot \ln \left(\frac{U_{\text{a.L}} + U_{\text{F}} - U_{\text{trig.r}}}{U_{\text{a.L}} + U_{\text{F}} - U_{\text{trig.f}}} \right)$$

Mit

$$\left(\frac{U_{\rm a.L}+U_{\rm F}-U_{\rm trig.r}}{U_{\rm a.L}+U_{\rm F}-U_{\rm trig.f}}\right) = \left(\frac{U_{\rm a.H}-U_{\rm F}-U_{\rm trig.f}}{U_{\rm a.H}-U_{\rm F}-U_{\rm trig.r}}\right) = konst.$$

ist die absolute Pulsbreite konstant:

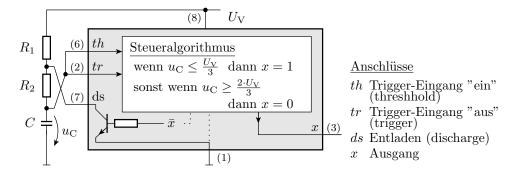
$$T_{\rm P} = t_{\rm on} + t_{\rm off} = R \cdot C \cdot \ln{(konst.)}$$

und die relative Pulsbreite gleich dem Einstellwert: $\eta_{\rm T}=k$

Rechteckgenerator mit einem NE555

NE555: Standardschaltkreis für die Lade-Entlade-Steuerung eines geschalteten RC-Gliedes bestehend aus

- zwei Komparatoren und einem
- Transistor zum Entladen der Kapazität des RC-Gliedes.



Aufladen über $R_1 + R_2$ Entladen über R_2



$$u_{\rm C}(t_{\rm on}) = \frac{1}{3} \cdot U_{\rm V} = U_{\rm CEX} - \left(U_{\rm CEX} - \frac{2}{3} \cdot U_{\rm V}\right) \cdot e^{-\frac{t_{\rm on}}{R_2 \cdot C}}$$

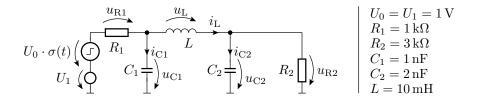
$$t_{\rm on} = R_2 \cdot C \cdot \ln\left(\frac{U_{\rm CEX} - \frac{2}{3} \cdot U_{\rm V}}{U_{\rm CEX} - \frac{1}{3} \cdot U_{\rm V}}\right) \approx R_2 \cdot C \cdot \ln\left(2\right)$$

$$u_{\rm C}(t_{\rm off}) = \frac{2}{3} \cdot U_{\rm V} = U_{\rm V} - \left(U_{\rm V} - \frac{1}{3} \cdot U_{\rm V}\right) \cdot e^{-\frac{t_{\rm off}}{(R_1 + R_2) \cdot C}}$$

 $t_{\text{off}} = \ldots = (R_1 + R_2) \cdot C \cdot \ln(2)$

1.7 Aufgaben

Aufgabe 6.1: Geschaltetes System



Schätzen Sie die Spannung u_{R2} für die stationären Zustände vor und nach dem Sprung $(t < 0, t \gg 0)$ und im Sprungmoment t = 0.

Lösung zu Aufgabe 6.1

 $u_{\rm R2}$ vor dem Sprung:

$$R_1 = 1 \,\mathrm{k}\Omega$$

$$0 \,\mathrm{V}\left(\begin{array}{c} & & \\ & \\ 1 \,\mathrm{V}\left(\begin{array}{c} & \\ & \\ \end{array}\right) & & \\ & & \\ & & \\ \end{array}\right) u_{\mathrm{C2}} \quad \begin{array}{c} & & \\ & \\ & \\ \end{array}\right) u_{\mathrm{R2}}$$

 $u_{\rm R2}$ im Sprungmoment:

 $u_{\rm R2}$ lange nach dem Sprung:

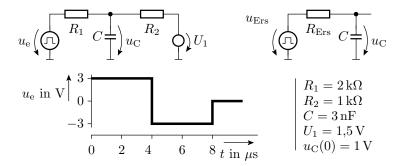
$$R_1 = 1 \,\mathrm{k}\Omega$$

$$1 \,\mathrm{V} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \, u_{\mathrm{C1}} = 0 \quad i_{\mathrm{C2}} \quad R_2 \\ 1 \,\mathrm{V} \left(\begin{array}{c} \\ \\ \end{array} \right) \, u_{\mathrm{R2}}$$

Aufgabe 6.2: Lineares System mit einer Kapazität

- 1. Zeichnen Sie die funktionsgleiche Grundschaltung eines geschalteten RC-Glieds.
- 2. Bestimmen Sie die Zeitkonstante τ .
- 3. Konstruieren Sie den Spannungsverlaufs von $u_{\rm C}$.

Lösung zu Aufgabe 6.2



Aufgabe 6.3: Abschnittsweise lineares geschaltetes System mit einer Kapazität

$$U_{\rm V} \left(\begin{array}{c} S = 0 \\ \\ \end{array} \right) \begin{array}{c} u_{\rm C} \\ \\ U_{\rm R_1} \end{array} \right) U_{\rm R_1} \quad R_2 \begin{array}{c} \\ \\ \\ \end{array} \right) U_{\rm R_2}$$

- 1. Welchen Arbeitsbereiche sind zu unterscheiden?
- 2. Entwickeln Sie für jeden Arbeitsbereich die Ersatzschaltung.
- 3. Bestimmen Sie für jeden Arbeitsbereich die Zeitkonstante.
- 4. Bestimmen Sie den stationären Wert, gegen den $u_{\rm C}$ in jedem Arbeitsbereich strebt.

Schalter aus, Diode gesperrt:

$$S = 0 \qquad U_{\rm C} \qquad D$$

$$C \qquad R_1 \qquad U_{\rm R1} \qquad R_2 \qquad U_{\rm R2}$$

Schalter aus, Diode Durchlassbereich:

$$S = 0 \qquad U_{\rm C} \qquad 0.7 \, \text{V}$$

$$U_{\rm V} \left(\begin{array}{c} C \\ C \\ C \end{array} \right) U_{\rm R1} \quad R_2 \left(\begin{array}{c} C \\ C \\ C \end{array} \right) U_{\rm R2}$$

Schalter ein, Diode gesperrt:

$$S = 1 \qquad U_{\rm C} \qquad D$$

$$C \qquad R_1 \qquad U_{\rm R1} \qquad R_2 \qquad U_{\rm R2}$$

Schalter ein, Diode Durchlassbereich:

$$S = 1 \qquad U_{\rm C} \qquad 0.7 \, \text{V}$$

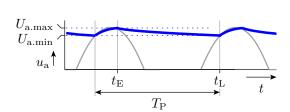
$$U_{\rm V} \left(\begin{array}{c} C \\ C \\ R_1 \end{array} \right) U_{\rm R1} \quad R_2 \left(\begin{array}{c} C \\ C \\ C \end{array} \right) U_{\rm R2}$$

Aufgabe 6.4: Berechnung des Glättungskondensators

$$U_0 \cdot \sin(2\pi \cdot f) \left(\begin{array}{c} D & i_a \le 100 \text{ mA} \\ \hline \\ L & \end{array} \right) u_a \qquad \left(\begin{array}{c} U_0 = 12 \text{ V} \\ \Delta U_{\text{a.rel}} \le 5\% \\ f = 50 \text{ Hz} \end{array} \right)$$

Wie groß muss der Glättungskondensator hinter der Diode sein, damit die relative Restwelligkeit der geglätteten Spannung nicht größer als 5% ist?

Lösung zu Aufgabe 6.4



Erforderliche Glättungskapazität:

$$C \ge -\frac{t_{\rm L} - t_{\rm E}}{R_{\rm L} \cdot \ln\left(1 - \Delta U_{\rm a.rel}\right)}$$

mit $\Delta U_{\rm a.rel} \leq 5\%,~R_{\rm L} \geq \frac{12\,{
m V}}{100\,{
m mA}} = 120\,\Omega$ und $t_{
m L}-t_{
m E} < 20\,{
m ms}$ genügt³:

$$C \ge -\frac{20 \,\mathrm{ms}}{120 \,\Omega \cdot \ln{(95\%)}} = 3250 \,\mu\mathrm{F} \Rightarrow 4700 \,\mu\mathrm{F}$$

Aufgabe 6.5: PWM mit Glättungsinduktivität

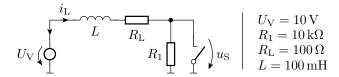
 $^{^3}$ Nächster Standardwert 4700 μF

Modell für den Inverter:

$$u_{\mathbf{y}} = \left\{ \begin{array}{ll} U_{\mathbf{V}} & x = 0 \\ 0 & x = 1 \end{array} \right.$$

- 1. Transformation in ein geschaltetes RL-Glied mit demselben Strom durch die Induktivität.
- 2. Wie groß ist die Zeitkonstante τ ?
- 3. Schätzen des Spannungsverlauf über dem Widerstand für das Zeitintervall $0 \le t \le 4 \,\mathrm{ms}$.

Aufgabe 6.6: Schalten induktiver Lasten



Wie groß ist die Spannung u_{S} über dem Schalter im Ausschaltmoment?

Lösung zu Aufgabe 6.6

• Schalter ein:

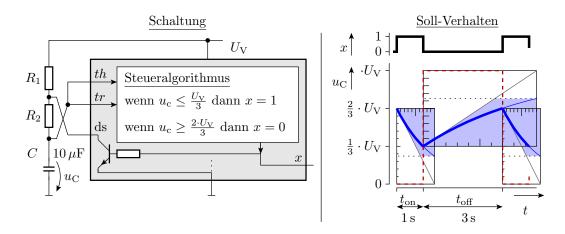
$$I_{\rm L}^{(+)} = \frac{U_{\rm v}}{R_{\rm L}} = \frac{10\,{\rm V}}{100\,\Omega} = 100\,{\rm mA}$$

• Schalter aus:

$$i_{\rm L}(0) = 100 \,\mathrm{mA}$$

 $u_{\rm R1}(0) = R_1 \cdot i_{\rm L}(0) = 1000 \,\mathrm{V}$

Aufgabe 6.7: Oszillator mit dem NE555



Wie groß müssen R_1 und R_2 sein?

Lösung zu Aufgabe 6.7

$$\begin{split} u_{\rm C}\left(t_{\rm on}\right) &= \frac{1}{3} \cdot U_{\rm V} &= U_{\rm CEX} - \left(U_{\rm CEX} - \frac{2}{3} \cdot U_{\rm V}\right) \cdot e^{-\frac{t_{\rm on}}{R_2 \cdot C}} \\ t_{\rm on} &= R_2 \cdot C \cdot \ln\left(\frac{U_{\rm CEX} - \frac{2}{3} \cdot U_{\rm V}}{U_{\rm CEX} - \frac{1}{3} \cdot U_{\rm V}}\right) \approx R_2 \cdot C \cdot \ln\left(2\right) \\ R_2 &\approx \frac{1 \, {\rm s}}{\ln(2) \cdot 10 \, \mu{\rm F}} = 144 \, {\rm k}\Omega \end{split}$$

$$u_{\rm C}\left(t_{\rm off}\right) = \frac{2}{3} \cdot U_{\rm V} = U_{\rm V} - \left(U_{\rm V} - \frac{1}{3} \cdot U_{\rm V}\right) \cdot e^{-\frac{t_{\rm off}}{(R_1 + R_2) \cdot C}}$$

$$t_{\rm off} = \dots = (R_1 + R_2) \cdot C \cdot \ln\left(2\right)$$

$$R_1 \approx \frac{3\,\mathrm{s}}{\ln(2) \cdot 10\,\mu\mathrm{F}} - R_2 = 2 \cdot R_2 = 288\,\mathrm{k}\Omega$$