
2.

Design of Digital Circuits(S2)

Chapter 1, Part 2

Modelling and Simulation
Section 1.3 Delay Time Tolerance

to 1.6 Sequential Circuits

Prof. G. Kemnitz

Institute of Informatics, Clausthal University of Technology
May 14, 2012

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 1/129

2.

Delay Time Tolerance
1.1 Glitches
1.2 Delay model
1.3 Delay tolerance region
1.4 Run Time Analysis
1.5 Exercises

Register
2.1 Sampling with Registers
2.2 VHDL sampling process
2.3 Processing + Sampling
2.4 Register transfer function
2.5 Clock skew
2.6 Exercises

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 1/129

2.
Asynchronous input

3.1 Sampling a single bit
3.2 Switch de-bouncing
3.3 Asynch. initialization
3.4 Parallel interface
3.5 Exercises

Sequential circuit
4.1 Finite state machine
4.2 Automaton ⇒ VHDL
4.3 System crash
4.4 Combination lock
4.5 Operation graph
4.6 Quadrature encoder

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 1/129

3. Delay Time Tolerance
4.7 Exercises

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 2/129

3. Delay Time Tolerance

Delay Time Tolerance

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 2/129

3. Delay Time Tolerance

Shortcomings of the hitherto Model

signals change continuing and do not jump

between two values they are for a short time invalid

one input change may cause multiple output changes

delay time is not known exactly / depends on temperature,
variation in the production process, ageing, ...

A digital circuit is only reliable, if it’s function does not depend
on timing parameters as long as they are within there range of
tolerance.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 3/129

3. Delay Time Tolerance 1. Glitches

Glitches

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 4/129

3. Delay Time Tolerance 1. Glitches

Glitches, Races

Glitches: short pulses, arising during signal processing and may
cause malfunctions

1
0

t
x

Possible Causes:

Race: almost simultaneous changes at multiple inputs and
different delay times.

td1 td1

glitch caused by a race

1
0

1
0

1
0

1
0

x2

z
td2td2

x1

x1

x2

td1

z

td2
td2

td2

& y

y

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 5/129

3. Delay Time Tolerance 1. Glitches

Hazard

also if only the value at one input changes, it may cause
multiple output changes
Cause: convergent signal flow (branching flow reuniting later
again)

Hazard

td1 td1 td1td1

td1

&
&

&
x1

x2
y2

td2td1

1
0

1
0

1
0

1
0

1
0

1
0

x2

x1 y1

td2

z1

td1

circuit

simplified

z2

td2 td2 td2

x1

z1

x2

y1

td2 td2

z2

y2

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 6/129

3. Delay Time Tolerance 1. Glitches

races and Hazards depends

less on the function, but more on the structure (slide before,
left)
the number and the length of the glitches depends on the
delay times and so on temperature, variation in the
production process, ageing, ...
in specifications for synthesis glitches are neither foreseeable
nor excluded

the up to now run time model is very imprecise due to
effects like glitches

Fact 1

Digital circuits should be designed so that possible glitches do
not effect the function.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 7/129

3. Delay Time Tolerance 2. Delay model

Delay model

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 8/129

3. Delay Time Tolerance 2. Delay model

Delay model of a signal assignment

Glitches multiply the signal events

Signal assignments eliminate short glitches; adjustable by
the delay model

signal name <= [DM] expression after td;
DM ⇒ transport|[reject tr] inertial]

DM -- delay model (optional)

td -- delay time

tr -- reject time

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 9/129

3. Delay Time Tolerance 2. Delay model

’0’

’1’

’0’

’1’

t in ns

’0’

’1’

’1’

’0’

t in ns

transport delay modelldefault delay model

0 10 20 30 40 50 0 10 20 30 40 50

after transporty <= x 10 ns; y <= x after 10 ns;

x

y

x

y

default delay model: new assignment deletes all pending
transactions

transport delay model: new assignment deletes only pending
transactions later than the new assigned transaction

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 10/129

3. Delay Time Tolerance 2. Delay model

’0’

’1’

’1’

’0’

t in ns

pending transactions, witch

will be deleted by a
subsequent assignment

0 10 20 30 40 50

delay model with reject time

executed normaly

the value will stay the same

reject inertialy <= 5 ns x after 10 ns;

x

y

are not scheduled because

ignores only pulses up to the width of the reject time tr

deletes all pending transactions for points of time later
td − tr except pending transactions assigning the same value
just before a new scheduled transaction

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 11/129

3. Delay Time Tolerance 2. Delay model

A simulation example

signal y1, y2, y3: NATURAL;
...
y1 <= 1 after 1 ns, 2 after 2 ns, 3 after 3 ns, 4 after 4 ns,
5 after 5 ns;
y2<=y1; y3<=y2; wait for 2.1 ns;

y1 <= 8 after 3 ns, 9 after 4 ns;
y2 <= transport 8 after 3 ns, 9 after 4 ns;
y1 <= reject 1.5 ns inertial 8 after 3 ns, 9 after 4 ns;
wait;

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 12/129

3. Delay Time Tolerance 3. Delay tolerance region

Delay tolerance region

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 13/129

3. Delay Time Tolerance 3. Delay tolerance region

Delay tolerance region

y

x

signal invalid

f(x) yx

th, td

th

f(wi+1)

wi+1

td

t

wi

f(wi)

th hold time, time the old output value stay valid after an
input transaction
td delay time, maximum time between an input transition to
a valid value and the corresponding output transition

invalid:

value in the forbidden range; point of transition time
unknown; potential glitch

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 14/129

3. Delay Time Tolerance 3. Delay tolerance region

Description in VHDL

x

y

f(x) yx

th, td

wi+1wi

f(wi+1)f(wi)

tdth

signal invalid

process(x)

begin

if input before valid then

y <= invalid after th;

end if;

if new input value valid then

y <= transport f(x) after td;(1)

end if;

end process;
(1) transport model, so that the pending transaction to invalid will not
be deleted

abbreviation

y <= invalid after th, f(x) after td;

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 15/129

3. Delay Time Tolerance 3. Delay tolerance region

Simulation of an inverter

signal x, y: STD LOGIC;

...

x <= ’0’ after 0.5 ns, ’X’ after 4 ns, ’1’ after 4.5 ns,

’X’ after 8 ns, ’0’ after 9.5 ns, ’1’ after 12 ns,

’0’ after 12.5 ns;

y <= ’X’ after 1 ns, not x after 2 ns;

1
0y

0 2 4 6 8 10

th
td

tsim

1
0x

not initialized (U) invalid (X)

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 16/129

3. Delay Time Tolerance 3. Delay tolerance region

1
0y

0 2 4 6 8 10

th
td

tsim

1
0x

not initialized (U) invalid (X)

process �x-assignment� will only be executed at the begin
of the simulation; schedules multiple transactions
Process �y-assignment� also restarts with each transaction
of x ; assigns two transactions
default delay model, each new assignment deletes all
pending transaction
in case of pending transaction to �X� the new assignment
of �X� takes the transaction time of the pending
transaction to �X�

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 17/129

3. Delay Time Tolerance 3. Delay tolerance region

Circuit with multiple gates th, td1

th, td1

th, td2&
G1

G2

G3z2

z1

&
x4

x3

x2

x1

≥1 y

signal x1, x2, x3, x4,

z1, z2, y: STD LOGIC;

constant th: DELAY LENGTH:= 500 ps;

constant td1: DELAY LENGTH:= 1 ns;

constant td2: DELAY LENGTH:= 2 ns;

...
G1:z1<= ’X’ after th, x1 and x2 after td1;

G2:z2<= ’X’ after th, x3 and x4 after td1;

G3: y<= ’X’ after th, z1 or z2 after td2;

input process: process begin

wait for 1 ns; x3<=’1’;
wait for 2 ns; x1<=’1’; x4<=’1’;
wait for 4 ns; x2<=’1’; wait for 3 ns; x4<=’0’;
wait for 2 ns; x3<=’0’; wait;

end process;

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 18/129

3. Delay Time Tolerance 3. Delay tolerance region

G1:z1<= ’X’ after th, x1 and x2 after td1;

G2:z2<= ’X’ after th, x3 and x4 after td1;

G3: y<= ’X’ after th, z1 or z2 after td2;

x1

x2

x3

x4

z1

z2

y

0 5 10 15 20

0
1

0
1

0
1

0
1

0
1

0
1

0
1

invalid (X)

tsim

without thnot initialized (U)

the output signal is in the example most time invalid
invalid means �not necessary correct�

circuits processing invalid signal values may operate right,
but reliable; difficult to debug

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 19/129

3. Delay Time Tolerance 4. Run Time Analysis

Run Time Analysis

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 20/129

3. Delay Time Tolerance 4. Run Time Analysis

Run Time Analysis

Calculation of the hold and delay time of the complete circuit
from the timing parameters of the subcircuits

x5

x4

x3

x2

x1

td3 = 2ns
th3=1ns

td4=3ns
th4=1ns

td1=2ns
th1=1ns td5 = 2ns

th5 = 1ns

G3

G4
y2

&

&

td2=3ns
th2=1ns

&
G1

G2
&

G5
& y1

path
∑

th.i
∑

td.i

G1-G3-G5 3 ns 6 ns

G2-G3-G5 3 ns 7 ns

G2-G4-G5 3 ns 8 ns

G2-G4 2 ns 6 ns

G4-G5 2 ns 5 ns

G4 1 ns 3 ns

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 21/129

3. Delay Time Tolerance 4. Run Time Analysis

summing up the hold and delay times along the path’s

the hold time of the complete circuit is that of the shortest
path

the delay time of the complete circuit is that of the path
with the longest delay

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 22/129

3. Delay Time Tolerance 4. Run Time Analysis

Algorithm for Large Circuits

the number of path’s grows exponentially; better algorithm with
linear order:

repeat for each signal group starting from the inputs

calculate hold and delay time to it

x5

x4

x3

x2

x1

td3 = 2ns
th3=1ns

td4=3ns
th4=1ns

td1=2ns
th1=1ns td5 = 2ns

th5 = 1ns

G3

G4
y2

&

&

td2=3ns
th2=1ns

&
G1

G2
&

G5
& y1

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 23/129

3. Delay Time Tolerance 4. Run Time Analysis

td.2

th.4

th.2

th.1

td.1

td.3

td.4

th.5

th.3

group
signal

td.5

0

9
8

7
6

1

2
3

5
4

max(tdS.5, Td.6)

tdS.0 + td.2

tdS.3 + td.3
td.2

tdS.2 + td.4

tdS.7 + td.5
max(tdS.6, tdS.9)

tdS.i

0 (Definition)

tdS.0 + td.1

max(tdS.1, tdS.2)
thS.0 + th.2

min(thS.1, th.2)

thS.3 + th.3
thS.0

thS.0 + th.4
min(thS.5, th.6)

thS.7 + th.5
min(thS.6, thS.9)

thS.i

0 (Definition)

thS.0 + th.1

linear order ⇒ also for large circuits

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 24/129

3. Delay Time Tolerance 5. Exercises

Exercises

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 25/129

3. Delay Time Tolerance 5. Exercises

Aufgabe 1.9: Hazard

0
1

0 2 4 6 8 10
tsim

0
1

0
1x0

x2

x1

z0 4 ns

2 ns

==

&
1,5 ns

& y

G2

G4

G3

G1

x0

x1

x2

1 ns z1

z2

VHDL description of the circuit with concurrent signal
assignments
VHDL description of the input assignments
calculate the signal forms of z1, z2 and y
What signal transactions causes a glitch?

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 26/129

3. Delay Time Tolerance 5. Exercises

Aufgabe 1.10: VHDL delay models

signal y: STD LOGIC;
...

--- nebenläufige Zuweisungen
y <= ’0’, ’X’ after 3 ns, ’1’ after 7 ns, ’X’ after 8 ns,

’1’ after 10 ns, ’0’ after 11 ns, ’1’ after 13 ns,
’1’ after 15 ns, ’X’ after 18 ns, ’0’ after 20 ns;

wait for 5 ns;
y <= ’1’ after 12 ns;

--- y <= transport ’1’ after 12 ns;

--- y <= reject 8 ns inertial ’1’ after 12 ns;

With pending transactions are deleted, if the second assignment
uses

1 the default delay model
2 the transport model
3 the inertial model with 8 ns reject time?

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 27/129

3. Delay Time Tolerance 5. Exercises

Aufgabe 1.11: Run time analysis

--- Vereinbarungsteil der Entwurfseinheit
signal x: STD LOGIC VECTOR(4 downto 0):=”01011”;
signal z: STD LOGIC VECTOR(4 downto 0);
signal y: STD LOGIC;

--- Anweisungsteil der Entwurfseinheit
G1: z(0) <= ’X’ after 4 ns, x(0) and x(1) after 8

ns;

G2: z(1) <= ’X’ after 5 ns, x(2) or x(3) after 6 ns;

G3: z(2) <= ’X’ after 3 ns, z(0) or z(1) after 6 ns;

G4: z(3) <= ’X’ after 4 ns, z(1) and x(3) after 7

ns;

G5: z(4) <= ’X’ after 3 ns, z(3) or x(4) after 5 ns;

G6: y <= ’X’ after 5 ns, z(2) or z(4) after 7 ns;

1 Draw the signal flow plan with hold and delay times.
2 Calculate the hold and the delay time of the complete

circuit.
Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 28/129

4. Register

Register

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 29/129

4. Register

Period of validity and sampling

≥1
&z3

z1
z2

0

1
0

1z3

z4

0

1

1z1

z2 0

period of validity at the begin of the path
periode of validity at the end of the pathtGE

tGA

th3, td3
th1, td1

z4≥1

th2, td2

0
0

td3td1 td2 tGE

th2 th3tGA th1

1

period of validity a the output:

tGA = tGE +

3∑
i=1

thi −
3∑

i=1

tdi

decreases with the length of the processing chain
broadening of the period of validity ⇒ sampling (register)

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 30/129

4. Register 1. Sampling with Registers

Sampling with Registers

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 31/129

4. Register 1. Sampling with Registers

Sampling with Registers

ts, tn

tTyp tTyp
x

T

T

x

thr
tdr

tn

w1w0

ts

w2

w2w1

x’

thr, tdr

x’

ts tn

register: samples input data with the active clock edge1, else
store
ts set-up time, time input data must be stable before the
active clock edge
tn input hold time, time, the input data mus be stable after
the active clock edge; will be often neglected
thr, tdr hold and delay time of the register
tTyp: data type, �STD LOGIC�, vector type of is, ...

1rising, falling edge or both

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 32/129

4. Register 1. Sampling with Registers

Clock Signal

ts, tn

tTyp tTyp
x

T

T

x

thr
tdr

tn

w1w0

ts

w2

w2w1

x’

thr, tdr

x’

ts tn

Clocks are special signals, switching periodically between
�0� and �1� and are used for time adjustment of data signal
transitions

modelled as ideal binary signals (without �X�)
the delay tolerance region is described by the register
parameters
clock signals must be exactly in time and glitch free; require
special circuitry

active clock edge: rising, falling, both
Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 33/129

4. Register 1. Sampling with Registers

Notation for sampled signals

Sampling is a basic function of digital circuits; definition of a
notation:

the signal sampled by a signal x will be named x+ (following
state) (in VHDL x next)

the sampled signal of x will be called x’, the sampled signal
of x’ will be called x” etc. (in VHDL x del, x del2 etc.)

(x next) (x del) (x del2)

x+ x x’ x”

T

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 34/129

4. Register 2. VHDL sampling process

VHDL sampling process

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 35/129

4. Register 2. VHDL sampling process

VHDL sampling process

behaviour of a sampling process

sampling process: process(T)

begin

if active clock edge then

output signal <= invalid after th,

input value after td;

check input setup time

check input hold time

end if;

end process;

additional required description means:

case distinction
check for clock edges (signal attribute)
instructions to control input setup and hold conditions

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 36/129

4. Register 2. VHDL sampling process

signal attribute, description means to check additional signal
features:

signal s: tTyp;

constant t: DELAY LENGTH;

s’EVENT → BOOLEAN True, if the process has been
waked-up by a transition of s

s’STABLE(t) → BOOLEAN True, true if there was no transition
since time t

s’LAST EVENT →
DELAY LENGTH

time since the last transition

s’LAST VALUE → tTyp value before the last transition of s

s’DELAYED(t) → tTyp the by t delayed signal of s

. . .

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 37/129

4. Register 2. VHDL sampling process

functions to check, whether a process was awakened be an
active edge (Package IEEE.STD LOGIC 1164):

function RISING EDGE(signal T: STD LOGIC) return BOOLEAN is
begin
return T’EVENT and T=’1’;

end function;

function FALLING EDGE(signal T: STD LOGIC) return BOOLEAN is
begin
return T’EVENT and T=’0’;

end function;

control input setup and hold conditions:

s’STABLE(t); s’LAST EVENT

binary case distinction for control flow:

if b then

{sequential statement;}

end if;

(b – condition of type BOOLEAN, e.g. �RISING EDGE(T)�
Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 38/129

4. Register 2. VHDL sampling process

control instructions:

assert b [report m] [severity sl];

(m – additional message text; sl – severity level; data type:

type SEVERITY LEVEL is (

NOTE,

WARNING,

ERROR,

FAILURE);

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 39/129

4. Register 2. VHDL sampling process

Simple register model
tdr

x

y

T

w1 w3

w0 w1 w2

td

w2

y
tTyptTyp

x

T
signal T: STD LOGIC;

signal x, y: tTyp;

constant tdr: DELAY LENGTH:=...;

...

process(T)

begin

if RISING EDGE(T) then

y <= x after tdr;

end if;

end process;

process with only the clock in the sensitivity list
output assignment only when a rising edge
RISING EDGE(T) ⇒ �T’EVENT and T=’1’�; if the process
awakens �T’EVENT� is �TRUE�; except when the simulation
starts

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 40/129

4. Register 2. VHDL sampling process

A complete model ts, tn

tn

ts

sample window
invalid

T

x

thr
tdr

tn

w1w0

ts

w2

w2w1

T

x

thr, tdr

x’
tTyp tTyp

x’

signal valuewi

register parameter:

signals:

input signal
clock

x
T

x’ (x del) sampled
(output) signal

setup time
input hold time
(output) hold time
delay timetdr

thr

type data signaltTyp

ts tn

process(T)
begin
if RISING EDGE(T) then
if x’LAST EVENT>ts then
y<= invalid after thr, x after tdr;
wait for tn;

if x’LAST EVENT<tn then
y <= invalid;

report "input hold cond. violated"

severity WARNING;

end if;
else
y <= invalid after thr;

report "setup cond. violated"

severity WARNING;

end if;
end if;

end process;
Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 41/129

4. Register 2. VHDL sampling process

No input hold time check (tn = 0) and warnings

process(T)
begin
if rising edge(T) then
if x’last event>ts then
y <= invalid after thr, x after tdr;

else
y <= invalid after thr;

end if;
end if;

end process;

This will be the simulation model of a register generally use
in the following.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 42/129

4. Register 3. Processing + Sampling

Processing + Sampling

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 43/129

4. Register 3. Processing + Sampling

Processing and sampling of the results

ts

ts

required period
of validity

T

x

y

f(x)x

thf , tdf

wi

thf
tdf + ts

f(wi)

f(wi)f(wi−1)

tdr
thr

T

thr, tdr

y
y+

y+

process(T)
begin
if RISING EDGE(T) then
if x’DELAYED(thf)’LAST EVENT>tdf+ts-thf then

y<= invalid(1) after thr, f(x) after tdr;

else
y<= invalid(1) after thr;

end if;
end if;

end process;
(1) für STD LOGIC ’X’; für STD LOGIC VECTOR ”XX...X”

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 44/129

4. Register 3. Processing + Sampling

Processing of sampled signals

ts

ts

y

T

x

f(wi)f(wi−1)

T

thr, tdr

f(x)

thf , tdf

y

wiwi−1

thf
tdf

tdf
thf

x’
x

x’

wi

process(T)
begin
if RISING EDGE(T) then
if x’LAST EVENT>ts then
y<= invalid after thr+thf,

f(x) after tdr+tdf;

else
y<= invalid after thr+thf;

end if;
end if;

end process;

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 45/129

4. Register 4. Register transfer function

Register transfer function

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 46/129

4. Register 4. Register transfer function

Register transfer function

combinatorial function block framed by registers

thr, tdrthr, tdr

x’, y’
TP

sampled values, in the VHDL decription x del, y del

y

TP

w2

tdf

tdr
thr

tdr
thr

w1x’

thfthf
tn

y = f(x)

ts, tn

x y’

T

TP

ts, tn

x’ y

ts

thf , tdf

T

duration of the clock cycle
f(w1)f(w0)

w0

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 47/129

4. Register 4. Register transfer function

thr, tdrthr, tdr

x’, y’
TP

sampled values, in the VHDL decription x del, y del

y

TP

w2

tdf

tdr
thr

tdr
thr

w1x’

thfthf
tn

y = f(x)

ts, tn

x y’

T

TP

ts, tn

x’ y

ts

thf , tdf

T

duration of the clock cycle
f(w1)f(w0)

w0

Requirements to sample valid output values

TP ≥ TPmin = tdr + tdf + ts

tn ≤ tnmax = thr + thf

Both requirements can be checked with a run time analysis
(befor simulation)
Simulation model can be greatly simplified

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 48/129

4. Register 4. Register transfer function

thr, tdr

f(...)

TP

yx’
x

T

ts, tn

y’

Processing: process(T):

begin

if RISING EDGE(T) then
if x’LAST EVENT>ts then
x del <= x; else x <= invalid ;

end if;

y del <= invalid after th, f(x del) after td;

end if;

end process;

Simplification to multiple processest

undelayed assignment to x’ (x del)
no check of setup conditions for y

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 49/129

4. Register 5. Clock skew

Clock skew

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 50/129

4. Register 5. Clock skew

Clock skew

sampling window

ts

t∆T12

y
f(x’)

x′ y′

ts, tn

delay
T2T1

x

thr, tdr

a)

sampling edge of input register

sampling edge of output register
0

t∆T12

T1

T2

y

b)

TP

tdr

tdf

thr

thf

x′

thf , tdf

t

tn

Clock skew t∆T12: time offset between active clock edges
between input and output registers
intended to increase the max. clock frequency
unintended by different delays

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 51/129

4. Register 5. Clock skew

sampling window

ts

t∆T12

y
f(x’)

x′ y′

ts, tn

delay
T2T1

x

thr, tdr

a)

sampling edge of input register

sampling edge of output register
0

t∆T12

T1

T2

y

b)

TP

tdr

tdf

thr

thf

x′

thf , tdf

t

tn

Requirements for correct sampling:

tdr + tdf + ts ≤ TP + t∆T12

thr + thf ≥ tn + t∆T12

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 52/129

4. Register 5. Clock skew

Requirements for correct sampling:

tdr + tdf + ts ≤ TP + t∆T12

thr + thf ≥ tn + t∆T12

Maximum allowed clock skew:

t∆T12 ≤ thr + thf − tn
Maximum allowed clock frequency:

fT ≤
1

tdr + tdf + ts +−tn − (thr + thf)

Reciprocal value of the difference of the sum of the delay,
the input hold, the setup and the output hold time.
Circuits with a large hold time may be clocked faster with
an appropriate clock skew then without

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 53/129

4. Register 5. Clock skew

Summary

Calculation results must be sampled within their periods of
vality by registers.
Registers are discribed by sampling processes. In a sampling
process only the clock is in the sensitivity list. Sampling
with the active clock edge. Setup or input hold condition
violations invalidate register data.
The description of the the combinatirial circuit before or
after the register may include in the sampling processes;
simplify simulation.
Framing by an input and an output register; timing
condition check by run time analysis; highly simplified
simulation model.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 54/129

4. Register 6. Exercises

Exercises

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 55/129

4. Register 6. Exercises

Aufgabe 1.12: Desciption by a sampling process

thr, tdr

y+

ts

sampling window
invalid

t3
t4

t5

x1x0

y+

y

t6
t7

t1
t2

x2

T

a)

G1
G2

& y

T
Reg

=1
x0

x1

x2

th1, td1 th2, td2

b)

signal x0, x1, x2, y next, T, y: STD LOGIC;

Describe t1 to t7 as funcions of the values of th.., td... etc.
Describe the whole circuit as a sampling process

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 56/129

4. Register 6. Exercises

Aufgabe 1.13: Register transfer function

x+ 1

xn−1

0

1

n

nn

x

n
n

y+

tdr = 1ns

T

td1 = 0,5 ns td2 = n · 1 ns td3 = 2ns
ts = 0,5 ns

Determin:

maximum allowed clock frequency as a function of the bit
width n?
maximum allowed clock frequency for n = 16?

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 57/129

4. Register 6. Exercises

Aufgabe 1.14: Clock skew

thr = 0ns
tdr = 1ns

clock 1

x y

clock 2

y = f(x)

thf = 5ns
tdf = 11ns

tn = 0
ts = 2ns

In which interval of time the clock skew has to be, so that for a
clock frequncy fClk = 100 MHz the setup an the input hold
conditions are met?

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 58/129

5. Asynchronous input

Asynchronous input

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 59/129

5. Asynchronous input

asynchronous: �without synchronisation�

the time delay between input change and the active clock
edge is a transactions is a uniformly distributed random
variable in the range:

txT ∈ {0, TP}

also asyncronous signals may only be evaluated within their
periods of vality

special circuit solutions and VHDL descriptions are required

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 60/129

5. Asynchronous input 1. Sampling a single bit

Sampling a single bit

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 61/129

5. Asynchronous input 1. Sampling a single bit

Sampling of binary input signals

a single bit has, even if invalid during the sampling period,
has the sampling value �0� or �1�; sampled signals are free
of glitches and stable during the clock period

T

x

x’

x′x

ts thr, tdr

T

ts ts ts ts

txT TP txT

tdr
thr

tdr
thr

tdr
thr

tdr
thr

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 62/129

5. Asynchronous input 1. Sampling a single bit

Design error: Processing of unsampled inputs

x

y

y′

a a′

T

x f(..)
y

th, td

w1 w2

f(w1, 1) f(w2, 1)f(w1, 0)

f(w0, 0) XX f(w2, 1)

y′

ts th

ts

thth
tdtd td

a

T

a

T

(processed) asynchronous inputs are withe a sertain
probability invalid during the sample period
the sampled value of �invalid� is a random value in
a′ ∈ {0, 1}n, mostly wrong, often anallowed, unpredictable
behaviour
Workaround: additional bitwise sampling of the asyncronous
input

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 63/129

5. Asynchronous input 2. Switch de-bouncing

Switch de-bouncing

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 64/129

5. Asynchronous input 2. Switch de-bouncing

De-bouncing of signals from switches and keys

typ. 1 bit input element: mechanical switch or key
Bouncing: multiple on and off by mechanical vibrations
de-bouncing: sampling with a period larger than the
bouncing time
Edge detection: sampling twice, check for difference

&

circuit to detect
falling edges

tP

tPr

1011 00 01 11

T

x

x’

x”

x”x’

x”x’
y

x

T

tPr maximum bouncing time

sample periodtP > tPr

Take care, without unreliable sampling!

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 65/129

5. Asynchronous input 2. Switch de-bouncing

x

T
x’ x”

y
&

th, td

y’

(clock)

signal T, x, x del, x del2, y:

STD LOGIC;

...

process(T)
begin
if RISING EDGE(T) then

if x=’1’ then x del<=’1’;
else ’0’; end if;
x del2 <= x del;

end if;
end process;
y <= ’X’ after th not x del and x del2 after td;

Sampling x: �’1’7→’1’, sonst 7→’0’� (template for
�sampled value∈ {0, 1}
combinatorial output, shortly invalid after each active clock
edge; may be glitches
to use y as a clock, sample again

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 66/129

5. Asynchronous input 3. Asynch. initialization

Asynch. initialization

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 67/129

5. Asynchronous input 3. Asynch. initialization

Register with initialization input

I

x yx

I

T

signal x, y: tTyp;

signal T, I: STD LOGIC;

constant aw: tTyp:=...;

...

process(T, I)

begin
if I=’1’ then
y <= aw;

elsif RISING EDGE(T) then
y <= x;

end if;
end process;

register stage before initialization ”UU...U”
(uninitialized/invalid)
�aw� any valid value

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 68/129

5. Asynchronous input 3. Asynch. initialization

Potential malfunction

initialization pulse to short

0
1

0
1

w1 w2w0

w1 w2

T

x′
x

I

f()

tsthf , tdfthr, tdr

yx’I

x

I

x

T
≪ TP

y’

Even if the input register is initialized correctly, duration ist
to short, in witch the initial value is stable at the register
output. So the subsequent register may sample an invalid
signal.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 69/129

5. Asynchronous input 3. Asynch. initialization

Register of master-slave flipflops:

master takes over before the active clock edge

slave takes over after the active clock edge

I initialization of the slave

0
1

0
1

0
1

0
1

w2w1w0

w2w1

T

I

x

x′

in the slave phase end of the slave phase
deactivation of I at thedeactivation of I

≪ TP

w0

w1 w2

T

I

x

x′ w2

invalid instead of w1

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 70/129

5. Asynchronous input 3. Asynch. initialization

Robust initialization

≥1

T

I

button

sampling

UVreset

reset circuit
power-on

signal T, I, I POR,

I Tast: STD LOGIC;

...

I POR <= ’1’, ’0’

after 1 ms;

process(T)

begin

if RISING EDGE(T) then

if I POR=’0’ or I Tast=’0’ then I<=’1’;
else I<=’0’;
end if;

end if;

end process;

power-on reset: after applying voltage active for
tPOR ≈ R · C
sampling to align to the active clock edge

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 71/129

5. Asynchronous input 4. Parallel interface

Parallel interface

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 72/129

5. Asynchronous input 4. Parallel interface

Asynchronous parallel interface

the receiver of asynchronous parallel data need additional
information about the period of validity, e.g. the clock of the
transmitter
in the example x should be valid from each edge of Tx for a
duration of tg

x
w1 w2 w3 w4 w5

G

G

Tx’
Tx

=1

x’

sampled input signal

send clock
asynchronous input signalx

Tx

G
x’

validation signal for x’

T

T

Tx”

TPtg

w2w1w0 w3 w4 w5

w0

system clock

x

Tx

T

x’

Tx’

Tx”

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 73/129

5. Asynchronous input 4. Parallel interface

x
w1 w2 w3 w4 w5

G

G

Tx’
Tx

=1

x’

sampled input signal

send clock
asynchronous input signalx

Tx

G
x’

validation signal for x’

T

T

Tx”

TPtg

w2w1w0 w3 w4 w5

w0

system clock

x

Tx

T

x’

Tx’

Tx”

all input signals sampled with a period TP < tg
the clock is sampled twice
sampled data are valid if the sampled transmitter clock
differs from the twice sampled

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 74/129

5. Asynchronous input 4. Parallel interface

x

SYNC y

G

x

Tx

symbol

f(...)
Tx’ =1

T
Tx

x’

G

synchronization circuit

signal T, Tx, Tx del, Tx del2, G: STD LOGIC;

signal x, y: STD LOGIC VECTOR(...);

...
process(T)
begin
if RISING EDGE(T) then
y<= x;

if Tx=’1’ then tx del <= ’1’;

else tx del <= ’0’;

end if;
tx del2 <= Tx del;

end if;
end process;
G <= Tx del xor Tx del2;

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 75/129

5. Asynchronous input 4. Parallel interface

Summary

sample asyncronous signals before processing

in addion de-bounce signals from mechanical switches;
sample period larger bouncing time

sample asynchronous initialization signals

asynchronous parallel input signals needs additional validity
information; sampling by a synchronization circuit

forgotten sampling causes non-recurring malfunctions;
difficult to locate; reduced reliability

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 76/129

5. Asynchronous input 5. Exercises

Exercises

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 77/129

5. Asynchronous input 5. Exercises

Aufgabe 1.15: Adding up asynchronous input

UV power supply

adder

(signal value ’1’)

(signal value ’0’)
ground

· · ·

T

+

UV

xn−1

x1

x0
+

Under which operational conditions the circuit may have
non-recurring malfunctions?

How the circuit has to be changed to work reliable?

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 78/129

5. Asynchronous input 5. Exercises

Aufgabe 1.16: Asynchronous parallel transmission

During an asynchronous transmission data signal x should be
valid if the also transmitted validity signal g is g 6= 0:

0g

x wi+1wi

tg1

TPg

tgx
tg0

1

periodic time of gTPg

tgx

min. time g = 1tg1

min. time g = 0tg0

max. time g =X

What clock frequency is required in the receiver circuit to
sample x and g2?
How the validity signal in the receiver has to be generated,
so that it is exactly valid for one receiver clock for each
sampled data word?

2Duration of g = 0 and g = 1 should be equal.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 79/129

5. Asynchronous input 5. Exercises

Aufgabe 1.17: Hand clock

Design a circuit with an input button x, en input clock T
(fT = 50 MHz) and internal clock divider to produce a
de-bounced hand clock without glitches:

entity HandClock is
port(x: in std logic; -- input signal from button

T: in std logic; -- input clock, 50MHz

Tout: out std logic); -- hand clock, de-bounced, no glitches

end entity;

Maximum bouncing time 20 ms
Minimum activation time 100 ms.
Divider proportion for the clock should be a power of two.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 80/129

5. Asynchronous input 5. Exercises

1 What is the advantage of a power of two for the divider
proportion? (Note, the circuit has no initialization input.)

2 What values are allowed for the divider proportion?

3 Draw the whole circuit with the clock divider as a black box.

4 Describe the complete circuit in VHDL.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 81/129

6. Sequential circuit

Sequential circuit

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 82/129

6. Sequential circuit

Sequential circuit

I

1
0I
1

0

state register

optinal input and output register

I
x

y’

y

Y0 Y1

Y0 Y1 Y2

fs(x, s)

fy(x, s)

x

y’

s

x+

I+
y

T

th, td

S0

X1

S1

X2

S1

td
th

S2

s

s+

x X0

S0

T

combinatorial circuit

value valid
point of sample time

sequential: in consecutive steps
Calculation of the circuit outputs in multiple time steps
combinatorial circuit + registers for sampling and storing

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 83/129

6. Sequential circuit 1. Finite state machine

Finite state machine

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 84/129

6. Sequential circuit 1. Finite state machine

Finite state machine

general function model to describe sequential operations; defining
value ranges as symbol sets:

range of input values: Σ = {E1, E2, . . .}
range of states: S = {Z1, Z2, . . .} (one is initial state)
range of output values: Π = {A1, A2, . . .}

and operation as mappings:

transfer function: fs : S × Σ→ S
output function: fa : S × Σ→ Π

Digital circuits as finite state machines:

symbols 7→ bit vectors; input, output 7→ signals
state 7→ register; transfer and output function 7→
combinatorial circuit
state transition synchronized to a clock
initial state = initialing value of the state register

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 85/129

6. Sequential circuit 1. Finite state machine

Description by a state graph

transition condition
state transition

name of the state
state

output

Z3

AZ1

Z1

AK3.1

E1.1

Z2

AZ2

AZ2

AK2.1

AK1.1

AK2.2

AK2.1

E2.1

E2.2
E1.2

E3.1

inital state
symbol for the

output depends only upon the state / assigned to states /
the same for all outgoing edges 7→ Moore automaton
output also depends on input / assigned to the outgoing
edges 7→ Mealy automaton

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 86/129

6. Sequential circuit 1. Finite state machine

Up-/down counter as a Mealy automaton

states

R/N

A B

CD

V/L

R/LV/K
R/K

V/M

R/M

V/N

H/L

H/M

H/K

H/N

Π = {K,L,M,N}
S = {A,B,C,D}
Σ = {H,V,R}

initial state

range of state values

range of output values

x/y

input value

output value

range of input values

Meanings of the input values: H – stop; V – up; R – down

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 87/129

6. Sequential circuit 1. Finite state machine

⇒ ⇒

B
A

C
D

V

B
C
D
A

H

B
A

C
D

R

B
A

C

D

V H R

K
L
M
NK

L
M
N

K
L
M

N 00
10

10
11

K
L
M
N

10
11

C
D

00
10

V
H
R

00
01
10 01

00

10
11

00
01
10
11

00
01
10

11

00

01
10
11

00 01 10

00
01
10
11

00
01
10

11

00

01
10
11

00 01 10

s+ = fs(x, s)

s x :

A
B

s x :

s+ = fs(x, s)

coding
state

function with symbolic values
state transition and output

function with bitvectors
state transition and output

y = fa(x, s) y = fa(x, s)

state graph: obviously well suited to specify target functions

extractable tabular state transfer and output function

state coding: assigning bit vectors to symbols

translation to a presentation with bit vectors

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 88/129

6. Sequential circuit 1. Finite state machine

Up-/down counter as a Moore automaton

B
A

C
D

V

B
C
D
A

H

B
A

C
D

R

B
A

C

D K
L
M
N

s

y

state

output value

input value

{K,L,M,N} output set
{A,B,C,D}
{H,V,R}

state set
input set

RV

V

R

V

R
V R

D

A B

C

K L

MN

H H

H

ba

H

s x :

s+ = fs(x, s) y = fy(s)

x

fs(...)
fa(...)

x
s
s+

y output
transfer function
output function

next state
actual state
input

the output depends on the state

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 89/129

6. Sequential circuit 1. Finite state machine

Autonomous automaton

no input; one outgoing edge per state

A B C D

E G HF
b)

A B C D

EFGH
a)

a) cyclical automaton; example application clock divider
b) without cycle but a final state; example initialization run

If no outputs are assigned in the state graph the state is the
output.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 90/129

6. Sequential circuit 2. Automaton ⇒ VHDL

Automaton ⇒ VHDL

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 91/129

6. Sequential circuit 2. Automaton ⇒ VHDL

Circuit structure of automatons

I

1
0I
1

0

state register

optinal input and output register

I
x

y’

y

Y0 Y1

Y0 Y1 Y2

fs(x, s)

fy(x, s)

x

y’

s

x+

I+
y

T

th, td

S0

X1

S1

X2

S1

td
th

S2

s

s+

x X0

S0

T

combinatorial circuit

value valid
point of sample time

the input and the initialization signal must be aligned to the
clock

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 92/129

6. Sequential circuit 2. Automaton ⇒ VHDL

I I
xfs(x, s)

fy(x, s)

x

y’

s

x+

I+
y

T

th, td

the optional input and output register are generally not
counted as part of the automaton
initializing the state register ⇒ switching to the initial state
state register + transfer function ⇒ sampling process with
initialization (T , I in the sensitivity list)
output function without sampling ⇒ combinatorial process
(x, s in the sensitivity list)

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 93/129

6. Sequential circuit 2. Automaton ⇒ VHDL

VHDL case instruction to describe tabular
functions

} =>{ |WertWert

{instruction instruction}
A0 A1 An

. . .

. . .

w0 w1

s
else

case expression

when

{when

} =>{ |Wertvalue

end case

=>

;
{instruction }]]

{instruction instruction}} A1
w1

A0

w0

value to selects
values to bee selected i
instruction sequence iAi

An
[[when others

instruction wi

is s

the transfer an the output functions derived from the state
graph best be described by case and if statements, e.g.:

case state is

when Zi => if input=... then state <= Zj; ...

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 94/129

6. Sequential circuit 2. Automaton ⇒ VHDL

Example of a mealy automaton

circuit structure

fs x
I

00

0110

0/1

1/0

1/1

1/1
0/0

state graph

0/0 s+ ys
x

I

T T

fy

part of the automaton
necessary, but not

input range: {0, 1} ⇒ bit
Range oft states: {00, 01, 10} ⇒ 2 bit vector
output range: {0, 1} ⇒ bit

signal x, y, T, I: STD LOGIC;

signal s: STD LOGIC VECTOR(1 downto 0);

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 95/129

6. Sequential circuit 2. Automaton ⇒ VHDL

Transfer function in a sample process

s+

I
fsx

x
I

T

s

00

0110

0/1

1/01/1
0/0

1/1

0/0

process(I, T)

variable sx: STD LOGIC VECTOR(2 downto 0);

begin
if I=’1’ then
s <= "00";

elsif RISING EDGE(T) then
sx := s & x;

case sx is
when "00"&’0’ | "10"&’0’ => s <= "00";

when "01"&’0’ | "00"&’1’ => s <= "01";

when "10"&’1’ | "01"&’1’ => s <= "10";

when others => s <= "XX";

end case;
end if;

end process;

Selection expression: concatenation of state and input
Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 96/129

6. Sequential circuit 2. Automaton ⇒ VHDL

Output function as combinatorial process

00

0110

0/1

1/01/1
0/0

0/0

1/1
process(x, s)

variable sx: STD LOGIC VECTOR(2 downto 0);

begin
sx <= s & x;

case sx is
when "00"&’1’ | "01"&’0’ | "10"&’0’ => y <= ’0’;

when "00"&’0’ | "01"&’1’ | "10"&’1’ => y <= ’1’;

when others => y <= ’X’;

end case;
end process;

The selection expression is again a concatenation of the state and
the input.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 97/129

6. Sequential circuit 2. Automaton ⇒ VHDL

Example Moore automaton

process(s)
begin
case s is
when "01" => y <= ’0’;

when "00"|"10" => y <= ’1’;

when others => s <= ’X’;

end case;
end process; x

I

T

00
1 1

1
00

0110
01

1

0

s+ s

I

T

x
y

fyfs

input, state and output range and transfer function are the
same as in the example before
the output only depends upon the state

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 98/129

6. Sequential circuit 2. Automaton ⇒ VHDL

Autonomous Automaton, example Johnson
counter

0000

1000 1100 1110 1111

011100110001 s0 s1 s2 s3

II+

T

x

I I I

x x x

shift register, that alternating filled first with ones and than
with zeros
cycle length 2 · n (n – number of register bits)
very low register register delay; high clock frequency
application as fast prescaler, e.g. to measure frequencies in
the GHz range

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 99/129

6. Sequential circuit 2. Automaton ⇒ VHDL

0000

1000 1100 1110 1111

011100110001 s0 s1 s2 s3

II+

T

x

I I I

x x x

signal T, I: STD LOGIC;

signal s: STD LOGIC VECTOR(3 downto 0);

...

process(I, T)

begin
if I=’1’ then s <= "0000";

elsif RISING EDGE(T) then
s <= s(2 downto 0) & (not s(3));

end if;
end process;

For some automatons the transfer and the output function
can be described much simpler than with case and if
statements.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 100/129

6. Sequential circuit 3. System crash

System crash

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 101/129

6. Sequential circuit 3. System crash

Illegal states and system crash

n memory elements ⇒ 2n states; not all are used
What happens in the unused (illegal) states?

Example 4 Bit Johnson counter:

0100

1011

mal-
function

way
back

s3s2s1s0

correct function operation after crash

0000

111111101100

1000

0001 0011

0111 0101

00101001

01101101

1010no

Automaton cycles illegal states
till reinitialization no reasonable behavior⇒ crash

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 102/129

6. Sequential circuit 3. System crash

Automated crash recovery

circuit for an automatic reinitialization

0000.0

1111.0

I

T

x
s0

I

x

I

x

s1 s2

&

I+

s3

I

xI+r
≥1

- - - -.1

illigal states Cycle of the legal states

transitions by
malfunctions

s3s2s1s0.I

0111.00011.00001.0

1110.01100.01000.01101.0

0101.01001.00100.0

1010.0 0110.0

0010.0

1011.0

adding the illegal states; defining edges to leave them
In the example a reset is performed automatically, if the
Johnson counter reaches the state �1101� or �0101�.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 103/129

6. Sequential circuit 3. System crash

Watchdog

cyclic in certain progamm points (programm points or
transmissions), the automat resets the watchdog counter

supervised automat watchdog

RW

RA

RA

RW

An overflow of the watchdog timer reinitialized the automaton

N = 1000 memory elements ⇒ 21000 states, most unused
(illegal); Technique on slide before impractical
The alternative is time monitoring: if if in a given time
interval no state to reset the watchdog is reached, the
watchdog reinitialized the system
standard solution for microprocessors

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 104/129

6. Sequential circuit 4. Combination lock

Combination lock

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 105/129

6. Sequential circuit 4. Combination lock

Control design of a combination lock

Input sequence: reset + right number sequence ⇒ output
LED turns on
Input sequence: reset + wrong number sequence ⇒ output
LED stays off

Design flow:

Circuit sketch, input elements, sampling register, clock
circuitry; transfer and output function as circuit blocks still
to design
Specification of the state graph
State encoding (if not given input and output encoding)
Description in VHDL
Simulation
Synthesis, ...

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 106/129

6. Sequential circuit 4. Combination lock

Circuit sketch

x
I

&
x xU

x+

x+
m−1

fs

s
fy

xU’

s+

y

T
I+

x+
0

UV

· · ·
x+
1

I

m number buttons + reset key; asynchronous de-bounced;
sampling e.g. with TP ≈ 10 ms; �0� if pressed
valid input: sequence no key pressed - single key pressed;
multiple key; multiple keys pressed should be handled in the
same way as wrong key pressed
Output LED + series resistor; on when y = 0
Moore automaton (output assigned to the states)
Reinitialization with the sampled reset value �0�

xU – AND instruction of the key signals; if no button is
pressed during the sampling �1�, else �0�

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 107/129

6. Sequential circuit 4. Combination lock

Designing the state flow

1110∗ 0111∗ 1101∗

LED off
Z2 Z3

LED onLED off
Z0 Z1

LED off

LED off
F

else∗ else∗else∗

∗ ∧(xU = 0) ∧ xU’= 1)

Acceptor automaton; Zi name of the state; i – number of
the next secret key
transition condition: active clock edge ∧ xU = 0 (key
pressed) ∧ xU’ (step before no key pressed) ∧s 6= F ∧ s 6= Z3

(not final state)
correct number sequence 0-3-1 ⇒ input vector sequence
1110-0111-1101 (m = 4 number keys)
wrong input ⇒ error state F
The final states F and Z3 are left only by reinitialization.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 108/129

6. Sequential circuit 4. Combination lock

Description in VHDL

x
I

&
x xU

x+

x+
m−1

fs

s
fy

xU’

s+

y

T
I+

x+
0

UV

· · ·
x+
1

I

signal T, I next, I, xu, xu del: STD LOGIC;

signal s: STD LOGIC VECTOR(2 downto 0);

signal x next, x: STD LOGIC VECTOR(3 downto 0);
...

process(T) begin
if RISING EDGE(T) then
x <= x next;

I <= I next;

xu del <= xu;

end if;
end process;

xu <= x(0) and x(1) and x(2) and x(3);
Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 109/129

6. Sequential circuit 4. Combination lock

final states: 1- -

Z1

LED offLED off
Z0 Z3

LED on

000

100
010
001

111

Z0

Z1

Z2

Z3

F

state coding

∗ ∧(xU = 0)
∧xU’= 1)LED of

F

1110∗ 0111∗

else∗else∗

1101∗

else∗
LED off

Z2

process(I, T)

variable v: STD LOGIC VECTOR(6 downto 0);

begin
if I=’0’ then
s <= "000";

elsif RISING EDGE(T) and xu=’0’

and xu del =’1’ and s(2)=’0’ then
v:= s & x del;

case v is
when "000" & "1110" => s<="001";
when "001" & "0111" => s<="010";
when "010" & "1101" => s<="100";
when others => s <= "111";

end case;
end if;

end process;
--- concurrent signal asignment to the output y

y<= not s(2) or s(1) or s(0);
Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 110/129

6. Sequential circuit 4. Combination lock

Summery

Circuit design using finite state machines:

sketch of the circuit with the Automaton as a Black-Box
(creative)

specify operation by a state graph (creative)

translate description to VHDL (prescription like)

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 111/129

6. Sequential circuit 5. Operation graph

Operation graph

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 112/129

6. Sequential circuit 5. Operation graph

Operation graph

The number of states and edges in an state graph grow
exponentially with number of input and state bits.

How information can be structures better?
As in a computer program:

also a operation graph, which controls data operation
limited range of operation: add, count, logical bit operations
...

Operation graph: extended state graph, that in addition
controls Operation and checks operational results for
conditional state transfer.

Definition of operands and operations to describe the target
function as a register transfer function
Describing the operation flow as graph.

Even a single count operation may simplify the operation flow
dramatically.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 113/129

6. Sequential circuit 5. Operation graph

Triangle signal generator

0000
0001
0010

1110
1101

1111

0 15 30

y

step

autonomous automaton, which periodically cycles the 30
states
state space separable in counting direction (up, down) and
count value (�0000� to �1111�)
the two unused state tuple (�0000�, down) and (�1111�,
up) are illegal
required operations: clr (initialize with �0000), inc (count
up) and dec (count down)

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 114/129

6. Sequential circuit 5. Operation graph

+1

0000 y

operations of the count register

y

y

inc

dec

clr

−1

operation graph

0
inc

1
dec

y=1110

y=0001

clr
I=1

elseelse

0000
0001
0010

1110
1101

1111

0 15 30

y

step

library Tuc;

use Tuc.Numeric Sim.all;
...
signal T, I, s: STD LOGIC;

signal y: tUnsigned(3 downto 0);
...
process(I, T)
begin
if I=’1’ then
s <= ’0’; y <= ”0000”;

elsif RISING EDGE(T) then
case s is
when ’0’ => y <= y +”1”;

if y=”1110” then s<=’1’; end if;
when ’1’ => y <= y -”1”;

if y=”0001” then s<=’0’; end if;
when others => y <= ”XXXX”;

end case;
end if;

end process;

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 115/129

6. Sequential circuit 6. Quadrature encoder

Quadrature encoder

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 116/129

6. Sequential circuit 6. Quadrature encoder

Displacement measuring with quadrature encoder

forward
backward

forward backward

1 2 30 44 5 3 2 1 0

a’

b’ b”

a”
0000

0 0 0
00 1

1
0

0
0
0

1
1
1

0 1
0 0
1 1

1
1
1

0
0
0

1 0
1 1
0 0

1
1
1

1
1
1

1 1
1

1
0

0

b’a” b” a’

−1

−1
+1

+1

+1
−1

+1
−1

ct

T

0

0
1

1b’

a’

ct

a

b

perforated disk at a wheel axle e.g. of a mobile robot
during turning ahead the signal a and during during turning
back the signal b changes first

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 117/129

6. Sequential circuit 6. Quadrature encoder

forward backward

0000
0 0 0

00 1
1
0

0
0
0

1
1
1

0 1
0 0
1 1

1
1
1

0
0
0

1 0
1 1
0 0

1
1
1

1
1
1

1 1
1

1
0

0

b’a” b” a’

−1

−1
+1

+1

+1
−1

+1
−1

ct

1 2 30 44 5 3 2 1 0

0

0
1

1b’

a’

ct

stop / don’t count: a”b” = a’b’
illegal: a”b” = ā’b̄’

rotation forward / count up

first a turns on (a”b”a’b’ = 0010)
then b turns on (a”b”a’b’ = 1011)
then a turns off (a”b”a’b’ = 1101)
at last b turns off (a”b”a’b’ = 0100).

rotation backward / count down

first b turns on(a”b”a’b’ = 0001)
then a turns on(a”b”a’b’ = 0111)
then b turns off(a”b”a’b’ = 1110)
at last a turns off(a”b”a’b’ = 1000)

transfer function:
a”b” <= a’b’

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 118/129

6. Sequential circuit 6. Quadrature encoder

library Tuc; use Tuc.Numeric Sim.all;
...
signal T, I, I del: STD LOGIC;
signal ab: STD LOGIC VECTOR(1 downto 0);
signal ab del: STD LOGIC VECTOR(3 downto 0);

signal ct: tSigned(15 downto 0);

--- Abtastprozess ohne Initialisierung

process(T)
begin
if RISING EDGE(T) then
I del <= I;

ab del(1 downto 0) <= ab;

ab del(3 downto 2) <=
ab del(1 downto 0);

end if;
end process;

a’

b’ b”

a”a

b

T

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 119/129

6. Sequential circuit 6. Quadrature encoder

0000
0 0 0

00 1
1
0

0
0
0

1
1
1

0 1
0 0
1 1

1
1
1

0
0
0

1 0
1 1
0 0

1
1
1

1
1
1

1 1
1

1
0

0

b’a” b” a’

−1

−1
+1

+1

+1
−1

+1
−1

ct

--- Zählerprozess

process(I del, T)
begin
if I del=’1’ then
ct <= ”0000000000000000”;

elsif RISING EDGE(T) then
case ab del is
when ”0010” |”1011” |”1101” |”0100” => ct <= ct +”1”;
when ”0001” |”0111” |”1110” |”1000” => ct <= ct -”1”;
when ”0000” |”0101” |”1010” |”1111” => null;
when others => ct <=”X...(16×X)...XX”;

end case;
end if;

end process;

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 120/129

6. Sequential circuit 6. Quadrature encoder

Summary

functional specification as state graph; recipe like
implementation in VHDL and further in a circuit

state ⇒ state register, sampling process
initial value ⇒ initial value of the state register
transfer and output function ⇒ sample or combinatorial
process with case distinction on case and input

illegal states; danger to crash; typical error handling
reinitialization; reset button, watchdog
complex functions with large input and state ranges

describing target function by an operation sequence
specification of operands and operations as register transfer
functions
operation graph
recipe like mapping to VHDL

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 121/129

6. Sequential circuit 7. Exercises

Exercises

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 122/129

6. Sequential circuit 7. Exercises

Aufgabe 1.18: Feedback shift register

b)a)

x

I

x

I
00

1
0

1
0

1
0

1
0

x

I
T

y

s0 s1

T

x

I

s1s0

y

=1
=1

Determine the next states s+
1 s

+
0 and the output value y for

each variation of the actual state s1s0 and the input value of
x
draw the state graph
Add the signal flow for s1s0 and y in the figure right.

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 123/129

6. Sequential circuit 7. Exercises

Aufgabe 1.19: Automaton

Z1

y<=’0’

y<=’1’

Z4

Z2

y<=’1’

x=’1’

x=’1’

x=’1’

y<=’0’

Z3

x=’0’
x=’0’

x=’0’

x=’1’

x=’0’

symbolic state name Z1 Z2 Z3 Z4

assigned bit vector ”00” ”01” ”10” ”11”

state transition with the rising clock edge
initialization with I=’1’

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 124/129

6. Sequential circuit 7. Exercises

1 Fill in the state transition table

input 0 1 0 1 0 1 0 1

state 00 00 01 01 10 10 11 11

next state

output

2 Drawing of the complete circuit (input sampling, state
register, transfer function, output function)

3 How many memory elements are required?

4 Description in VHDL (entity + architecture).

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 125/129

6. Sequential circuit 7. Exercises

Aufgabe 1.20: Monitor for a transmitter signals

For a transmitter signal it has to be monitored, that the
difference ∆ between the number of transmitted ones minus the
transmitted zeros does not exceed the range of −3 to 3. In case
of violation error signal y should become active. Example wave
form:

x 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 . . .

∆ 0 1 0 -1 -2 -3 -3 -2 -3 -2 -1 0 1 2 3 3

y 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 . . .

(x – input; ∆ – number of �0� minus number of �1�; y – error
signal)

To do:

Draw state graph
VHDL declaration + process description(s)

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 126/129

6. Sequential circuit 7. Exercises

Aufgabe 1.21: Clock divider

Design a clock divider with division factor 2 · n, which with each
n-th active input clock edge events the output clock. To do:

Draw the signal flow of the input and the output clock for
n = 2.

Describe the target function withe an operation graph and a
counter.

VHDL description. Parameter n should be declared as a
constant.

Hint: The data type of the counter signal may also be a number
type (INTEGER, NATURAL or POSITIVE).

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 127/129

6. Sequential circuit 7. Exercises

Aufgabe 1.22: Morse receiver

4 6 8 102

A R I SP

0

1

0x

t in s

Morse signals consist of

short pulses (dot, tP = 200...300 ms) and
long pulses (dash, tS = 600...900 ms).

clock frequency: fT = 20 Hz
bouncing time less than clock period.
two low active input button

signal x: Morse signal
signal I: Initialization signal

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 128/129

6. Sequential circuit 7. Exercises

Three output bits, to be activated for one clock

signal p: after receiving a dot
signal s: after receiving a dash
signal err: after receiving a pulse of unallowed length

Draw complete circuit with buttons, sample registers, state
registers and the transfer and the output function as black
box .

Operation graph using a counter

VHDL description (only declaration of the date objects and
the processes)

Prof. G. Kemnitz · Institute of Informatics, Clausthal University of Technology May 14, 2012 129/129

	Delay Time Tolerance
	Glitches
	Delay model
	Delay tolerance region
	Run Time Analysis
	Exercises

	Register
	Sampling with Registers
	VHDL sampling process
	Processing + Sampling
	Register transfer function
	Clock skew
	Exercises

	Asynchronous input
	Sampling a single bit
	Switch de-bouncing
	Asynch. initialization
	Parallel interface
	Exercises

	Sequential circuit
	Finite state machine
	Automaton VHDL
	System crash
	Combination lock
	Operation graph
	Quadrature encoder
	Exercises

